PROPERTY $B(P,\omega)$ AND WEAK $\overline{\theta}$ -REFINABILITY OF PRODUCT SPACES

KEIKO CHIBA

Received January 7, 2005

ABSTRACT. In this paper we shall show: (1) Let X be a zero-dimensional metric space and Y be a P-space. If Y has property $B(D, \omega)$, then $X \times Y$ has property $B(D, \omega)$.

(2) Let X be a regular σ -space and Y be a P-space. If Y has property $B(LF, \omega)$, then $X \times Y$ has property $B(LF, \omega)$.

(3) Let X be a normal strong Σ -space and Y be a P-space. If Y has property $B(LF, \omega)$, then $X \times Y$ has property $B(LF, \omega)$.

(4) Let X be a strong Σ -space and Y be a P-space. If Y is weak $\overline{\theta}$ -refinable (resp. weak $\overline{\delta\theta}$ -refinable), then $X \times Y$ is weak $\overline{\theta}$ -refinable. (resp. weak $\overline{\delta\theta}$ -refinable).

1. INTRODUCTION

Throughout this paper we assume that each space is a Hausdorff space. Each map is assumed to be continuous.

Smith [13] introduced the notion of weak $\overline{\theta}$ -refinability and has shown that

 θ -refinable \Rightarrow weakly $\overline{\theta}$ -refinable \Rightarrow weakly θ -refinable

and the implications are not reversible. And he [15] introduced the notions of property $B(D, \omega)$ and property $B(LF, \omega)$ and he proved the following:

property $B(D, \omega) \Rightarrow$ weakly $\overline{\theta}$ -refinable;

 θ -refinable \Rightarrow property $B(LF, \omega)$.

It is obvious that

paracompact \Rightarrow property $B(D, \omega) \Rightarrow$ property $B(LF, \omega)$.

In this paper we shall investigate the conditions for the product space $X \times Y$ has property $B(D, \omega)$, property $B(LF, \omega)$ and weak $\overline{\theta}$ -refinability.

The following results are known.

Theorem A. Suppose X is a Σ -space and Y is a P-space. If X and Y are both paracompact (regular Lindelöf, regular subparacompact, submetacompact (θ -refinable), weakly θ -refinable, weak $\delta\theta$ -refinable), then so is $X \times Y$. (The Lindelöf case and paracompact case are proved in Nagami [8], the subparacompact case in Lutzer [5], the submetacompact case in Burke [2, pp.400-401] and the weak θ -refinability case in Yajima [16]. For the weak $\delta\theta$ -refinability case, the proof is similar to the case of weak θ -refinability.)

Yajima's theorem is a more general form, i.e., the following.

Theorem B. ([16]). Suppose X is a strong Σ -space and Y is a P-space. If Y is a weakly θ -refinable, then so is $X \times Y$.

Same result for the weak $\delta\theta$ -refinability case can be shown similarly.

²⁰⁰⁰ Mathematics Subject Classification. Primary 54B10, 54D20. Secondary 54G20.

Key words and phrases. Property $B(D, \omega)$, Property $B(LF, \omega)$, Property $B(CP, \omega)$, weak $\overline{\theta}$ -refinable, *P*-space, σ -space, Σ -space.

In this paper we shall show that the similar results of Theorem B hold for the case of weak $\overline{\theta}$ -refinability and weak $\overline{\delta\theta}$ -refinability.

It is known that

X is a metric space \Rightarrow X is a σ -space \Rightarrow X is a Σ -space.

Let Y be a P-space. We consider property $B(D, \omega)$ of $X \times Y$ when X is a zero-dimensional metric space and property $B(LF, \omega)$ of $X \times Y$ when X is a regular σ -space or a normal Σ -space.

Let Ω be a set. Denote $\Omega^n = \{(\alpha_0, \alpha_1, ..., \alpha_{n-1}) | \alpha_i \in \Omega, i = 0, ..., n-1\}$ for each $n \in \omega, \Omega^{<\omega} = \bigcup_{n \in \omega} \Omega^n$ and $\Omega^{\omega} = \{(\alpha_0, \alpha_1, ..., \alpha_n, ...,) | \alpha_n \in \Omega$ for each $n \in \omega\}$. For each $\sigma = (\alpha_0, \alpha_1, ..., \alpha_{n-1}) \in \Omega^n$ and $\alpha \in \Omega$, we denote $\sigma \lor \alpha = (\alpha_0, \alpha_1, ..., \alpha_{n-1}, \alpha)$. For each $\sigma = (\alpha_0, \alpha_1, ..., \alpha_n, ...) \in \Omega^{\omega}$, we denote $\sigma \upharpoonright n = (\alpha_0, \alpha_1, ..., \alpha_{n-1})$. It is obvious that $\sigma \upharpoonright n \in \Omega^n$.

A space Y is said to be a P-space ([7]) if for any open cover $\{U(\sigma)|\sigma \in \Omega^{<\omega}\}$ of Y where $U(\sigma) \subset U(\sigma \lor \alpha)$ for each $\sigma \in \Omega^n$ and $\alpha \in \Omega$, then there is a closed cover $\{K(\sigma)|\sigma \in \Omega^{<\omega}\}$ of X such that

(i) $K(\sigma) \subset U(\sigma)$ for each $\sigma \in \Omega^{<\omega}$,

(ii) for each $\sigma \in \Omega^{\omega}$, if $\bigcup_{n \in \omega} U(\sigma \upharpoonright n) = Y$, then $\bigcup_{n \in \omega} K(\sigma \upharpoonright n) = Y$.

For a space X, dimX denotes the covering dimension of X and X is a zero-dimensional space means dimX = 0.

A subset A of X is called a "clopen" set if A is both an open set and a closed set of X. The following lemmas $1 \sim 3$ are well known.

Lemma 1. If X is a zero-dimensional metric space, then X has a base \mathcal{B} satisfying the following conditions:

(i) $\mathcal{B} = \bigcup_{n \in \omega} \mathcal{B}_n$, \mathcal{B}_n is a discrete cover of X by clopen sets,

(ii) $\mathcal{B}_n = \{ \dot{B}(\sigma) | \sigma \in \Omega^n \}, B(\sigma) = \bigcup_{\alpha \in \Omega} B(\sigma \lor \alpha) \text{ for each } \sigma \in \Omega^n,$

(iii) for each $x \in X$, there is a $\sigma \in \Omega^{\omega}$ such that $\{B(\sigma \upharpoonright n) | n \in \omega\}$ is a local base of x in X.

Lemma 1 follows from the following.

