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Abstract. In this paper we shall show: (1) Let X be a zero-dimensional metric space

and Y be a P -space. If Y has property B(D, ω), then X × Y has property B(D, ω).
(2) Let X be a regular σ-space and Y be a P -space. If Y has property B(LF, ω),

then X × Y has property B(LF, ω).
(3) Let X be a normal strong Σ-space and Y be a P -space. If Y has property

B(LF, ω), then X × Y has property B(LF, ω).

(4) Let X be a strong Σ-space and Y be a P -space. If Y is weak θ-refinable (resp.

weak δθ-refinable), then X × Y is weak θ-refinable. (resp. weak δθ-refinable).

1. Introduction

Throughout this paper we assume that each space is a Hausdorff space. Each map is
assumed to be continuous.

Smith [13] introduced the notion of weak θ-refinability and has shown that
θ-refinable ⇒ weakly θ-refinable ⇒ weakly θ-refinable

and the implications are not reversible. And he [15] introduced the notions of property
B(D, ω) and property B(LF, ω) and he proved the following:

property B(D, ω) ⇒ weakly θ-refinable;
θ-refinable ⇒ property B(LF, ω) .

It is obvious that
paracompact ⇒ propertyB(D, ω) ⇒ property B(LF, ω).

In this paper we shall investigate the conditions for the product space X×Y has property
B(D, ω), property B(LF, ω) and weak θ-refinability.

The following results are known.

Theorem A. Suppose X is a Σ-space and Y is a P -space. If X and Y are both para-
compact (regular Lindelöf, regular subparacompact, submetacompact (θ-refinable), weakly
θ-refinable, weak δθ-refinable), then so is X × Y . (The Lindelöf case and paracompact
case are proved in Nagami [8], the subparacompact case in Lutzer [5], the submetacompact
case in Burke [2, pp.400-401] and the weak θ-refinability case in Yajima [16]. For the weak
δθ-refinability case, the proof is similar to the case of weak θ-refinability.)

Yajima’s theorem is a more general form, i.e., the following.

Theorem B. ([16]). Suppose X is a strong Σ-space and Y is a P -space. If Y is a weakly
θ-refinable, then so is X × Y .

Same result for the weak δθ-refinability case can be shown similarly.
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In this paper we shall show that the similar results of Theorem B hold for the case of
weak θ-refinability and weak δθ-refinability.

It is known that
X is a metric space ⇒ X is a σ-space ⇒ X is a Σ-space.

Let Y be a P -space. We consider property B(D, ω) of X ×Y when X is a zero-dimensional
metric space and property B(LF, ω) of X × Y when X is a regular σ-space or a normal
Σ-space.

Let Ω be a set. Denote Ωn = {(α0, α1, ..., αn−1)|αi ∈ Ω, i = 0, ..., n − 1} for each
n ∈ ω, Ω<ω =

⋃
n∈ω Ωn and Ωω = {(α0, α1, ..., αn, ..., )|αn ∈ Ω for each n ∈ ω}. For

each σ = (α0, α1, ..., αn−1) ∈ Ωn and α ∈ Ω, we denote σ ∨ α = (α0, α1, ..., αn−1, α). For
each σ = (α0, α1, ..., αn, ...) ∈ Ωω, we denote σ � n = (α0, α1, ..., αn−1). It is obvious that
σ � n ∈ Ωn.

A space Y is said to be a P -space ([7]) if for any open cover {U (σ)|σ ∈ Ω<ω} of Y where
U(σ) ⊂ U(σ ∨ α) for each σ ∈ Ωn and α ∈ Ω, then there is a closed cover {K(σ)|σ ∈ Ω<ω}
of X such that
(i) K(σ) ⊂ U(σ) for each σ ∈ Ω<ω,
(ii) for each σ ∈ Ωω, if

⋃
n∈ω U(σ � n) = Y , then

⋃
n∈ω K(σ � n) = Y .

For a space X , dimX denotes the covering dimension of X and X is a zero-dimensional
space means dimX = 0.

A subset A of X is called a “clopen” set if A is both an open set and a closed set of X .
The following lemmas 1 ∼ 3 are well known.

Lemma 1. If X is a zero-dimensional metric space, then X has a base B satisfying the
following conditions:

(i) B =
⋃

n∈ω Bn, Bn is a discrete cover of X by clopen sets,
(ii) Bn = {B(σ)|σ ∈ Ωn}, B(σ) =

⋃
α∈Ω B(σ ∨ α) for each σ ∈ Ωn,

(iii) for each x ∈ X, there is a σ ∈ Ωω such that {B(σ � n)|n ∈ ω} is a local base of x in
X.

