FUZZY \otimes-SUBALGEBRAS ON $F I$-ALGEBRAS

KYUNG HO KIM, JONG GEOL LEE, SANG MOON LEE AND EUN HWAN ROH*

Received May 13, 2005

Abstract

We introduce the concept of fuzzy \otimes-subalgebras of fuzzy implication algebras, and obtain some related properties.

1. Introduction

The concept of $F I$-algebras, which is introduced by W. M. Wu in [10], is the abstract concept of implication connectives of [0,1]-valued logics. In the same paper [10], Wu introduced the notion of the filter in a $F I$-algebra, and investigated their properties. Recently, many mathematical papers have been written investigating the algebraic properties of $F I$ algebras(see $[1,2,3])$. In particular, D. Wu [11] introduced the concept of the commutativity in $F I$-algebras, and studied various properties. T. R. Zou [15] introduced the concept of Pfilters and PFI-algebras, and obtained some important results. In this paper, we introduce the concept of fuzzy \otimes-sets of $F I$-algebras, and obtain some related properties.

2. Preliminaries

We recall a few definitions and properties.
Definition 2.1. [10] By a $F I$-algebra we mean an algebra $(X, \rightarrow, 0)$ of type $(2,0)$ satisfying the following axioms: for any $x, y, z \in X$,
(I1) $x \rightarrow(y \rightarrow z)=y \rightarrow(x \rightarrow z)$,
(I2) $(x \rightarrow y) \rightarrow((y \rightarrow z) \rightarrow(x \rightarrow z))=1$,
(I3) $x \rightarrow x=1$,
(I4) $x \rightarrow y=y \rightarrow x=1 \Rightarrow x=y$,
(I5) $0 \rightarrow x=1$,
where $1=0 \rightarrow 0$. An $F I$-algebra X is said to be regular if it satisfies $\left(x^{\prime}\right)^{\prime}=x$ for all $x \in X$, where $x^{\prime}=x \rightarrow 0$. We can define a partial ordering \leq on a $F I$-algebra X by $x \leq y$ if and only if $x \rightarrow y=1$.

In a $F I$-algebra X, the following hold(see $[10,15])$: for all $x, y, z \in L$:
(1) $x \rightarrow 1=1$,
(2) $1 \rightarrow x=x$,
(3) $(y \rightarrow z) \leq(x \rightarrow y) \rightarrow(x \rightarrow z)$,
(4) if $x \leq y$, then $z \rightarrow x \leq z \rightarrow y$ and $y \rightarrow z \leq x \rightarrow z$,
(5) if $x \leq y \rightarrow z$, then $y \leq x \rightarrow z$,
(6) $x \leq y \rightarrow x$,
(7) $x \leq(x \rightarrow y) \rightarrow y$,
(8) $x \rightarrow((x \rightarrow y) \rightarrow y)=1$,

[^0](9) if $x \leq y$, then $y=(x \rightarrow y) \rightarrow y$.

Lemma 2.2. [5] A Let X be a regular FI-algebra. Then we have $x \rightarrow y=y^{\prime} \rightarrow x^{\prime}$ for all $x, y \in X$.

Proposition 2.3. [5] Every filter F of a FI-algebra X has the following property:

$$
x \leq y \text { and } x \in F \text { imply } y \in F
$$

Lemma 2.4. [1] Let X be a regular FI-algebra. Then for any $x, y \in X$, the set $\{z \in X \mid x \leq$ $y \rightarrow z\}$ has the least element, denoted by $x \otimes y$.
Lemma 2.5. [1] Let X be a regular FI-algebra. Then the following hold: for all $a, b, c \in X$,
(1) $x \otimes y=\left(x \rightarrow y^{\prime}\right)^{\prime}$,
(2) $x \leq y \rightarrow(x \otimes y)$,
(3) if $x \leq y \rightarrow z$, then $x \otimes y \leq z$.

Definition 2.6. [1] A nonempty subset S of an $F I$-algebra X is called a subalgebra of X if
(i) $0 \in S$,
(ii) $x \rightarrow y \in S$ for all $x, y \in S$.

Definition 2.7. [5] Let X be a $F I$-algebra. Then a nonempty subset A of X is said to be \otimes-closed if $a \otimes b \in A$ whenever $a, b \in A$.

Note that if S is a subalgebra of a regular $F I$-algebra X, then S is an \otimes-closed subset of X. Indeed, since $x^{\prime}=x \rightarrow 0 \in S$ for all $x \in S$, we have $a \otimes b=\left(a \rightarrow b^{\prime}\right)^{\prime} \in S$ for any $a, b \in S$.