Theorem C (Katětov [4], Morita [6], or cf. 12.2 Theorem in [10]). A space X is a metric space with dim $X \leq 0$ if and only if X is a subset of a Baire 0-dimensional space.

A collection \mathcal{F} of subsets of X is called a *net* of X if for each $x \in X$ and each open set U, there is an $F \in \mathcal{F}$ such that $x \in F \subset U$.

A space X is called a σ -space if σ -locally finite net ([9], [11]).

Lemma 2. ([9, Theorem 1]). If X is a σ -space, then X has a net \mathcal{F} satisfying the following conditions:

(i) $\mathcal{F} = \bigcup_{n \in \omega} \mathcal{F}_n$, \mathcal{F}_n is a locally finite closed cover of X, (ii) $\mathcal{F}_n = \{F(\sigma) | \sigma \in \Omega^n\}, F(\sigma) = \bigcup_{\alpha \in \Omega} F(\sigma \lor \alpha)$ for each $\sigma \in \Omega^n$, (iii) for each $x \in X$, there is a $\sigma \in \Omega^{\omega}$ such that $\{F(\sigma \upharpoonright n) | n \in \omega\}$ is a net of x.

A space X is called a Σ -space if X has a Σ -net ([8]).

Lemma 3. ([8, 1.4. Lemma]). If X is a Σ -space, then X has a spectral Σ -net \mathcal{F} , i. e., satisfying the following conditions:

(i) $\mathcal{F} = \bigcup_{n \in \omega} \mathcal{F}_n$, \mathcal{F}_n is a locally finite closed cover of X,

(ii) $\mathcal{F}_n = \{ F(\sigma) | \sigma \in \Omega^n \}, F(\sigma) = \bigcup_{\alpha \in \Omega} F(\sigma \lor \alpha) \text{ for each } \sigma \in \Omega^n,$

(iii) for each $x \in X$, there is a $\sigma \in \Omega^{\omega}$ such that $\{F(\sigma \upharpoonright n) | n \in \omega\}$ is a K-net of C(x), i. e., if U is an open set in X such that $C(x) \subset U$, then $F(\sigma \upharpoonright n) \subset U$ for some n. Here $C(x) = \bigcap_{n \in \omega} F(\sigma \upharpoonright n)$. A space X is called a strong Σ -space if X has a Σ -net such that C(x) is compact for each $x \in X$.

The following lemma is obvious.

Lemma 4. Let us define $\phi: \omega \times \omega \to \omega$ by $\phi(n,m) = n + \frac{(n+m)(n+m+1)}{2}$.

Then ϕ is a bijection satisfying the conditions:

if $m', m \in \omega$ and m' < m, then $\phi(n, m') < \phi(n, m)$ for each $n \in \omega$.

2. Property $B(D, \omega)$

Definition 1. (Smith [15]). A space X is called to have property $B(D, \omega)$ if for every open cover \mathcal{G} of X, there is a cover $\mathcal{H} = \bigcup_{n < \omega} \mathcal{H}_n$ of X such that \mathcal{H} is a refinement of \mathcal{G} and satisfies the conditions: for each $n < \omega$,

 $(i)_n \mathcal{H}_n$ is a discrete collection of closed subsets of $X \setminus \bigcup_{m < n} (\bigcup \mathcal{H}_m)$,

 $(ii)_n \bigcup_{m < n} (\bigcup \mathcal{H}_m)$ is closed in X. Here $\bigcup_{m < 0} (\bigcup \mathcal{H}_m) = \emptyset$.

It is obvious that property $B(D, \omega)$ is closed hereditary.

Notation. Let \mathcal{K} be a collection of subsets in X and A a subset of X. Then we denote $\mathcal{K}|A = \{K \cap A | K \in \mathcal{K}\}.$

Let \mathcal{U} and \mathcal{V} be collections of subsets in X. We denote $\mathcal{V} \prec \mathcal{U}$ if \mathcal{V} is a refinement or a partial refinement of \mathcal{U} .

Lemma 5. In Definition 1, the condition (ii) follows from (i).

Proof. (By induction) . The condition $(ii)_1$ follows from $(i)_0$. Put $A_n = \bigcup_{m < n} (\bigcup \mathcal{H}_m)$. Assume that $(ii)_n$ hold. By $(i)_n$, $\overline{\bigcup \mathcal{H}_n} \cap (X \smallsetminus A_n) = \bigcup \mathcal{H}_n$ and by $(ii)_n$, $\overline{A_n} = A_n$. Therefore $\overline{A_{n+1}} = (\bigcup \mathcal{H}_n) \cup A_n = ((\bigcup \mathcal{H}_n) \cap (X \smallsetminus A_n)) \cup ((\bigcup \mathcal{H}_n) \cap A_n) \cup \overline{A_n} = (\bigcup \mathcal{H}_n) \cup A_n = A_{n+1}$. \Box

Theorem 1. Let X be a zero-dimensional metric space and Y be a P-space. If Y has property $B(D, \omega)$, then $X \times Y$ has property $B(D, \omega)$.

Proof. Let $\mathcal{B} = \bigcup_{n \in \omega} \mathcal{B}_n$ be a base of X satisfying the conditions in Lemma 1. Let $\mathcal{G} = \{G_{\xi} | \xi \in \Xi\}$ is an open cover of $X \times Y$. For each $\sigma \in \Omega^{<\omega}$ and each $\xi \in \Xi$, let $U(\sigma;\xi) = \bigcup \{U | U \text{ is an open set in } Y, B(\sigma) \times U \subset G_{\xi} \}$. Then $U(\sigma;\xi)$ is an open set in Y and $B(\sigma) \times U(\sigma;\xi) \subset G_{\xi}$. Put $U(\sigma) = \bigcup_{\xi \in \Xi} U(\sigma;\xi)$. Then

(1) $\{U(\sigma)|\sigma\in\Omega^{<\omega}\}$ is an open cover of Y.

Proof. Let $y \in Y$. Let us choose a point $x \in X$ and a $\sigma \in \Omega^{\omega}$ such that $\{\sigma \upharpoonright n; n \in \omega\}$ be a local base of x in X. Since \mathcal{G} is a cover of $X \times Y$, there is a $\xi \in \Xi$ such that $(x, y) \in G_{\xi}$. Then there are an n and an open set U with $(x, y) \in B(\sigma \upharpoonright n) \times U \subset G_{\xi}$. By the definition of $U(\sigma \upharpoonright n), U \subset U(\sigma \upharpoonright n)$. Thus $y \in U(\sigma \upharpoonright n)$.

(2) $U(\sigma) \subset U(\sigma \lor \alpha)$ for each $\sigma \in \Omega^n$ and $\alpha \in \Omega$.