Lemma 1 follows from the following.

Theorem C (Katětov [4], Morita [6], or cf. 12.2 Theorem in [10]). A space X is a metric
space with dim X ≤ 0 if and only if X is a subset of a Baire 0-dimensional space.

A collection F of subsets of X is called a net of X if for each x ∈ X and each open set
U , there is an F ∈ F such that x ∈ F ⊂ U .

A space X is called a σ-space if σ-locally finite net ([9], [11]).

Lemma 2. ([9, Theorem 1]). If X is a σ-space, then X has a net F satisfying the following
conditions:

(i) F =
⋃

n∈ω Fn, Fn is a locally finite closed cover of X,
(ii) Fn = {F (σ)|σ ∈ Ωn}, F (σ) =

⋃
α∈Ω F (σ ∨ α) for each σ ∈ Ωn,

(iii) for each x ∈ X, there is a σ ∈ Ωω such that {F (σ � n)|n ∈ ω} is a net of x.

A space X is called a Σ-space if X has a Σ-net ([8]).

Lemma 3. ([8, 1.4. Lemma]). If X is a Σ-space, then X has a spectral Σ-net F , i. e.,
satisfying the following conditions:

(i) F =
⋃

n∈ω Fn, Fn is a locally finite closed cover of X,
(ii) Fn = {F (σ)|σ ∈ Ωn}, F (σ) =

⋃
α∈Ω F (σ ∨ α) for each σ ∈ Ωn,

(iii) for each x ∈ X, there is a σ ∈ Ωω such that {F (σ � n)|n ∈ ω} is a K-net of C(x),
i. e., if U is an open set in X such that C(x) ⊂ U , then F (σ � n) ⊂ U for some n. Here
C(x) =

⋂
n∈ω F (σ � n).
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A space X is called a strong Σ-space if X has a Σ-net such that C(x) is compact for
each x ∈ X .

The following lemma is obvious.

Lemma 4. Let us define φ : ω × ω → ω by φ(n,m) = n + (n+m)(n+m+1)
2 .

Then φ is a bijection satisfying the conditions:
if m

′
, m ∈ ω and m

′
< m, then φ(n,m

′
) < φ(n,m) for each n ∈ ω.

2. Property B(D, ω)

Definition 1. (Smith [15]). A space X is called to have property B(D, ω) if for every open
cover G of X, there is a cover H =

⋃
n<ω Hn of X such that H is a refinement of G and

satisfies the conditions: for each n < ω,
(i)n Hn is a discrete collection of closed subsets of X �

⋃
m<n(

⋃Hm),
(ii)n

⋃
m<n(

⋃Hm) is closed in X. Here
⋃

m<0(
⋃Hm) = ∅.

It is obvious that property B(D, ω) is closed hereditary.

Notation. Let K be a collection of subsets in X and A a subset of X . Then we denote
K|A = {K ∩ A|K ∈ K}.

Let U and V be collections of subsets in X . We denote V ≺ U if V is a refinement or a
partial refinement of U .

Lemma 5. In Definition 1, the condition (ii) follows from (i).

Proof. (By induction) . The condition (ii)1 follows from (i)0. Put An =
⋃

m<n(
⋃Hm).

Assume that (ii)n hold. By (i)n,
⋃Hn∩(X�An) =

⋃Hn and by (ii)n, An = An. Therefore
An+1 = (

⋃Hn) ∪ An = ((
⋃Hn)∩ (X �An))∪ ((

⋃Hn)∩An)∪An = (
⋃Hn)∪An = An+1.

�
Theorem 1. Let X be a zero-dimensional metric space and Y be a P -space. If Y has
property B(D, ω), then X × Y has property B(D, ω).

Proof. Let B =
⋃

n∈ω Bn be a base of X satisfying the conditions in Lemma 1. Let
G = {Gξ|ξ ∈ Ξ} is an open cover of X × Y . For each σ ∈ Ω<ω and each ξ ∈ Ξ, let
U(σ; ξ) =

⋃{U |U is an open set in Y, B(σ) × U ⊂ Gξ}. Then U(σ; ξ) is an open set in Y
and B(σ) × U(σ; ξ) ⊂ Gξ. Put U(σ) =

⋃
ξ∈Ξ U(σ; ξ). Then

(1) {U (σ)|σ ∈ Ω<ω} is an open cover of Y .