We now review some fuzzy concepts. Let X be a set. A function $\mu: X \rightarrow[0,1]$ is called a fuzzy subset of X. For any fuzzy subsets μ and ν of a set X, we define

$$
\begin{aligned}
\mu \subseteq \nu & \Leftrightarrow \mu(x) \leq \nu(x) \quad \forall x \in X \\
(\mu \cap \nu)(x) & =\min \{\mu(x), \nu(x)\} \quad \forall x \in X .
\end{aligned}
$$

Let $f: X \rightarrow Y$ be a function from a set X to a set Y and let μ be a fuzzy subset of X. The fuzzy subset ν of Y defined by

$$
\nu(y):= \begin{cases}\sup _{x \in f^{-1}(y)} \mu(x) & \text { if } f^{-1}(y) \neq \emptyset, \forall y \in Y \\ 0 & \text { otherwise }\end{cases}
$$

is called the image of μ under f, denoted by $f[\mu]$. If ν be a fuzzy subset of Y, then the fuzzy subset μ of X given by $\mu(x)=\nu(f(x))$ for all $x \in X$ is called the preimage of ν under f and is denoted by $f^{-1}[\nu]$.

A fuzzy subset μ of an FI-algebra X is called a fuzzy subalgebra of X if $\mu(x \rightarrow y) \geq$ $\min \{\mu(x), \mu(y)\}$ for all $x, y \in X$.

3. Main Results

In this section, we introduce the concept of fuzzy \otimes-subalgebras, and we discuss their some properties.

Consider the unit interval $[0,1]$ and if define $x \rightarrow y:=\min \{1,1-x+y\}$ for all $x, y \in[0,1]$, then $([0,1], \rightarrow, 0)$ is a regular $F I$-algebra, and we also know that $a \otimes b=\max \{0, a+b-1\}$ for all $a, b \in[0,1]$.

Note that we used the notion of minimum in $[0,1]$ in defining the concept of fuzzy subalgebras of an FI-algebra. Hereby we will try to introduce the new notion we called fuzzy \otimes-subalgebra of an $F I$-algebra X by using the Lukasiewicz logic.

Since the unit interval $([0,1], \rightarrow, 0)$ is a regular $F I$-algebra where $x \rightarrow y:=\min \{1,1-$ $x+y\}$ for all $x, y \in[0,1]$, we have following definition.

Definition 3.1. A fuzzy subset μ of an $F I$-algebra X is called a fuzzy \otimes-subalgebra of X if

$$
(\forall x, y \in X)(\mu(x \rightarrow y) \geq \mu(x) \otimes \mu(y))
$$

Example 3.2. Let $X:=\{0, a, b, c, 1\}$. Define the operation " \rightarrow " as follows:

\rightarrow	0	a	b	c	1
0	1	1	1	1	1
a	c	1	1	1	1
b	b	c	1	1	1
c	a	b	c	1	1
1	0	a	b	c	1

\otimes	0	a	b	c	1
0	0	0	0	0	0
a	0	0	0	0	a
b	0	0	0	a	b
c	0	0	a	b	c
1	0	a	b	c	1

Then $(X, \rightarrow, 0)$ is a regular $F I$-algebra and we can find the above \otimes-table([5]). Define fuzzy subsets μ_{1}, μ_{2} and μ_{3} of X by

$$
\begin{gathered}
\mu_{1}(1)=1, \mu_{1}(a)=\mu_{1}(b)=\mu_{1}(c)=0.7 \text { and } \mu_{1}(0)=0.6 \\
\mu_{2}(1)=1, \mu_{2}(a)=\mu_{2}(b)=0.7, \mu_{2}(c)=0.4 \text { and } \mu_{2}(0)=0.2 \\
\mu_{3}(1)=1, \mu_{3}(b)=\mu_{3}(c)=0.9 \text { and } \mu_{3}(a)=\mu_{3}(0)=0.6
\end{gathered}
$$

Then μ_{1}, μ_{2} and μ_{3} are fuzzy \otimes-subalgebras of X. But a fuzzy subset ν of X defined by

$$
\nu(1)=1, \nu(a)=\nu(b)=0.3, \nu(c)=0.7 \text { and } \nu(0)=0.8
$$

is not a fuzzy \otimes-subalgebra of X since

$$
\nu(c \rightarrow 0)=\nu(a)=0.3 \nsupseteq 0.5=\nu(c) \otimes \nu(0) .
$$

Note that every fuzzy subalgebra is a fuzzy \otimes-subalgebra, but the converse is not true, because in Example 3.2, a fuzzy subset μ_{2} is not fuzzy subalgebra of X since $\mu(b \rightarrow a)=$ $\mu(c)=0.4 \nsupseteq 0.7=\min \{\mu(a), \mu(b)\}$.

For every elements x of a regular $F I$-algebra, we defined

$$
x^{0}=1, x^{n}=x^{n-1} \otimes x \text { and } n(x) \rightarrow y=x \rightarrow(x \rightarrow(\cdots(x \rightarrow y) \cdots))
$$

in which x occurs n times for $n \in N$.
Proposition 3.3. If μ is a fuzzy \otimes-subalgebra of an FI-algebra X, then $\mu(1) \geq \mu(x)^{2}$ and $\mu(n(1) \rightarrow x) \geq \mu(x)^{2 n+1}$ for all $x \in X$ and $n \in N$.