Proof. This follows from $B(\sigma \lor \alpha) \subset B(\sigma)$.

Since Y is a P-space, there is a closed cover $\{K(\sigma)|\sigma\in\Omega^{<\omega}\}$ of Y such that (3) $K(\sigma)\subset U(\sigma)$ for each $\sigma\in\Omega^{<\omega}$, (4) for each $\sigma\in\Omega^{\omega}$, if $\bigcup_{n\in\omega}U(\sigma\upharpoonright n)=Y$, then $\bigcup_{n\in\omega}K(\sigma\upharpoonright n)=Y$.

The following holds.

(5) Let x be an arbitrary element of X and let $\sigma \in \Omega^{\omega}$ such that $\{B(\sigma \upharpoonright n) : n < \omega\}$ is a local base of x. Then $\bigcup_{n < \omega} U(\sigma \upharpoonright n) = Y$.

KEIKO CHIBA

For each $\sigma \in \Omega^{<\omega}$, $\mathcal{U}_{\sigma} = \{U(\sigma;\xi) | \xi \in \Xi\}$ is an open cover of $U(\sigma)$. Since Y has property $B(D,\omega)$ and $K(\sigma)$ is closed in Y, $K(\sigma)$ has property $B(D,\omega)$. Therefore there is a cover $\mathcal{K}_{\sigma} = \bigcup_{m < \omega} \mathcal{K}_{\sigma,m}$ of $K(\sigma)$ such that for each $m < \omega$,

 $(i)_{\sigma}$. $\mathcal{K}_{\sigma,m} \prec \mathcal{U}_{\sigma}$.

 $(ii)_{\sigma}$. $\mathcal{K}_{\sigma,m}$ is a discrete collection of closed subsets of $K(\sigma) \setminus \bigcup_{i < m} (\bigcup \mathcal{K}_{\sigma,i})$.

We may assume that $\mathcal{K}_{\sigma,m} = \{K(\sigma,m,\xi) | \xi \in \Xi\}$ with $K(\sigma,m,\xi) \subset U(\sigma;\xi)$ for each ξ .

Let $\phi : \omega \times \omega \to \omega$ be the bijection defined in Lemma 4. For each $k = \phi(n,m) \in \omega$ and each $\sigma \in \Omega^n$, let $L(k,\sigma,\xi) = B(\sigma) \times K(\sigma,m,\xi)$ and put $\mathcal{L}_k = \{L(k,\sigma,\xi) | \sigma \in \Omega^n, \xi \in \Xi\}$. Then

(i) $\mathcal{L} = \bigcup_{k < \omega} \mathcal{L}_k$ is a cover of $X \times Y$, $\mathcal{L} \prec \mathcal{G}$.

(ii) For each $k < \omega$, $\mathcal{L}_k | X \times Y \setminus \bigcup_{l < k} (\bigcup \mathcal{L}_l)$ is a discrete collection of closed subsets of $X \times Y \setminus \bigcup_{l < k} (\bigcup \mathcal{L}_l)$.

Proof of (i). Let $(x, y) \in X \times Y$. Let $\sigma \in \Omega^{\omega}$ such that $\{B(\sigma \upharpoonright n) : n \in \omega\}$ is a local base of x. Then, by (4) and (5), $\bigcup_{n \in \omega} K(\sigma \upharpoonright n) = Y$. Thus $y \in K(\sigma \upharpoonright n)$ for some $n \in \omega$ and so $(x, y) \in B(\sigma \upharpoonright n) \times K(\sigma \upharpoonright n, m, \xi)$ for some m and ξ . Let us put $k = \phi(n, m)$. Then $(x, y) \in \bigcup \mathcal{L}_k$.

Since $B(\sigma) \times K(\sigma, m, \xi) \subset B(\sigma) \times U(\sigma, \xi) \subset G_{\xi}$ for each $\sigma \in \Omega^{<\omega}$ and $\xi \in \Xi, \mathcal{L} \prec \mathcal{G}$.

Proof of (ii). Let $k = \phi(n, m)$. Put $H = X \times Y \setminus \bigcup_{l < k} (\bigcup \mathcal{L}_l)$. We shall prove the following.

(a) $L \cap H$ is closed in H for each $L \in \mathcal{L}_k$.

(b) $\{L \cap H | L \in \mathcal{L}_k\}$ is discrete in H.

Proof of (a). Let $L = B(\sigma) \times K(\sigma, m, \xi), \sigma \in \Omega^n, \xi \in \Xi$. For a moment, to simplify the notation, let us put $B(\sigma) = B, K(\sigma, m, \xi) = K$ and $A = \bigcup_{i < m} (\bigcup \mathcal{K}_{\sigma,i})$. Since K is a closed subset of $K(\sigma) \setminus A, B \times K$ is a closed subset of $B \times K(\sigma) \setminus B \times A$. Therefore $(B \times K) \cap H$ is a closed subset of $(B \times K(\sigma)) \cap H \setminus (B \times A) \cap H$. Since $\phi(n, i) < k$ for each i < m, $B \times A \subset \bigcup_{l < k} (\bigcup \mathcal{L}_l)$. Therefore $(B \times A) \cap H = \emptyset$. Thus $(B \times K) \cap H$ is a closed subset of $(B \times K(\sigma)) \cap H$. Hence $L \cap H = (B \times K) \cap H$ is a closed subset of H.

Proof of (b). Let $(x, y) \in H$. Since \mathcal{B}_n is a discrete cover of X, there is only element σ of Ω^n such that $x \in B(\sigma)$. For each i < m, since $\phi(n, i) < k, (x, y) \notin L(\phi(n, i), \sigma, \xi) = B(\sigma) \times K(\sigma, i, \xi)$. Thus $y \notin K(\sigma, i, \xi)$ for each $\xi \in \Xi$. Therefore $y \notin \bigcup_{i < m} (\bigcup \mathcal{K}_{\sigma, i})$. If $y \notin K(\sigma)$, there is a neighborhood V of y in Y such that $V \cap K(\sigma) = \emptyset$. If $y \in K(\sigma)$, then $y \in K(\sigma) \setminus \bigcup_{i < m} (\bigcup \mathcal{K}_{\sigma, i})$. By $(ii)_{\sigma}$, there is a neighborhood V of y in Y such that $V \cap K(\sigma) = \emptyset$ for at most one $\xi \in \Xi$. Put $W = B(\sigma) \times V$. Then W is a neighborhood of (x, y) in $X \times Y$ such that $W \cap L \neq \emptyset$ for at most one $L \in \mathcal{L}_k$. \Box

3. Property $B(LF, \omega)$

Definition 2. (Smith [15]). A space X is called to have property $B(LF, \omega)$ if for every open cover \mathcal{G} of X, there is a cover $\mathcal{H} = \bigcup_{n < \omega} \mathcal{H}_n$ of X such that \mathcal{H} is a refinement of \mathcal{G} such that for each $n < \omega$,

(i) \mathcal{H}_n is a locally finite collection of closed subsets of $X \setminus \bigcup_{m \le n} (\bigcup \mathcal{H}_m)$,

(ii) $\bigcup_{m < n} (\bigcup \mathcal{H}_m)$ is closed in X.