Proof. Let y ∈ Y . Let us choose a point x ∈ X and a σ ∈ Ωω such that {σ � n; n ∈ ω} be
a local base of x in X . Since G is a cover of X × Y , there is a ξ ∈ Ξ such that (x, y) ∈ Gξ.
Then there are an n and an open set U with (x, y) ∈ B(σ � n)×U ⊂ Gξ. By the definition
of U(σ � n), U ⊂ U(σ � n). Thus y ∈ U(σ � n).

(2) U(σ) ⊂ U(σ ∨ α) for each σ ∈ Ωn and α ∈ Ω.

Proof. This follows from B(σ ∨ α) ⊂ B(σ).

Since Y is a P -space, there is a closed cover {K(σ)|σ ∈ Ω<ω} of Y such that
(3) K(σ) ⊂ U(σ) for each σ ∈ Ω<ω,
(4) for each σ ∈ Ωω, if

⋃
n∈ω U(σ � n) = Y , then

⋃
n∈ω K(σ � n) = Y .

The following holds.

(5) Let x be an arbitrary element of X and let σ ∈ Ωω such that {B(σ � n) : n < ω} is a
local base of x. Then

⋃
n<ω U(σ � n) = Y .
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For each σ ∈ Ω<ω, Uσ = {U (σ; ξ)|ξ ∈ Ξ} is an open cover of U(σ). Since Y has property
B(D, ω) and K(σ) is closed in Y , K(σ) has property B(D, ω). Therefore there is a cover
Kσ =

⋃
m<ω Kσ,m of K(σ) such that for each m < ω,

(i)σ. Kσ,m ≺ Uσ.

(ii)σ. Kσ,m is a discrete collection of closed subsets of K(σ) �

⋃
i<m(

⋃Kσ,i).

We may assume that Kσ,m = {K(σ,m, ξ)|ξ ∈ Ξ} with K(σ,m, ξ) ⊂ U(σ; ξ) for each ξ.

Let φ : ω × ω → ω be the bijection defined in Lemma 4. For each k = φ(n,m) ∈ ω and
each σ ∈ Ωn, let L(k, σ, ξ) = B(σ) × K(σ,m, ξ) and put Lk = {L(k, σ, ξ)|σ ∈ Ωn, ξ ∈ Ξ}.
Then

(i) L =
⋃

k<ω Lk is a cover of X × Y , L ≺ G.

(ii) For each k < ω, Lk|X × Y �

⋃
l<k(

⋃Ll) is a discrete collection of closed subsets of
X × Y �

⋃
l<k(

⋃Ll).

Proof of (i). Let (x, y) ∈ X × Y . Let σ ∈ Ωω such that {B(σ � n) : n ∈ ω} is a local
base of x. Then, by (4) and (5),

⋃
n∈ω K(σ � n) = Y . Thus y ∈ K(σ � n) for some n ∈ ω

and so (x, y) ∈ B(σ � n) × K(σ � n, m, ξ) for some m and ξ. Let us put k = φ(n,m). Then
(x, y) ∈ ⋃Lk.

Since B(σ) × K(σ,m, ξ) ⊂ B(σ) × U(σ, ξ) ⊂ Gξ for each σ ∈ Ω<ω and ξ ∈ Ξ,L ≺ G.

Proof of (ii). Let k = φ(n,m). Put H = X × Y �

⋃
l<k(

⋃Ll). We shall prove the
following.
(a) L ∩ H is closed in H for each L ∈ Lk.
(b) {L ∩ H |L ∈ Lk} is discrete in H .

Proof of (a). Let L = B(σ) × K(σ,m, ξ), σ ∈ Ωn, ξ ∈ Ξ. For a moment, to simplify the
notation, let us put B(σ) = B, K(σ,m, ξ) = K and A =

⋃
i<m(

⋃Kσ,i). Since K is a closed
subset of K(σ) � A,B ×K is a closed subset of B ×K(σ) � B ×A. Therefore (B ×K)∩H
is a closed subset of (B × K(σ)) ∩ H � (B × A) ∩ H . Since φ(n, i) < k for each i < m,
B × A ⊂ ⋃

l<k(
⋃Ll). Therefore (B × A) ∩ H = ∅. Thus (B × K) ∩H is a closed subset of

(B × K(σ)) ∩ H . Hence L ∩ H = (B × K) ∩ H is a closed subset of H .

