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Abstract. Let R be a Dubrovin valutaion ring of a simple Artinian ring Q and let
Qs(R)(Ql(R)) be the symmetric (left) Martindale ring of quotients of R. It is shown
that either Qs(R) = RP = Ql(R) for the minimal Goldie prime ideal P of R such that
the prime segment P ⊃ (0) is simple or Qs(R) = Q = Ql(R).

1. Introduction.

Throughout this note, R will be a Dubrovin valuation ring of a simple Artinian ring Q,
and Qs(R)(Ql(R)) will be the symmetric (left) Martindale ring of quotients of R, respec-
tively. We will prove that either Qs(R) = RP = Ql(R) for the minimal prime ideal P of
R such that the prime segment P ⊃ (0) is simple or Qs(R) = Q = Ql(R) by using the
prime segments, where RP is a localization of R at P . Since Q is an injective hull of a left
R-module R, it follows that Ql(R) = {q ∈ Q | Aq ⊆ R for some non-zero ideal A of R}and
Qs(R) = {q ∈ Ql(R) | qB ⊆ R for some non-zero ideal B of R}(see [7,(10.6)]). For any
ideal A we write (R : A)l = {q ∈ Q | qA ⊆ R} and (R : A)r = {q ∈ Q | Aq ⊆ R}. With
these notation, we have Ql(R) = ∪{(R : A)l | A runs over all non-zero ideals of R}. A
prime ideal P of R is called Goldie prime if R/P is a prime Goldie ring. Let P1 and P2 be
Goldie prime ideals of R with P1 ⊃ P2. The pair P1 ⊃ P2 is said to be a prime segment of
R if there are no Goldie prime ideals properly between P1 and P2. Recall some properties
of a Dubrovin valuation ring R as follows :

(1) A prime ideal P of R is Goldie prime if and only if it is localizable, i.e., C(P ) = {c ∈
R | c is regular mod P} is a regular Ore set ([1,§1]).

(2) There is a one-to-one correspondence between the set of all overrings of R and the
set of all Glodie prime ideals of R, which is given by

S −→ J(S);P −→ RP

, where S is an overring of R, P is a Goldie prime ideal of R and J(S) is the Jacobson
radical of S. In particular, the mapping is anti-inclusion-preserving ([6, (6.7) and (14.5)]).

(3) Let S be a proper overring of R. Then (R : S)l = J(S) = (R : S)r and (R : J(S))l =
S = (R : J(S))r ([5 ,(1.1)]).

2. The symmetiric (left)Martindale ring of quotients of R.

In order to characterize the symmetric (left)Martindale ring of quotients of R, we will
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consider the following two cases :
Case 1.There is the minimal Goldie prime ideal P of R:
(a)The prime segment P ⊃ (0) is Archimedean, i.e., for any a ∈ P \ (0), there is an ideal A
such that a ∈ A and ∩An = (0).
(b)The prime segment P ⊃ (0) is exceptional, i.e., there is a non-Goldie prime ideal C such
that P ⊃ C ⊃ (0), there are no ideals properly between P and C and ∩Cn = (0).
(c)The prime segment P ⊃ (0) is simple, i.e., there are no ideals properly between P and
(0).
Case 2. There are no minimal Goldie prime ideals, i.e., ∩Pα = (0), where Pα runs over all
non-zero Goldie prime ideals.

With these notation, we have the following theorem.

Theorem. Let R be a Dubrovin valuation ring of a simple Artinian ring Q. Then
(1)Qs(R) = Q = Ql(R) in the case where Case 1 (a) or (b), or Case 2.
(2)Qs(R) = RP = Ql(R) in the case where Case 1 (c).

Proof. Suppose that Case 2 occurs. Then for any Goldie prime ideal Pα, we have R ⊇ Pα =
PαRPα = RPαPα, because J(RPα) = Pα and so RPα ⊆ Qs(R). Thus Qs(R) ⊇ S = ∪RPα ,
an overring of R, where Pα runs over all non-zero Goldie prime ideals of R. Assume that
Q ⊃ S. Then J(S) is a non-zero Goldie prime ideal by (2) and S ⊇ RPα . So J(S) ⊆ Pα

for any Pα by (2),i.e., J(S) ⊆ ∩Pα = (0), a contradiction. Hence Qs(R) = Q and so
Qs(R) = Q = Ql(R).

Suppose that Case 1 occurs. Then since R ⊇ P = RP P = PRP , we have RP ⊆ Qs(R) ⊆
Ql(R) ⊆ Q. Thus either RP = Qs(R) or Qs(R) = Q by (2).

Suppose that Case 1 (a) occurs. Then there is an element b in RP such that I =
bRP = RP b ⊆ P = J(RP ) and C = {bn | n = 1, 2, ...} is a regular Ore set of RP with
Q = (RP )C = {αb−n | α ∈ RP , n = 1, 2, ...} by the proof of [2,(2.3)]. So, for any regular
element c in R, there is a natural number n such that c−1bn ∈ RP and bnc−1 ∈ RP .
Hence c−1InP ⊆ RP P = P ⊆ R and PInc−1 ⊆ R, which show c−1 ∈ Qs(R). Therefore
Qs(R) = Q follows.