It is obvious that property $B(LF, \omega)$ is closed hereditary.

Definition 3. (Chaber [3] or cf. [15]). A space X is called to have property b_1 if for every open cover \mathcal{G} of X, there is a cover $\mathcal{H} = \bigcup_{n < \omega} \mathcal{H}_n$ of X such that \mathcal{H} is a refinement of \mathcal{G} such that for each $n < \omega$, \mathcal{H}_n is a locally finite collection of closed subsets of $X \setminus \bigcup_{m < n} (\bigcup \mathcal{H}_m)$.

Property b_1 is the same notion of property $B(LF, \omega)$. This fact is shown by the similar proof of Lemma 5.

Each regular σ -space is a strong Σ -space, each strong Σ -space is submetacompact and each submetacompact space has property $B(LF, \omega)$ ([15, Theorem 1.4 (2)]).

Theorem 2. Let X be a regular σ -space and Y be a P-space. If Y has property $B(LF, \omega)$, then $X \times Y$ has property $B(LF, \omega)$.

Proof. We shall show that $X \times Y$ has property b_1 . Let $\mathcal{F} = \bigcup_{n \in \omega} \mathcal{F}_n$ be a net of X satisfying the conditions in Lemma 2. Let $\mathcal{G} = \{G_{\xi} | \xi \in \Xi\}$ is an open cover of $X \times Y$. For each $\sigma \in \Omega^{<\omega}$ and each $\xi \in \Xi$, let $U(\sigma;\xi) = \bigcup \{U | U$ is an open set in $Y, F(\sigma) \times U \subset G_{\xi}\}$. Then $U(\sigma;\xi)$ is an open set in Y and $F(\sigma) \times U(\sigma;\xi) \subset G_{\xi}$. Put $U(\sigma) = \bigcup_{\xi \in \Xi} U(\sigma;\xi)$. Then

(1) $\{U(\sigma)|\sigma\in\Omega^{<\omega}\}$ is an open cover of Y.

(2) $U(\sigma) \subset U(\sigma \lor \alpha)$ for each σ and α .

Since Y is a P-space, there is a closed cover $\{K(\sigma)|\sigma \in \Omega^{<\omega}\}$ of Y such that (3) $K(\sigma) \subset U(\sigma)$ for each $\sigma \in \Omega^{<\omega}$, (4) for each $\sigma \in \Omega^{<\omega}$, $K(\sigma \models n) = V$

(4) for each $\sigma \in \Omega^{\omega}$, if $\bigcup_{n \in \omega} U(\sigma \upharpoonright n) = Y$, then $\bigcup_{n \in \omega} K(\sigma \upharpoonright n) = Y$.

The following holds.

(5) Let x be an arbitrary element of X and let $\sigma \in \Omega^{\omega}$ such that $\{F(\sigma \upharpoonright n) : n < \omega\}$ is a net of x. Then $\bigcup_{n < \omega} U(\sigma \upharpoonright n) = Y$.

For each $\sigma \in \Omega^{<\omega}$, $\mathcal{U}_{\sigma} = \{U(\sigma;\xi) | \xi \in \Xi\}$ is an open cover of $U(\sigma)$. Since Y has property $B(LF, \omega)$ and $K(\sigma)$ is closed in Y, $K(\sigma)$ has property $B(LF, \omega)$. Therefore there is a cover $\mathcal{K}_{\sigma} = \bigcup_{m < \omega} \mathcal{K}_{\sigma,m}$ of $K(\sigma)$ such that for each $m < \omega$,

 $(i)_{\sigma} \mathcal{K}_{\sigma,m} = \{K(\sigma,m,\xi) | \xi \in \Xi\}$ such that $K(\sigma,m,\xi) \subset U(\sigma,m,\xi)$ for each ξ ,

 $(ii)_{\sigma} \mathcal{K}_{\sigma,m}$ is a locally finite collection of closed subsets of $K(\sigma) \setminus \bigcup_{i < m} (\bigcup \mathcal{K}_{\sigma,i})$.

Let $\phi : \omega \times \omega \to \omega$ be the bijection defined in Lemma 4. For each $k = \phi(n, m) \in \omega$ and each $\sigma \in \Omega^n$, let $L(k, \sigma, \xi) = F(\sigma) \times K(\sigma, m, \xi)$ and put $\mathcal{L}_k = \{L(k, \sigma, \xi) | \sigma \in \Omega^n, \xi \in \Xi\}$. Then

(i) $\mathcal{L} = \bigcup_{k < \omega} \mathcal{L}_k$ is a cover of $X \times Y$ and $\mathcal{L} \prec \mathcal{G}$,

(ii) for each $k < \omega$, $\mathcal{L}_k | X \times Y \setminus \bigcup_{l < k} (\bigcup \mathcal{L}_l)$ is a locally finite collection of closed subsets of $X \times Y \setminus \bigcup_{l < k} (\bigcup \mathcal{L}_l)$.

Proof of (i). This proof is similar to that of (i) in Theorem 1.

Proof of (ii). Put $H = X \times Y \setminus \bigcup_{l < k} (\bigcup \mathcal{L}_l)$ where $k = \phi(n, m) \in \omega$. We shall prove the following.

(a) $L \cap H$ is closed in H for each $L \in \mathcal{L}_k$.

(b) $\{L \cap H | L \in \mathcal{L}_k\}$ is locally finite in H.

Proof of (a). This proof is similar to that of (a) in Theorem 1.