Proof of (b). Let (x, y) ∈ H . Since Bn is a discrete cover of X , there is only element
σ of Ωn such that x ∈ B(σ). For each i < m, since φ(n, i) < k, (x, y) /∈ L(φ(n, i), σ, ξ) =
B(σ) × K(σ, i, ξ). Thus y /∈ K(σ, i, ξ) for each ξ ∈ Ξ. Therefore y /∈ ⋃

i<m(
⋃Kσ,i). If

y /∈ K(σ), there is a neighborhood V of y in Y such that V ∩ K(σ) = ∅. If y ∈ K(σ),
then y ∈ K(σ) �

⋃
i<m(

⋃Kσ,i). By (ii)σ, there is a neighborhood V of y in Y such that
V ∩K(σ,m, ξ) �= ∅ for at most one ξ ∈ Ξ. Put W = B(σ) × V . Then W is a neighborhood
of (x, y) in X × Y such that W ∩ L �= ∅ for at most one L ∈ Lk. �

3. Property B(LF, ω)

Definition 2. (Smith [15]). A space X is called to have property B(LF, ω) if for every
open cover G of X, there is a cover H =

⋃
n<ω Hn of X such that H is a refinement of G

such that for each n < ω,
(i) Hn is a locally finite collection of closed subsets of X �

⋃
m<n(

⋃Hm),
(ii)

⋃
m<n(

⋃Hm) is closed in X.

It is obvious that property B(LF, ω) is closed hereditary.

Definition 3. (Chaber [3] or cf. [15]). A space X is called to have property b1 if for every
open cover G of X, there is a cover H =

⋃
n<ω Hn of X such that H is a refinement of G such

that for each n < ω, Hn is a locally finite collection of closed subsets of X �

⋃
m<n(

⋃Hm).
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Property b1 is the same notion of property B(LF, ω). This fact is shown by the similar
proof of Lemma 5.

Each regular σ-space is a strong Σ-space, each strong Σ-space is submetacompact and
each submetacompact space has property B(LF, ω) ([15, Theorem 1.4 (2)]).

Theorem 2. Let X be a regular σ-space and Y be a P -space. If Y has property B(LF, ω),
then X × Y has property B(LF, ω).

Proof. We shall show that X × Y has property b1. Let F =
⋃

n∈ω Fn be a net of X
satisfying the conditions in Lemma 2. Let G = {Gξ|ξ ∈ Ξ} is an open cover of X × Y . For
each σ ∈ Ω<ω and each ξ ∈ Ξ, let U(σ; ξ) =

⋃{U |U is an open set in Y, F (σ) × U ⊂ Gξ}.
Then U(σ; ξ) is an open set in Y and F (σ)×U(σ; ξ) ⊂ Gξ. Put U(σ) =

⋃
ξ∈Ξ U(σ; ξ). Then

(1) {U (σ)|σ ∈ Ω<ω} is an open cover of Y .

(2) U(σ) ⊂ U(σ ∨ α) for each σ and α.

Since Y is a P -space, there is a closed cover {K(σ)|σ ∈ Ω<ω} of Y such that
(3) K(σ) ⊂ U(σ) for each σ ∈ Ω<ω,
(4) for each σ ∈ Ωω, if

⋃
n∈ω U(σ � n) = Y , then

⋃
n∈ω K(σ � n) = Y .

The following holds.

(5) Let x be an arbitrary element of X and let σ ∈ Ωω such that {F (σ � n) : n < ω} is a
net of x. Then

⋃
n<ω U(σ � n) = Y .

For each σ ∈ Ω<ω, Uσ = {U (σ; ξ)|ξ ∈ Ξ} is an open cover of U(σ). Since Y has property
B(LF, ω) and K(σ) is closed in Y , K(σ) has property B(LF, ω). Therefore there is a cover
Kσ =

⋃
m<ω Kσ,m of K(σ) such that for each m < ω,

(i)σ Kσ,m = {K(σ,m, ξ)|ξ ∈ Ξ} such that K(σ,m, ξ) ⊂ U(σ,m, ξ) for each ξ,

(ii)σ Kσ,m is a locally finite collection of closed subsets of K(σ) �

⋃
i<m(

⋃Kσ,i).

