A NOTE ON MARTINDALE QUOTIENT RINGS OF DUBROVIN VALUATION RINGS

Hidetoshi Marubayasi and Yunixa. Wang

Received May 13, 2005

Abstract

Let R be a Dubrovin valutaion ring of a simple Artinian ring Q and let $Q_{s}(R)\left(Q_{l}(R)\right)$ be the symmetric (left) Martindale ring of quotients of R. It is shown that either $Q_{s}(R)=R_{P}=Q_{l}(R)$ for the minimal Goldie prime ideal P of R such that the prime segment $P \supset(0)$ is simple or $Q_{s}(R)=Q=Q_{l}(R)$.

1. Introduction.

Throughout this note, R will be a Dubrovin valuation ring of a simple Artinian ring Q, and $Q_{s}(R)\left(Q_{l}(R)\right)$ will be the symmetric (left) Martindale ring of quotients of R, respectively. We will prove that either $Q_{s}(R)=R_{P}=Q_{l}(R)$ for the minimal prime ideal P of R such that the prime segment $P \supset(0)$ is simple or $Q_{s}(R)=Q=Q_{l}(R)$ by using the prime segments, where R_{P} is a localization of R at P. Since Q is an injective hull of a left R-module R, it follows that $Q_{l}(R)=\{q \in Q \mid A q \subseteq R$ for some non-zero ideal A of $R\}$ and $Q_{s}(R)=\left\{q \in Q_{l}(R) \mid q B \subseteq R\right.$ for some non-zero ideal B of $\left.R\right\}$ (see [7,(10.6)]). For any ideal A we write $(R: A)_{l}=\{q \in Q \mid q A \subseteq R\}$ and $(R: A)_{r}=\{q \in Q \mid A q \subseteq R\}$. With these notation, we have $Q_{l}(R)=\cup\left\{(R: A)_{l} \mid A\right.$ runs over all non-zero ideals of $\left.R\right\}$. A prime ideal P of R is called Goldie prime if R / P is a prime Goldie ring. Let P_{1} and P_{2} be Goldie prime ideals of R with $P_{1} \supset P_{2}$. The pair $P_{1} \supset P_{2}$ is said to be a prime segment of R if there are no Goldie prime ideals properly between P_{1} and P_{2}. Recall some properties of a Dubrovin valuation ring R as follows:
(1) A prime ideal P of R is Goldie prime if and only if it is localizable, i.e., $C(P)=\{c \in$ $R \mid c$ is regular $\bmod P\}$ is a regular Ore set $([1, \S 1])$.
(2) There is a one-to-one correspondence between the set of all overrings of R and the set of all Glodie prime ideals of R, which is given by

$$
S \longrightarrow J(S) ; P \longrightarrow R_{P}
$$

, where S is an overring of R, P is a Goldie prime ideal of R and $J(S)$ is the Jacobson radical of S. In particular, the mapping is anti-inclusion-preserving ([6, (6.7) and (14.5)]).
(3) Let S be a proper overring of R. Then $(R: S)_{l}=J(S)=(R: S)_{r}$ and $(R: J(S))_{l}=$ $S=(R: J(S))_{r}([5,(1.1)])$.

2. The symmetiric (left)Martindale ring of quotients of R.

In order to characterize the symmetric (left)Martindale ring of quotients of R, we will

[^0]consider the following two cases :
Case 1.There is the minimal Goldie prime ideal P of R :
(a)The prime segment $P \supset(0)$ is Archimedean, i.e., for any $a \in P \backslash(0)$, there is an ideal A such that $a \in A$ and $\cap A^{n}=(0)$.
(b)The prime segment $P \supset(0)$ is exceptional, i.e., there is a non-Goldie prime ideal C such that $P \supset C \supset(0)$, there are no ideals properly between P and C and $\cap C^{n}=(0)$.
(c)The prime segment $P \supset(0)$ is simple, i.e., there are no ideals properly between P and (0).

Case 2. There are no minimal Goldie prime ideals, i.e., $\cap P_{\alpha}=(0)$, where P_{α} runs over all non-zero Goldie prime ideals.

With these notation, we have the following theorem.

Theorem. Let R be a Dubrovin valuation ring of a simple Artinian ring Q. Then
(1) $Q_{s}(R)=Q=Q_{l}(R)$ in the case where Case 1 (a) or (b), or Case 2.
(2) $Q_{s}(R)=R_{P}=Q_{l}(R)$ in the case where Case 1 (c).