Proof of (b). Let $(x, y) \in H$. Since \mathcal{F}_n is locally finite in X, there is a neighborhood U of x and a finite subset $\{\sigma_j | j = 1, 2, ..., p\}$ of Ω^n such that $U \cap F(\sigma) \neq \emptyset \iff \sigma \in \{\sigma_j | j = 1, 2, ..., p\}$ and $x \in F(\sigma_j)$ for each j = 1, 2, ..., p. For each i < m, since $\phi(n, i) < k, (x, y) \notin L(\phi(n, i), \sigma, \xi) = F(\sigma) \times K(\sigma, i, \xi)$ for each $\sigma \in \Omega^n$. Since $x \in F(\sigma_j), y \notin K(\sigma_j, i, \xi)$ for each $\xi \in \Xi$. Therefore $y \notin \bigcup_{i < m} \mathcal{K}_{\sigma_j, i}$. If $y \notin K(\sigma_j)$, there is a neighborhood V_j of y in Y such that $V_j \cap K(\sigma_j) = \emptyset$. If $y \in K(\sigma_j)$, then $y \in K(\sigma_j) \setminus \bigcup_{i < m} \mathcal{K}_{\sigma_j, i}$. By $(ii)_{\sigma_j}$, there is a neighborhood V_j of y in Y such that $V_j \cap K(\sigma_j, m, \xi) \neq \emptyset$ is at most finite finite number of $\xi \in \Xi$. Put $V = \bigcap_{j=1}^p V_j$ and $W = U \times V$. Then W is a neighborhood of (x, y) in $X \times Y$ such that $W \cap L \neq \emptyset$ for at most finite number of $L \in \mathcal{L}_k$. \Box **Theorem 3.** Let X be a normal strong Σ -space and Y be a P-space. If Y has property $B(LF, \omega)$, then $X \times Y$ has property $B(LF, \omega)$.

Proof. Let $\mathcal{F} = \bigcup_{n \in \omega} \mathcal{F}_n$ be a spectral Σ -net of X, i.e., for some set Ω , $\mathcal{F}_n = \{F(\sigma) | \sigma \in \Omega^n\}$ is a locally finite closed cover of X for each $n \in \omega$ satisfying the conditions in Lemma 3.

We shall show that $X \times Y$ has property b_1 . Let $\mathcal{G} = \{G_{\xi} | \xi \in \Xi\}$ is an open cover of $X \times Y$. For each $\sigma \in \Omega^{<\omega}$, let \mathcal{W}_{σ} is the maximal family of $U_{\lambda} \times V_{\lambda}$ satisfying the following conditions:

(1) U_{λ} is an open set in $X, U_{\lambda} \supset F(\sigma)$,

(2) V_{λ} is an open set in Y,

(3) there is a finite open cover $\mathcal{U}_{\sigma,\lambda}$ of U_{λ} such that $\{U \times V_{\lambda} | U \in \mathcal{U}_{\sigma,\lambda}\} \prec \mathcal{G}$.

Put $\mathcal{W}_{\sigma} = \{U_{\lambda} \times V_{\lambda} | \lambda \in \Lambda_{\sigma}\}$. Since $\mathcal{U}_{\sigma,\lambda}$ is a finite open cover of $F(\sigma)$ and $F(\sigma)$ is normal, there is a finite closed cover $\mathcal{F}_{\sigma,\lambda} = \{F_U | U \in \mathcal{U}_{\sigma,\lambda}\}$ of $F(\sigma)$ such that $F_U \subset U$ for each $U \in \mathcal{U}_{\sigma,\lambda}$.

For each $\sigma \in \Omega^{<\omega}$, put $V(\sigma) = \bigcup_{\lambda \in \Lambda_{\sigma}} V_{\lambda}$. Then

(4) Let $\sigma \in \Omega^{\omega}$. If $\{F(\sigma \upharpoonright n) | n \in \omega\}$ is a K-net of C(x) for a point $x \in X$, then $\bigcup_{n \in \omega} V(\sigma \upharpoonright n) = Y$.

Proof. Let y be an arbitrary element of Y. Then $(x, y) \in G_{\xi}$ for some $\xi \in \Xi$. Then, since C(x) is compact, there is a finite set $\{U_i | i = 1, 2, ..., k\}$ of open sets in X and an open set V of Y such that $C(x) \subset \bigcup_{i=1}^k U_i, y \in V, \{U_i \times V | i = 1, 2, ..., k\} \prec \mathcal{G}$. Then there is an n such that $C(x) \subset F(\sigma \upharpoonright n) \subset U$. By the definition of $V(\sigma \upharpoonright n), V \subset V(\sigma \upharpoonright n)$. Thus $y \in V(\sigma \upharpoonright n)$.

(5) $V(\sigma) \subset V(\sigma \lor \alpha)$ for each $\sigma \in \Omega^{<\omega}$ and each $\alpha \in \Omega$.

Since Y is a P-space, there is a closed cover $\{K(\sigma)|\sigma\in\Omega^{<\omega}\}$ of Y such that

(6) $K(\sigma) \subset V(\sigma)$ for each $\sigma \in \Omega^{<\omega}$,

(7) for each $\sigma \in \Omega^{\omega}$, if $\bigcup_{n \in \omega} V(\sigma \upharpoonright n) = Y$, then $\bigcup_{n \in \omega} K(\sigma \upharpoonright n) = Y$.

For each $\sigma \in \Omega^{<\omega}$, $\mathcal{V}_{\sigma} = \{V_{\lambda} | \lambda \in \Lambda_{\sigma}\}$ is an open cover of $K(\sigma)$. Since Y has property $B(LF, \omega)$ and $K(\sigma)$ is closed in Y, $K(\sigma)$ has property $B(LF, \omega)$. Therefore there is a cover $\mathcal{K}_{\sigma} = \bigcup_{m < \omega} \mathcal{K}_{\sigma,m}$ of $K(\sigma)$ such that for each $m < \omega$,

 $(i)_{\sigma} \mathcal{K}_{\sigma,m} = \{K(\sigma,m,\lambda) | \lambda \in \Lambda_{\sigma}\}$ such that $K(\sigma,m,\lambda) \subset V_{\lambda}$ for each $\lambda \in \Lambda_{\sigma}$,

 $(ii)_{\sigma} \mathcal{K}_{\sigma,m}$ is a locally finite collection of closed subsets of $K(\sigma) \setminus \bigcup_{i < m} (\bigcup \mathcal{K}_{\sigma,i})$.

Let $\phi : \omega \times \omega \to \omega$ be the bijection defined in Lemma 4. For each $k = \phi(n,m) \in \omega$, let $\mathcal{L}_k = \{F \times K(\sigma,m,\lambda) | \sigma \in \Omega^n, \lambda \in \Lambda_{\sigma}, F \in \mathcal{F}_{\sigma,\lambda}\}$. Then

(i) $\mathcal{L} = \bigcup_{k < \omega} \mathcal{L}_k$ is a cover of $X \times Y$ and $\mathcal{L} \prec \mathcal{G}$,

(ii) for each $k < \omega$, $\mathcal{L}_k | X \times Y \setminus \bigcup_{l < k} (\bigcup \mathcal{L}_l)$ is a locally finite collection of closed subsets of $X \times Y \setminus \bigcup_{l < k} (\bigcup \mathcal{L}_l)$.