Let φ : ω×ω → ω be the bijection defined in Lemma 4. For each k = φ(n,m) ∈ ω and each
σ ∈ Ωn, let L(k, σ, ξ) = F (σ) × K(σ,m, ξ) and put Lk = {L(k, σ, ξ)|σ ∈ Ωn, ξ ∈ Ξ}. Then

(i) L =
⋃

k<ω Lk is a cover of X × Y and L ≺ G,

(ii) for each k < ω, Lk|X × Y �

⋃
l<k(

⋃Ll) is a locally finite collection of closed subsets
of X × Y �

⋃
l<k(

⋃Ll).

Proof of (i). This proof is similar to that of (i) in Theorem 1.

Proof of (ii). Put H = X × Y �

⋃
l<k(

⋃Ll) where k = φ(n,m) ∈ ω. We shall prove the
following.
(a) L ∩ H is closed in H for each L ∈ Lk.
(b) {L ∩ H |L ∈ Lk} is locally finite in H .

Proof of (a). This proof is similar to that of (a) in Theorem 1.

Proof of (b). Let (x, y) ∈ H . Since Fn is locally finite in X , there is a neighborhood U
of x and a finite subset {σj |j = 1, 2, ..., p} of Ωn such that U ∩ F (σ) �= ∅ ⇐⇒ σ ∈ {σj |j =
1, 2, ..., p} and x ∈ F (σj) for each j = 1, 2, ..., p. For each i < m, since φ(n, i) < k, (x, y) /∈
L(φ(n, i), σ, ξ) = F (σ) × K(σ, i, ξ) for each σ ∈ Ωn. Since x ∈ F (σj), y /∈ K(σj , i, ξ) for
each ξ ∈ Ξ. Therefore y /∈ ⋃

i<m Kσj ,i. If y /∈ K(σj), there is a neighborhood Vj of y in Y
such that Vj ∩K(σj) = ∅. If y ∈ K(σj), then y ∈ K(σj) �

⋃
i<m Kσj ,i. By (ii)σj , there is a

neighborhood Vj of y in Y such that Vj ∩K(σj , m, ξ) �= ∅ is at most finite finite number of
ξ ∈ Ξ. Put V =

⋂p
j=1 Vj and W = U × V . Then W is a neighborhood of (x, y) in X × Y

such that W ∩ L �= ∅ for at most finite number of L ∈ Lk. �



286 KEIKO CHIBA

Theorem 3. Let X be a normal strong Σ-space and Y be a P -space. If Y has property
B(LF, ω), then X × Y has property B(LF, ω).

Proof. Let F =
⋃

n∈ω Fn be a spectral Σ-net of X , i.e., for some set Ω, Fn = {F (σ)|σ ∈
Ωn} is a locally finite closed cover of X for each n ∈ ω satisfying the conditions in Lemma
3.

We shall show that X × Y has property b1. Let G = {Gξ|ξ ∈ Ξ} is an open cover of
X ×Y . For each σ ∈ Ω<ω, let Wσ is the maximal family of Uλ ×Vλ satisfying the following
conditions:
(1) Uλ is an open set in X , Uλ ⊃ F (σ),
(2) Vλ is an open set in Y ,
(3) there is a finite open cover Uσ,λ of Uλ such that {U × Vλ|U ∈ Uσ,λ} ≺ G.

Put Wσ = {Uλ × Vλ|λ ∈ Λσ}. Since Uσ,λ is a finite open cover of F (σ) and F (σ) is
normal, there is a finite closed cover Fσ,λ = {FU |U ∈ Uσ,λ} of F (σ) such that FU ⊂ U for
each U ∈ Uσ,λ.

For each σ ∈ Ω<ω, put V (σ) =
⋃

λ∈Λσ
Vλ. Then

(4) Let σ ∈ Ωω. If {F (σ � n)|n ∈ ω} is a K-net of C(x) for a point x ∈ X , then⋃
n∈ω V (σ � n) = Y .

Proof. Let y be an arbitrary element of Y . Then (x, y) ∈ Gξ for some ξ ∈ Ξ. Then,
since C(x) is compact, there is a finite set {Ui|i = 1, 2, ..., k} of open sets in X and an open
set V of Y such that C(x) ⊂ ∪k

i=1Ui, y ∈ V, {Ui × V |i = 1, 2, ..., k} ≺ G. Then there is an
n such that C(x) ⊂ F (σ � n) ⊂ U . By the definition of V (σ � n), V ⊂ V (σ � n). Thus
y ∈ V (σ � n).