Proof. Suppose that Case 2 occurs. Then for any Goldie prime ideal P_{α}, we have $R \supseteq P_{\alpha}=$ $P_{\alpha} R_{P_{\alpha}}=R_{P_{\alpha}} P_{\alpha}$, because $J\left(R_{P_{\alpha}}\right)=P_{\alpha}$ and so $R_{P_{\alpha}} \subseteq Q_{s}(R)$. Thus $Q_{s}(R) \supseteq S=\cup R_{P_{\alpha}}$, an overring of R, where P_{α} runs over all non-zero Goldie prime ideals of R. Assume that $Q \supset S$. Then $J(S)$ is a non-zero Goldie prime ideal by (2) and $S \supseteq R_{P_{\alpha}}$. So $J(S) \subseteq P_{\alpha}$ for any P_{α} by (2),i.e., $J(S) \subseteq \cap P_{\alpha}=(0)$, a contradiction. Hence $Q_{s}(R)=Q$ and so $Q_{s}(R)=Q=Q_{l}(R)$.

Suppose that Case 1 occurs. Then since $R \supseteq P=R_{P} P=P R_{P}$, we have $R_{P} \subseteq Q_{s}(R) \subseteq$ $Q_{l}(R) \subseteq Q$. Thus either $R_{P}=Q_{s}(R)$ or $Q_{s}(R)=Q$ by (2).

Suppose that Case 1 (a) occurs. Then there is an element b in R_{P} such that $I=$ $b R_{P}=R_{P} b \subseteq P=J\left(R_{P}\right)$ and $\mathcal{C}=\left\{b^{n} \mid n=1,2, \ldots\right\}$ is a regular Ore set of R_{P} with $Q=\left(R_{P}\right)_{\mathcal{C}}=\left\{\alpha b^{-n} \mid \alpha \in R_{P}, n=1,2, \ldots\right\}$ by the proof of [2,(2.3)]. So, for any regular element c in R, there is a natural number n such that $c^{-1} b^{n} \in R_{P}$ and $b^{n} c^{-1} \in R_{P}$. Hence $c^{-1} I^{n} P \subseteq R_{P} P=P \subseteq R$ and $P I^{n} c^{-1} \subseteq R$, which show $c^{-1} \in Q_{s}(R)$. Therefore $Q_{s}(R)=Q$ follows.

Suppose that Case $1(\mathrm{~b})$ occurs. Then we claim that $P \supset C \supset(0)$ is an exceptional prime segment of R_{P}. By [2, (2.2)], C is an ideal of R_{P}. In fact, it is a prime ideal of R_{P}, because there are no ideals of R properly between P and C. Suppose that C is a Goldie prime ideal of R_{P}. Then $\left(R_{P}\right)_{C}$ is a proper overring of R_{P} by (2) which contradicts the fact that R_{P} is the maximal over ring of R by (2). Hence C is a non-Goldie prime ideal of R_{P}. This means the prime segment $P \supset C \supset(0)$ is exceptional as the prime ideals of R_{P}. Since R_{P} is of rank one, i.e., $P=J\left(R_{P}\right)$ is the only non-zero Goldie prime ideal of R_{P}, we can use the method in $[2,(2.2)]$. For any regular element c in R, there is a natural number n such that $c^{-1} C^{n} \subseteq R_{P}$ and $C^{n} c^{-1} \subseteq R_{P}$. So as in Case 1 (a), $c^{-1} C^{n} P \subseteq R_{P} P \subseteq R$ and $R C^{n} c^{-1} \subseteq P R_{P} \subseteq R$. Hence $c^{-1} \in Q_{s}(R)$ and thus $Q_{s}(R)=Q=Q_{l}(R)$ follows.

Suppose that Case 1 (c) occurs. Assume that $Q_{l}(R)=Q$. Then for any $q \in Q \backslash R_{P}$, there is a non-zero ideal A of R with $A q \subseteq R$. If $A \supset P$, then $R_{P} A=R_{P}$ so that $q \in R_{P} q=R_{P} A q \subseteq R_{P}$, a contradiction. Thus $A \subseteq P$ and so $A=P$, because the prime segment is simple. Hence $q \in(R: A)_{r}=(R: P)_{r}=R_{P}$ by (3), because $P=J\left(R_{P}\right)$, a contradiction. Hence $Q_{l}(R) \subset Q$. Since R_{P} is the maximal overring of R by (2), It follows that $Q_{s}(R)=R_{P}=Q_{l}(R)$, because $R_{P} \subseteq Q_{s}(R) \subseteq Q_{l}(R)$.