Proof of (i). Let $(x, y) \in X \times Y$. Let $\sigma \in \Omega^{\omega}$ such that $\{F(\sigma \upharpoonright n) : n \in \omega\}$ is a K-net of C(x). Then, by (4) and (7), $\bigcup_{n \in \omega} K(\sigma \upharpoonright n) = Y$. Thus $y \in K(\sigma \upharpoonright n, m, \lambda)$ for some $n \in \omega$ and $m \in \omega, \lambda \in \Lambda_{\sigma}$. Since $\bigcup \mathcal{F}_{\sigma \upharpoonright n, \lambda} = F(\sigma \upharpoonright n), x \in F$ for some $F \in \mathcal{F}_{\sigma \upharpoonright n, \lambda}$. Thus $(x, y) \in F \times K(\sigma \upharpoonright n, m, \lambda)$. Therefore $(x, y) \in \bigcup \mathcal{L}_k$.

Let $L = F \times K(\sigma, m, \lambda) \in \mathcal{L}_k$ where $k = \phi(n, m)$. Then $F \subset U$ for some $U \in \mathcal{U}_{\sigma,\lambda}$ and $K(\sigma, m, \lambda) \subset V_{\lambda}$. By (3), $U \times V_{\lambda} \subset G_{\xi}$ for some $\xi \in \Xi$. Thus $L \subset G_{\xi}$.

Proof of (ii). Put $H = X \times Y \setminus \bigcup_{l < k} (\bigcup \mathcal{L}_l)$ where $k = \phi(n, m)$. We shall prove the following.

(a) $L \cap H$ is closed in H for each $L \in \mathcal{L}_k$.

(b) $\{L \cap H | L \in \mathcal{L}_k\}$ is locally finite in H.

Proof of (a). This proof is similar to that of (a) in Theorem 1.

Proof of (b). Let $(x, y) \in H$. Since \mathcal{F}_n is locally finite in X, there is a neighborhood U of x and a finite subset $\{\sigma_j | j = 1, 2, ..., p\}$ of Ω^n such that $U \cap F(\sigma) \neq \emptyset \iff \sigma \in \{\sigma_j | j = 1, 2, ..., p\}$ 1, 2, ..., p and $x \in F(\sigma_i)$ for each j = 1, 2, ..., p. For each i < m, since $\phi(n, i) < k, (x, y) \notin i$ $L(\phi(n,i),\sigma,\lambda) = F(\sigma) \times K(\sigma,i,\lambda)$ for each $\sigma \in \Omega^n$. Since $x \in F(\sigma_i), y \notin K(\sigma_i,i,\lambda)$ for each $\lambda \in \Lambda_{\sigma}$. Therefore $y \notin \bigcup_{i < m} \mathcal{K}_{\sigma_j, i}$. If $y \notin K(\sigma_j)$, there is a neighborhood V_j of y in Y such that $V_j \cap K(\sigma_j) = \emptyset$. If $y \in K(\sigma_j)$, then $y \in K(\sigma_j) \setminus \bigcup_{i < m} \mathcal{K}_{\sigma_j, i}$. By $(ii)_{\sigma_j}$, there is a neighborhood V_j of y in Y such that $\Lambda_j = \{\lambda \in \Lambda_{\sigma_j} | V_j \cap K(\sigma_j, m, \xi) \neq \emptyset\}$ is a finite set. Put $V = \bigcap_{j=1}^{p} V_j$ and $W = U \times V$. Then W is a neighborhood of (x, y) in $X \times Y$ such that $W \cap L \neq \emptyset$ for at most finite number of $L \in \mathcal{L}_k$.

To show this, let L be an arbitrary element of \mathcal{L}_k . Then $L = F \times K(\sigma, m, \lambda)$ for each $\sigma \in \Omega^n, \lambda \in \Lambda_\sigma$ and $F \in \mathcal{F}_{\sigma,\lambda}$. Suppose $W \cap L \neq \emptyset$. Then $\sigma = \sigma_j$ for some j = 1, 2, ..., p. And $V_j \cap K(\sigma_j, m, \lambda) \neq \emptyset$. Therefore $\lambda \in \Lambda_{\sigma_j}$. Since $\mathcal{F}_{\sigma_j, \lambda}$ is finite, such L is at most finite.

Remark. Price and Smith [12] introduced the notion of $propertyB(CP,\omega)$ which is weaker than property $B(LF, \omega)$.

Definition 4. ([12]). A space X is called to have property $B(CP, \omega)$ if for every open cover \mathcal{G} of X, there is a cover $\mathcal{H} = \bigcup_{n < \omega} \mathcal{H}_n$ of X such that \mathcal{H} is a refinement of \mathcal{G} such that for each $n < \omega$,

(i) \mathcal{H}_n is a closure preserving collection of closed subsets of $X \setminus \bigcup_{m < n} (\bigcup \mathcal{H}_m)$,

(ii) $\bigcup_{m < n} (\bigcup \mathcal{H}_m)$ is closed in X.

The condition (ii) follows from (i). It is obvious that property $B(CP, \omega)$ is closed hereditary.

The following theorem is shown by the similar proof of Theorem 2.

Theorem 4. Let X be a regular σ -space and Y be a P-space. If Y has property $B(CP, \omega)$, then $X \times Y$ has property $B(CP, \omega)$.

4. Weak $\overline{\theta}$ -refinability and weak $\overline{\delta\theta}$ -refinability

A space X is said to be weakly $\overline{\theta}$ -refinable ([13]) (resp. $\overline{\delta\theta}$ -refinable ([14])) if for any open cover \mathcal{G} of X there is an open refinement $\mathcal{H} = \bigcup_{n \in \omega} \mathcal{H}_n$ of \mathcal{G} such that if $x \in X$ there is some n with $1 \leq \operatorname{ord}(x, \mathcal{H}_n) < \omega$ (resp. $1 \leq \operatorname{ord}(x, \mathcal{H}_n) \leq \omega$) and $\{\bigcup \mathcal{H}_n | n \in \omega\}$ is point finite at each $x \in X$. Such cover \mathcal{H} is said to be a weak $\overline{\theta}$ cover (resp. $\overline{\delta\theta}$ cover).

For an open cover \mathcal{G} of X, define $\mathcal{G}^{<\omega} = \{\bigcup \mathcal{G}' | \mathcal{G}' \text{ is a finite subfamily of } \mathcal{G}\}.$

The following lemma can be easily proved.