(5) V (σ) ⊂ V (σ ∨ α) for each σ ∈ Ω<ω and each α ∈ Ω.

Since Y is a P -space, there is a closed cover {K(σ)|σ ∈ Ω<ω} of Y such that
(6) K(σ) ⊂ V (σ) for each σ ∈ Ω<ω,
(7) for each σ ∈ Ωω, if

⋃
n∈ω V (σ � n) = Y , then

⋃
n∈ω K(σ � n) = Y .

For each σ ∈ Ω<ω, Vσ = {Vλ|λ ∈ Λσ} is an open cover of K(σ). Since Y has property
B(LF, ω) and K(σ) is closed in Y , K(σ) has property B(LF, ω). Therefore there is a cover
Kσ =

⋃
m<ω Kσ,m of K(σ) such that for each m < ω,

(i)σ Kσ,m = {K(σ,m, λ)|λ ∈ Λσ} such that K(σ,m, λ) ⊂ Vλ for each λ ∈ Λσ,

(ii)σ Kσ,m is a locally finite collection of closed subsets of K(σ) �

⋃
i<m(

⋃Kσ,i).

Let φ : ω × ω → ω be the bijection defined in Lemma 4. For each k = φ(n,m) ∈ ω, let
Lk = {F × K(σ,m, λ)|σ ∈ Ωn, λ ∈ Λσ, F ∈ Fσ,λ}. Then

(i) L =
⋃

k<ω Lk is a cover of X × Y and L ≺ G,

(ii) for each k < ω, Lk|X × Y �

⋃
l<k(

⋃Ll) is a locally finite collection of closed subsets
of X × Y �

⋃
l<k(

⋃Ll).

Proof of (i). Let (x, y) ∈ X × Y . Let σ ∈ Ωω such that {F (σ � n) : n ∈ ω} is a K-net
of C(x). Then, by (4) and (7),

⋃
n∈ω K(σ � n) = Y . Thus y ∈ K(σ � n, m, λ) for some

n ∈ ω and m ∈ ω, λ ∈ Λσ. Since
⋃Fσ�n,λ = F (σ � n), x ∈ F for some F ∈ Fσ�n,λ. Thus

(x, y) ∈ F × K(σ � n, m, λ). Therefore (x, y) ∈ ⋃Lk.
Let L = F × K(σ,m, λ) ∈ Lk where k = φ(n,m). Then F ⊂ U for some U ∈ Uσ,λ and

K(σ,m, λ) ⊂ Vλ. By (3), U × Vλ ⊂ Gξ for some ξ ∈ Ξ. Thus L ⊂ Gξ.
Proof of (ii). Put H = X × Y �

⋃
l<k(

⋃Ll) where k = φ(n,m). We shall prove the
following.
(a) L ∩ H is closed in H for each L ∈ Lk.
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(b) {L ∩ H |L ∈ Lk} is locally finite in H .

Proof of (a). This proof is similar to that of (a) in Theorem 1.

Proof of (b). Let (x, y) ∈ H . Since Fn is locally finite in X , there is a neighborhood U
of x and a finite subset {σj |j = 1, 2, ..., p} of Ωn such that U ∩ F (σ) �= ∅ ⇐⇒ σ ∈ {σj |j =
1, 2, ..., p} and x ∈ F (σj) for each j = 1, 2, ..., p. For each i < m, since φ(n, i) < k, (x, y) /∈
L(φ(n, i), σ, λ) = F (σ) × K(σ, i, λ) for each σ ∈ Ωn. Since x ∈ F (σj), y /∈ K(σj , i, λ) for
each λ ∈ Λσ. Therefore y /∈ ⋃

i<m Kσj ,i. If y /∈ K(σj), there is a neighborhood Vj of y in Y
such that Vj ∩ K(σj) = ∅. If y ∈ K(σj), then y ∈ K(σj) �

⋃
i<m Kσj ,i. By (ii)σj , there is

a neighborhood Vj of y in Y such that Λj = {λ ∈ Λσj |Vj ∩ K(σj , m, ξ) �= ∅} is a finite set.
Put V =

⋂p
j=1 Vj and W = U ×V . Then W is a neighborhood of (x, y) in X ×Y such that

W ∩ L �= ∅ for at most finite number of L ∈ Lk.
To show this, let L be an arbitrary element of Lk. Then L = F × K(σ,m, λ) for each

σ ∈ Ωn, λ ∈ Λσ and F ∈ Fσ,λ. Suppose W ∩ L �= ∅. Then σ = σj for some j = 1, 2, ..., p.
And Vj ∩K(σj , m, λ) �= ∅. Therefore λ ∈ Λσj . Since Fσj ,λ is finite, such L is at most finite.
�

Remark. Price and Smith [12] introduced the notion of propertyB(CP,ω) which is weaker
than propertyB(LF, ω).