We end this note with remarks on examples : All prime segments of any commutative valuation rings are Archimedean. Moreoveer, if Q is of finite dimensional over its center, then all
prime segments of R is Archimedean. Let $G=\oplus Z_{i}$ be the direct sums of Z_{i} with $Z_{i}=Z$, where Z is the ring of integers, which is a totally ordered abelian group by lexicographical ordering and let V be the valuation ring with G as its value group (see[4]). Then V does not have the minimal prime ideals. Examples of Dubrovin(in fact, total) valuation rings satisfying Case 1 (b) and Case (c) are given in [1, Examples 11 and 12]. We will give another example of Dubrovin valuation rings satisfying Case 1 (c) which is taken from [8,(2.4)]: Let F_{0} be any field and let $F=F_{0}\left(\left\{y_{i} \mid i \in Z\right\}\right)$ be the rational function field over F_{0} in indeterminates y_{i}. We define an automorphism σ of F as follows; $\sigma(a)=a$ for any $a \in F_{0}$ and $\sigma\left(y_{i}\right)=y_{i-1}$ for all $i \in Z$ (note that we defined $\sigma\left(y_{i}\right)=y_{i+1}$ in [8]). Also define a valuation v of F as follows; $v(a)=0$ for any $a \in F_{0}$ and $v\left(Y_{i}\right)=g_{i}=(\cdots, 0,1,0, \cdots) \in G=\oplus Z_{i}(i \in Z$ and $Z_{i}=Z$), the i th component is one and the other components are all zeros. Let V be the valuation ring of F determined by v. Then σ induces an automorphism of V. Furthermore, we defin $P_{i}=\bigcap_{j=1}^{\infty} y_{i+1}^{j} V$ for any $i \in Z$. Then $P^{\prime} s$ are prime ideals by [4,(17.1)] such that $\sigma\left(P_{i}\right)=P_{i-1} \subset P_{i}, J(V)=\cup P_{i}$ and $\cap_{i} P_{i}=(0)$. Let $V[x, \sigma]$ be the skew polynomial ring over V in an indeterminate x and let $R=V[x, \sigma]_{J(V)[x, \sigma]}$ is a total valuation ring of rank one and the prime segment $J(R) \supset(0)$ is simple by [3, Theorem 1 and Lemma 5].

References

[1] H.H.Brungs, H.Marubayashi and E.Osmanagic, A classification of prime segments in simple Artinian rings, Proc. A.M.S. 128 (2000), 3167-3175.
[2] H.H.Brungs, H.Marubayashi and A.Ueda, A classification of primary ideals of Dubrovin valuation rings, Houston J.Math. 29(2003), 595-608.
[3] H.H.Brungs and G.Törner, Extensions of chain rings, Math.Z. 185(1984), 93-104.
[4] R.Gilmer,Multiplicative Ideal Theory, Queen's Papers in Pure and Applied Mathematic, 90, Queen's University, 1992.
[5] S.Irawati, H.Marubayashi and A.Ueda, On R-ideals of a Dubrovin valuation ring R, Comm. in Algebra, 32(2004), 261-267.
[6] H.Marubayashi, H.Miyamoto and A.Ueda, Non-commutative Valuation Rings and Semihereditary Orders, Kluwer Academic Publisher, 1997.
[7] D. Passman, Infinite crossed products, Academic Press Inc., 135 in Pure and Applied Mathematics, 1989.
[8] G.Xie, S.Kobayashi, H.Marubayashi, N.Popescu and C.Vraciu, Noncommutative valuation rings of the quotient Artinian ring of a skew polynomial rings, to appear in Algebras and Representation Theory, 8(2005), 57-68.

DEPARTMENT OF MATHEMATICS, NARUTO UNIVERSITY OF EDUCATION, NARUTO, 772-8502, JAPAN
E-mail address: marubaya@naruto-u.ac.jp

COLLEGE OF SCIENCES, HOHAI UNIVERSITY, NANJING, P.R.CHINA
E-mail address: 210096@163.com

[^0]: 2000 Mathematics Subject Classification. 16W60.
 Key words and phrases. Dubrovin valuation, Martindale quotient, Prime segment.