Lemma 6. Let \mathcal{G} be an open cover of X. If $\mathcal{G}^{<\omega}$ has an open refinement which is a weak $\overline{\theta}$ -cover (resp. a weak $\overline{\delta\theta}$ -cover), then $\mathcal G$ has an open refinement which is a weak $\overline{\theta}$ -cover (resp. a weak $\overline{\delta\theta}$ -cover).

Theorem 5. Let X be a strong Σ -space and Y be a P-space. (a) If Y is weakly $\overline{\theta}$ -refinable, then $X \times Y$ is weakly $\overline{\theta}$ -refinable. (b) If Y is weakly $\overline{\delta\theta}$ -refinable, then $X \times Y$ is weakly $\overline{\delta\theta}$ -refinable.

We only give the proof of part (b).

Proof of (b). Let $\mathcal{G} = \{G_{\varepsilon} | \xi \in \Xi\}$ be an open cover of $X \times Y$. Let us define $\mathcal{F}, \mathcal{W}_{\sigma}, \mathcal{U}_{\sigma,\lambda}, V(\sigma)$ and $K(\sigma)$ as in the proof of Theorem 3.

Let us put $M_n = \bigcup \{F(\sigma) \times K(\sigma) | \sigma \in \Omega^n\}$ for each $n \in \omega$. Then (8) M_n is a closed subset of $X \times Y$ and $X \times Y = \bigcup_{n \in \omega} M_n$.

For each $\sigma \in \Omega^{<\omega}$, $\mathcal{V}_{\sigma} = \{V_{\lambda} | \lambda \in \Lambda_{\sigma}\}$ is a collection of open sets in Y, cover $K(\sigma)$ and $\mathcal{V}'_{\sigma} = \mathcal{V}_{\sigma} \cup \{Y \smallsetminus K(\sigma)\}$ is an open cover of Y.

Since Y is weakly $\overline{\delta\theta}$ -refinable, there is an open cover $\mathcal{K}'_{\sigma} = \bigcup_{m \in \omega} \mathcal{K}'_{\sigma,m}$ such that $(i)_{\sigma}$ for each $y \in Y$, there is an m_y with $0 < \operatorname{ord}(y, \mathcal{K}'_{\sigma,m_y}) \leq \omega$,

 $(ii)_{\sigma} \ y \in \bigcup \mathcal{K}'_{\sigma,m}$ for at most finitely many $m \in \omega$.

Put $\mathcal{K}_{\sigma,m} = \{K \in \mathcal{K}'_{\sigma,m} | K \cap K(\sigma) \neq \emptyset\}$ and $\mathcal{K}_{\sigma} = \bigcup_{m \in \omega} \mathcal{K}_{\sigma,m}$. Then $\mathcal{K}_{\sigma,m}$ are collections of open sets in Y, \mathcal{K}_{σ} covers $K(\sigma)$, and

(9) for each $y \in Y$, there is an m_y with $\operatorname{ord}(y, \mathcal{K}_{\sigma, m_y}) \leq \omega$; for each $y \in K(\sigma)$, there is an m_y with $0 < \operatorname{ord}(y, \mathcal{K}_{\sigma, m_y}) \leq \omega$. And $y \in \bigcup \mathcal{K}_{\sigma, m}$ for at most finitely many $m \in \omega$.

We can represent $\mathcal{K}_{\sigma,m} = \{K_{\sigma,m,\lambda} | \lambda \in \Lambda_{\sigma}\}$ with $K_{\sigma,m,\lambda} \subset V_{\lambda}$ for each λ .

Let Ω^n well order by \prec and put $\Gamma_{n,k} = \{(\sigma_0, \sigma_1, ..., \sigma_{k-1}) | \sigma_0, \sigma_1, ..., \sigma_{k-1} \in \Omega^n, \sigma_0 \prec \sigma_1 \prec ... \prec \sigma_{k-1}\}$ for each $k \in \omega$.

For each $\overline{m} = (m_0, m_1, ..., m_{k-1}) \in \omega^k$ and $\tau = (\sigma_0, \sigma_1, ..., \sigma_{k-1}) \in \Gamma_{n,k}$, put $\mathcal{L}(n, \overline{m}, \tau) = \{\bigcup_{i < k} ((U_{\lambda_i} \smallsetminus A_{\tau}) \times K_{\sigma_i, m_i, \lambda_i}) \smallsetminus \bigcup_{j < n} M_j | \lambda_i \in \Lambda_{\sigma_i}, i < k\}$ where $A_{\tau} = \bigcup \{F(\sigma) | \sigma \in \Omega^n \smallsetminus \{\sigma_i | i < k\}\}$. For each $n \in \omega$ and each $\overline{m} \in \omega^k$, let $\mathcal{L}(n, \overline{m}) = \bigcup \{\mathcal{L}(n, \overline{m}, \tau) | \tau \in \Gamma_{n,k}\}$.

Then $\mathcal{L} = \bigcup \{ \mathcal{L}(n, \overline{m}) | n \in \omega, \overline{m} \in \omega^{<\omega} \}$ is an open refinement of $\mathcal{G}^{<\omega}$ and a weak $\overline{\delta\theta}$ -cover of $X \times Y$.

It is obvious that each element of \mathcal{L} is an open set of $X \times Y$. For each i < k, $(U_{\lambda_i} \smallsetminus A_{\tau}) \times K_{\sigma_i,m_i,\lambda_i} \subset U_{\lambda_i} \times V_{\lambda_i} \subset G'_i$ for some $G'_i \in \mathcal{G}^{<\omega}$. Thus $\bigcup_{i < k} ((U_{\lambda_i} \smallsetminus A_{\tau}) \times K_{\sigma_i,m_i,\lambda_i}) \subset \bigcup_{i < k} G'_i \in \mathcal{G}^{<\omega}$.

It is sufficient to prove the following.

(10) For each $(x, y) \in X \times Y$, there are an $n \in \omega$ and $\overline{m} \in \omega^{<\omega}$ such that $0 < \operatorname{ord}((x, y), \mathcal{L}(n, \overline{m})) \leq \omega$.

(11) For each $(x, y) \in X \times Y$, $(x, y) \in \bigcup \mathcal{L}(n, \overline{m})$ for finitely many n and \overline{m} .