Definition 4. ([12]). A space X is called to have property B(CP,ω) if for every open cover
G of X, there is a cover H =

⋃
n<ω Hn of X such that H is a refinement of G such that for

each n < ω,
(i) Hn is a closure preserving collection of closed subsets of X �

⋃
m<n(

⋃Hm),
(ii)

⋃
m<n(

⋃Hm) is closed in X.

The condition (ii) follows from (i). It is obvious that property B(CP,ω) is closed hered-
itary.

The following theorem is shown by the similar proof of Theorem 2.

Theorem 4. Let X be a regular σ-space and Y be a P -space. If Y has property B(CP,ω),
then X × Y has property B(CP,ω).

4. Weak θ-refinability and weak δθ-refinability

A space X is said to be weakly θ-refinable ([13]) (resp. δθ-refinable ([14])) if for any open
cover G of X there is an open refinement H =

⋃
n∈ω Hn of G such that if x ∈ X there is

some n with 1 ≤ord(x,Hn) < ω (resp. 1 ≤ord(x,Hn) ≤ ω) and {⋃Hn|n ∈ ω} is point
finite at each x ∈ X . Such cover H is said to be a weak θ cover (resp. δθ cover).

For an open cover G of X , define G<ω = {⋃G′ |G′
is a finite subfamily of G}.

The following lemma can be easily proved.

Lemma 6. Let G be an open cover of X. If G<ω has an open refinement which is a weak
θ-cover (resp. a weak δθ-cover), then G has an open refinement which is a weak θ-cover
(resp. a weak δθ-cover).

Theorem 5. Let X be a strong Σ-space and Y be a P -space.
(a) If Y is weakly θ-refinable, then X × Y is weakly θ-refinable.
(b) If Y is weakly δθ-refinable, then X × Y is weakly δθ-refinable.

We only give the proof of part (b).
Proof of (b). Let G = {Gξ|ξ ∈ Ξ} be an open cover of X × Y . Let us define

F ,Wσ,Uσ,λ, V (σ) and K(σ) as in the proof of Theorem 3.
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Let us put Mn =
⋃{F (σ) × K(σ)|σ ∈ Ωn} for each n ∈ ω. Then

(8) Mn is a closed subset of X × Y and X × Y =
⋃

n∈ω Mn.

For each σ ∈ Ω<ω, Vσ = {Vλ|λ ∈ Λσ} is a collection of open sets in Y , cover K(σ) and
V ′

σ = Vσ ∪ {Y � K(σ)} is an open cover of Y .
Since Y is weakly δθ-refinable, there is an open cover K′

σ =
⋃

m∈ω K′
σ,m such that

(i)σ for each y ∈ Y , there is an my with 0 <ord(y,K′
σ,my

) ≤ ω,
(ii)σ y ∈ ⋃K′

σ,m for at most finitely many m ∈ ω.
Put Kσ,m = {K ∈ K′

σ,m|K∩K(σ) �= ∅} and Kσ =
⋃

m∈ω Kσ,m. Then Kσ,m are collections
of open sets in Y , Kσ covers K(σ), and
(9) for each y ∈ Y , there is an my with ord(y,Kσ,my) ≤ ω; for each y ∈ K(σ), there is an
my with 0 <ord(y,Kσ,my) ≤ ω. And y ∈ ⋃Kσ,m for at most finitely many m ∈ ω.

We can represent Kσ,m = {Kσ,m,λ|λ ∈ Λσ} with Kσ,m,λ ⊂ Vλ for each λ.
Let Ωn well order by ≺ and put Γn,k = {(σ0, σ1, ..., σk−1)|σ0, σ1, ..., σk−1 ∈ Ωn, σ0 ≺

σ1 ≺ ... ≺ σk−1} for each k ∈ ω.
For each m = (m0, m1, ...,mk−1) ∈ ωk and τ = (σ0, σ1, ..., σk−1) ∈ Γn,k, put L(n,m, τ) =

{⋃i<k((Uλi � Aτ ) × Kσi,mi,λi) �

⋃
j<n Mj |λi ∈ Λσi , i < k} where Aτ =

⋃{F (σ)|σ ∈
Ωn

� {σi|i < k}}. For each n ∈ ω and each m ∈ ωk, let L(n,m) =
⋃{L(n, m, τ)|τ ∈ Γn,k}.