Suppose that Case 1 (b) occurs. Then we claim that P ⊃ C ⊃ (0) is an exceptional
prime segment of RP . By [2, (2.2)], C is an ideal of RP . In fact, it is a prime ideal of RP ,
because there are no ideals of R properly between P and C. Suppose that C is a Goldie
prime ideal of RP . Then (RP )C is a proper overring of RP by (2) which contradicts the
fact that RP is the maximal over ring of R by (2). Hence C is a non-Goldie prime ideal of
RP . This means the prime segment P ⊃ C ⊃ (0) is exceptional as the prime ideals of RP .
Since RP is of rank one, i.e., P = J(RP ) is the only non-zero Goldie prime ideal of RP , we
can use the method in [2,(2.2)]. For any regular element c in R, there is a natural number
n such that c−1Cn ⊆ RP and Cnc−1 ⊆ RP . So as in Case 1 (a), c−1CnP ⊆ RP P ⊆ R and
RCnc−1 ⊆ PRP ⊆ R. Hence c−1 ∈ Qs(R) and thus Qs(R) = Q = Ql(R) follows.

Suppose that Case 1 (c) occurs. Assume that Ql(R) = Q. Then for any q ∈ Q \ RP ,
there is a non-zero ideal A of R with Aq ⊆ R. If A ⊃ P , then RP A = RP so that
q ∈ RP q = RP Aq ⊆ RP , a contradiction. Thus A ⊆ P and so A = P , because the prime
segment is simple. Hence q ∈ (R : A)r = (R : P )r = RP by (3), because P = J(RP ), a
contradiction. Hence Ql(R) ⊂ Q. Since RP is the maximal overring of R by (2), It follows
that Qs(R) = RP = Ql(R), because RP ⊆ Qs(R) ⊆ Ql(R).

We end this note with remarks on examples : All prime segments of any commutative valu-
ation rings are Archimedean. Moreoveer, if Q is of finite dimensional over its center, then all
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prime segments of R is Archimedean. Let G = ⊕Zi be the direct sums of Zi with Zi = Z,
where Z is the ring of integers, which is a totally ordered abelian group by lexicographical
ordering and let V be the valuation ring with G as its value group (see[4]). Then V does
not have the minimal prime ideals. Examples of Dubrovin(in fact, total) valuation rings
satisfying Case 1 (b) and Case (c) are given in [1, Examples 11 and 12]. We will give another
example of Dubrovin valuation rings satisfying Case 1 (c) which is taken from [8,(2.4)]: Let
F0 be any field and let F = F0({yi | i ∈ Z}) be the rational function field over F0 in inde-
terminates yi. We define an automorphism σ of F as follows;σ(a) = a for any a ∈ F0 and
σ(yi) = yi−1 for all i ∈ Z (note that we defined σ(yi) = yi+1 in [8]). Also define a valuation v
of F as follows; v(a) = 0 for any a ∈ F0 and v(Yi) = gi = (· · · , 0, 1, 0, · · · ) ∈ G = ⊕Zi(i ∈ Z
and Zi = Z), the ith component is one and the other components are all zeros. Let V be the
valuation ring of F determined by v. Then σ induces an automorphism of V . Furthermore,
we defin Pi =

⋂∞
j=1 yj

i+1V for any i ∈ Z. Then P ′s are prime ideals by [4,(17.1)] such that
σ(Pi) = Pi−1 ⊂ Pi, J(V ) = ∪Pi and ∩iPi = (0). Let V [x, σ] be the skew polynomial ring
over V in an indeterminate x and let R = V [x, σ]J(V )[x,σ] is a total valuation ring of rank
one and the prime segment J(R) ⊃ (0) is simple by [3, Theorem 1 and Lemma 5].

References

[1] H.H.Brungs, H.Marubayashi and E.Osmanagic, A classification of prime segments in sim-
ple Artinian rings, Proc. A.M.S. 128 (2000), 3167-3175.

[2] H.H.Brungs, H.Marubayashi and A.Ueda, A classification of primary ideals of Dubrovin
valuation rings, Houston J.Math. 29(2003), 595-608.

[3] H.H.Brungs and G.Törner, Extensions of chain rings, Math.Z. 185(1984), 93-104.

[4] R.Gilmer,Multiplicative Ideal Theory, Queen’s Papers in Pure and Applied Mathematic,
90, Queen’s University, 1992.

[5] S.Irawati, H.Marubayashi and A.Ueda, On R-ideals of a Dubrovin valuation ring R,
Comm. in Algebra, 32(2004), 261-267.

[6] H.Marubayashi, H.Miyamoto and A.Ueda, Non-commutative Valuation Rings and Semi-
hereditary Orders, Kluwer Academic Publisher, 1997.

[7] D. Passman, Infinite crossed products, Academic Press Inc., 135 in Pure and Applied
Mathematics, 1989.

[8] G.Xie, S.Kobayashi, H.Marubayashi, N.Popescu and C.Vraciu, Noncommutative valuation
rings of the quotient Artinian ring of a skew polynomial rings, to appear in Algebras and
Representation Theory, 8(2005), 57-68.

DEPARTMENT OF MATHEMATICS, NARUTO UNIVERSITY OF EDUCATION, NARUTO,
772-8502, JAPAN
E-mail address: marubaya@naruto-u.ac.jp

COLLEGE OF SCIENCES, HOHAI UNIVERSITY, NANJING, P.R.CHINA
E-mail address: 210096@163.com