Proof of (10). Let $(x, y) \in X \times Y$. Let us choose an $n \in \omega$ with $(x, y) \in M_n \setminus \bigcup_{j < n} M_j$. Since \mathcal{F}_n is locally finite, there is a finite subset $\{\sigma_i | i = 0, 1, ..., k - 1\}$ of Ω^n such that $x \in F(\sigma) \iff \sigma \in \{\sigma_i | i = 0, 1, ..., k - 1\}$. We may assume that $(x, y) \in F(\sigma_0) \times K(\sigma_0)$. Since $y \in K(\sigma_0)$, there is an m_0 such that $0 < \operatorname{ord}(y, \mathcal{K}_{\sigma_0, m_0}) \leq \omega$. There are $m_i, i = 1, ..., k - 1$ such that $\operatorname{ord}(x, \mathcal{K}_{\sigma_i, m_i}) \leq \omega$. Put $\overline{m} = (m_0, m_1, ..., m_{k-1})$ and $\tau = (\sigma_0, \sigma_1, ..., \sigma_{k-1})$. Then (10-1) $0 < \operatorname{ord}((x, y), \mathcal{L}(n, \overline{m}, \tau)) \leq \omega$.

(10-2) ord($(x, y), \mathcal{L}(n, \overline{m}, \tau')$) = 0 for each $\tau' \in \Gamma_{n,k}$ with $\tau' \neq \tau$.

Proof of (10-1). Let us choose λ_0 with $y \in K_{\sigma_0,m_0,\lambda_0}$. Since $F(\sigma_0) \subset U_{\lambda_0}, x \in U_{\lambda_0} \setminus A_{\tau}$. Therefore $(x,y) \in (U_{\lambda_0} \setminus A_{\tau}) \times K_{\sigma_0,m_0,\lambda_0} \subset L$ for some $L \in \mathcal{L}(n,\overline{m},\tau)$. Thus $\operatorname{ord}((x,y),\mathcal{L}(n,\overline{m},\tau)) > 0$.

Let $L \in \mathcal{L}(n,\overline{m})$ with $(x,y) \in L$. Then there are an $i \in \{0, 1, ..., k-1\}$ and a $\lambda_i \in \Lambda_{\sigma_i}$ such that $(x,y) \in U_{\lambda_i} \times K_{\sigma_i,m_i,\lambda_i}$. Such λ_i are at most countable. Hence $\operatorname{ord}((x,y), \mathcal{L}(n,\overline{m},\tau)) \leq \omega$.

Proof of (10-2). Let $\tau' = (\sigma'_0, \sigma'_1, ..., \sigma'_{k-1}) \in \Gamma_k^n$. If $\tau \neq \tau'$, then there is an *i* such that $\sigma_i \notin \{\sigma'_i | i = 0, 1, ..., k-1\}$. Thus $F(\sigma_i) \cap A'_{\tau} = \emptyset$. Since $x \in F(\sigma_i), x \notin A'_{\tau}$ and so $(x, y) \notin \bigcup \mathcal{L}(n, \overline{m}, \tau')$.

Proof of (11). Let us choose an n with $(x, y) \in M_n \setminus \bigcup_{j < n} M_j$. For each $l \leq n$, let $x(l) = \{\sigma \in \Omega^l | x \in F(\sigma)\}$. Then x(l) is finite. For each $\sigma \in x(l)$, there is a finite set $m(\sigma)$ of ω such that $y \in \bigcup \mathcal{K}_{\sigma,m} \iff m \in m(\sigma)$. Put $\Lambda(l) = \prod \{m(\sigma) | \sigma \in x(l)\}$. Then, if $(x, y) \in \bigcup \mathcal{L}(l, \overline{m})$, then $l \leq n$ and $\overline{m} \in \Lambda(l)$. Since $|\bigcup_{j < n} \Lambda(l)| < \omega$, such \overline{m} are finite. \Box

It is known that any weakly $\delta\theta$ -refinable, countably compact space is compact (cf. p. 414 in [2]). Therefore any weakly $\overline{\delta\theta}$ -refinable, countably compact space is compact. Thus we obtain the following.

Corollary. Let X be a Σ -space and Y be a P-space.

- (a) If X and Y are both weakly $\overline{\theta}$ -refinable, then $X \times Y$ is weakly $\overline{\theta}$ -refinable.
- (b) If X and Y are both weakly $\overline{\delta\theta}$ -refinable, then $X \times Y$ is weakly $\overline{\delta\theta}$ -refinable.

References

- H. R. Bennet and D. J. Lutzer, A note on weak θ-refinability, General Topology and Appl., 2 (1972), 49-54.
- [2] D. K. Burke, Covering properties, Handbook of Set Thoretic Topology, chapter 9, K. Kunen and J. Vaughan, editors, Horth-Holland, Amsterdam (1984), 347 422.
- [3] J. Chaber, On θ -refinability of strict *p*-spaces, (1st version) (unpublished).
- [4] M. Katětov, On the dimension of nonseparable spaces I (in Russian), Czechoslovak Math. J., 8 (1952), 333 - 368.
- [5] D. J. Lutzer, Another property of the Sorgenfrey Line, Compositio Math., 24 (1972), 359 363.
- [6] K. Morita, Normal families and dimension theory for metric spaces, Math. Ann., 128 (1954), 350 362.
- [7] K. Morita, Products of normal spaces with metric spaces, Math. Ann., 154 (1964), 365 382.
- [8] K. Nagami, $\Sigma\text{-spaces},$ Fund. Math., **65** (1969), 169 192.
- [9] K. Nagami, $\sigma\text{-spaces}$ and product spaces, Math. Ann., $\mathbf{181}$ (1969), 109 118.
- [10] K. Nagami, Dimension Theory, Academic Press, New York and London, (1970).
- [11] A. Okuyama, Some generalizations of metric spaces, their metrization theorems and product spaces, Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A., 9 (1967), 236 -254.
- [12] R. H. Price and J. C. Smith, Applications of B(P, α)-refinability for generalized collectionwise normal spaces, Proc. Japan Acad. Ser. A Math. Sci. 65, No. 7 (1989), 249-252.
- [13] J. C. Smith, Properties of weak $\overline{\theta}$ -refinable spaces, Proc. Amer. Math. Soc., 53, No. 2, (1975), 511-517.
- [14] J. C. Smith, Applications of shrinkable covers, Proc. Amer. Math. Soc., 73, No. 3, (1979), 379 387.
- [15] J. C. Smith, Irreducible spaces and property b_1 , Topology Proc., 5, (1980), 187-200.
- [16] Y. Yajima, Special refinements and their applications on products, Topology and its Appl., 104, (2000), 293-308.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, SHIZUOKA UNIVERSITY, OHYA, SURUGAKU, SHIZUOKA, 422-8529 JAPAN

E-mail address: smktiba@ipc.shizuoka.ac.jp