Then L =
⋃{L(n, m)|n ∈ ω, m ∈ ω<ω} is an open refinement of G<ω and a weak δθ-cover

of X × Y .
It is obvious that each element of L is an open set of X × Y . For each i < k, (Uλi �

Aτ )×Kσi,mi,λi ⊂ Uλi ×Vλi ⊂ G
′
i for some G

′
i ∈ G<ω. Thus

⋃
i<k((Uλi �Aτ )×Kσi,mi,λi) ⊂⋃

i<k Gi
′ ∈ G<ω.

It is sufficient to prove the following.
(10) For each (x, y) ∈ X×Y , there are an n ∈ ω and m ∈ ω<ω such that 0 < ord((x, y),L(n,m)) ≤
ω.
(11) For each (x, y) ∈ X × Y , (x, y) ∈ ⋃L(n,m) for finitely many n and m.

Proof of (10). Let (x, y) ∈ X × Y . Let us choose an n ∈ ω with (x, y) ∈ Mn �∪j<nMj.
Since Fn is locally finite, there is a finite subset {σi|i = 0, 1, ..., k − 1} of Ωn such that x ∈
F (σ) ⇐⇒ σ ∈ {σi|i = 0, 1, ..., k − 1}. We may assume that (x, y) ∈ F (σ0) × K(σ0). Since
y ∈ K(σ0), there is an m0 such that 0 < ord(y,Kσ0,m0) ≤ ω. There are mi, i = 1, ..., k − 1
such that ord(x,Kσi,mi) ≤ ω. Put m = (m0, m1, ...,mk−1) and τ = (σ0, σ1, ..., σk−1). Then
(10-1) 0 < ord((x, y),L(n,m, τ)) ≤ ω.
(10-2) ord((x, y),L(n,m, τ

′
)) = 0 for each τ

′ ∈ Γn,k with τ
′ �= τ .

Proof of (10-1). Let us choose λ0 with y ∈ Kσ0,m0,λ0 . Since F (σ0) ⊂ Uλ0 , x ∈ Uλ0 �

Aτ . Therefore (x, y) ∈ (Uλ0 � Aτ ) × Kσ0,m0,λ0 ⊂ L for some L ∈ L(n,m, τ). Thus
ord((x, y),L(n,m, τ)) > 0.

Let L ∈ L(n,m) with (x, y) ∈ L. Then there are an i ∈ {0, 1, ..., k−1} and a λi ∈ Λσi such
that (x, y) ∈ Uλi ×Kσi,mi,λi . Such λi are at most countable. Hence ord((x, y),L(n,m, τ)) ≤
ω.

Proof of (10-2). Let τ
′

= (σ
′
0, σ

′
1, ..., σ

′
k−1) ∈ Γn

k . If τ �= τ
′
, then there is an i such

that σi /∈ {σ′
i|i = 0, 1, ..., k − 1}. Thus F (σi) ∩ A

′
τ = ∅. Since x ∈ F (σi), x /∈ A

′
τ and so

(x, y) /∈ ⋃L(n,m, τ
′
).

Proof of (11). Let us choose an n with (x, y) ∈ Mn � ∪j<nMj. For each l ≤ n, let
x(l) = {σ ∈ Ωl|x ∈ F (σ)}. Then x(l) is finite. For each σ ∈ x(l), there is a finite set m(σ)
of ω such that y ∈ ⋃Kσ,m ⇐⇒ m ∈ m(σ). Put Λ(l) =

∏{m(σ)|σ ∈ x(l)}. Then, if
(x, y) ∈ ⋃L(l,m), then l ≤ n and m ∈ Λ(l). Since | ∪j<n Λ(l)| < ω, such m are finite. �
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It is known that any weakly δθ-refinable, countably compact space is compact (cf. p.
414 in [2]). Therefore any weakly δθ-refinable, countably compact space is compact. Thus
we obtain the following.

Corollary. Let X be a Σ-space and Y be a P -space.
(a) If X and Y are both weakly θ-refinable, then X × Y is weakly θ-refinable.
(b) If X and Y are both weakly δθ-refinable, then X × Y is weakly δθ-refinable.
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