Proof. Since $x \rightarrow x=1$ for all $x \in X$, it follows that

$$
\mu(1)=\mu(x \rightarrow x) \geq \mu(x) \otimes \mu(x)=\mu(x)^{2}
$$

for all $x \in X$.
For the proof of remainder part, we using the induction on n. For $n=1$, we have $\mu(1 \rightarrow x) \geq \mu(1) \otimes \mu(x) \geq \mu(x)^{3}$ for all $x \in X$. Assume that $\mu(k(1) \rightarrow x) \geq \mu(x)^{2 k+1}$ for all $x \in X$. Then

$$
\begin{aligned}
\mu((k+1) 1 \rightarrow x) & =\mu(1 \rightarrow(k(1) \rightarrow x)) \\
& \geq \mu(1) \otimes \mu(k(1) \rightarrow x) \\
& \geq \mu(x)^{2} \otimes \mu(x)^{2 k+1} \\
& =\mu(x)^{2(k+1)+1}
\end{aligned}
$$

Hence $\mu(n(1) \rightarrow x) \geq \mu(x)^{2 n+1}$ for all $n \in N$ and $x \in X$.

Proposition 3.4. Let μ be a fuzzy \otimes-subalgebra of an FI-algebra X. If there exists a sequence $\left\{x_{n}\right\}$ in X such that $\lim _{n \rightarrow \infty}\left(\mu\left(x_{n}\right)\right)^{2}=1$, then $\mu(1)=1$.

Proof. By Proposition 3.3, we have $\mu(1) \geq \mu\left(x_{n}\right)^{2}$ for each $n \in N$. Since

$$
1=\lim _{n \rightarrow \infty}\left(\mu\left(x_{n}\right)\right)^{2} \leq \mu(1)
$$

it follows that $\mu(1)=1$.
Note that a fuzzy subset μ of an $F I$-algebra X is a fuzzy subalgebra of X if and only if a nonempty level subset $U(\mu ; t):=\{x \in X \mid \mu(x) \geq t\}$ is a subalgebra of X for every $t \in[0,1]$. But, we know that if μ is a fuzzy \otimes-subalgebra of X, then there exists $t \in[0,1]$ such that $U(\mu ; t)$ is not an \otimes-closed set of X. In fact, for the fuzzy subset μ_{3} of X in Example 3.2, $U(\mu ; 0.9)=\{b, c, 1\}$ is not an \otimes-closed set of X.

Proposition 3.5. If μ is a fuzzy \otimes-subalgebra of an $F I$-algebra X, then

$$
U(\mu ; 1):=\{x \in X \mid \mu(x)=1\}
$$

is either empty or an \otimes-closed set of X.
Proof. Let $x, y \in X$ be such that x and y belong to $U(\mu ; 1)$. Then $\mu(x \rightarrow y) \geq \mu(x) \otimes \mu(y)=$ 1. Hence $\mu(x \rightarrow y)=1$ which implies $x \rightarrow y \in U(\mu ; 1)$. Consequently, $U(\mu ; 1)$ is an \otimes-closed set of X.

Proposition 3.6. Let $g: X \rightarrow Y$ be a homomorphism of an FI-algebra X and a regular FI-algebra Y. If ν is a fuzzy \otimes-subalgebra of Y, then the preimage $g^{-1}[\nu]$ of ν under g is a fuzzy \otimes-subalgebra of X.
Proof. For any $x_{1}, x_{2} \in X$, we have

$$
\begin{aligned}
g^{-1}[\nu]\left(x_{1} \rightarrow x_{2}\right) & =\nu\left(g\left(x_{1} \rightarrow x_{2}\right)\right) \\
& =\nu\left(g\left(x_{1}\right) \rightarrow g\left(x_{2}\right)\right) \\
& \geq \nu\left(g\left(x_{1}\right)\right) \otimes \nu\left(g\left(x_{2}\right)\right) \\
& =g^{-1}[\nu]\left(x_{1}\right) \otimes g^{-1}[\nu]\left(x_{2}\right)
\end{aligned}
$$

Thus $g^{-1}[\nu]$ is a fuzzy \otimes-subalgebra of X.
Theorem 3.7. Let $f: X \rightarrow Y$ be a homomorphism of FI-algebras. If μ is a fuzzy \otimes subalgebra of X, then the image $f[\mu]$ of μ under f is a fuzzy \otimes-subalgebra of Y.
Proof. For any $y_{1}, y_{2} \in Y$, let $A_{1}=f^{-1}\left(y_{1}\right), A_{2}=f^{-1}\left(y_{2}\right)$, and $A_{12}=f^{-1}\left(y_{1} \rightarrow y_{2}\right)$. Consider the set

$$
A_{1} \rightarrow A_{2}:=\left\{x \in X \mid x=a_{1} \rightarrow a_{2} \text { for some } a_{1} \in A_{1} \text { and } a_{2} \in A_{2}\right\}
$$

If $x \in A_{1} \rightarrow A_{2}$, then $x=x_{1} \rightarrow x_{2}$ for some $x_{1} \in A_{1}$ and $x_{2} \in A_{2}$ so that

$$
f(x)=f\left(x_{1} \rightarrow x_{2}\right)=f\left(x_{1}\right) \rightarrow f\left(x_{2}\right)=y_{1} \rightarrow y_{2}
$$

that is, $x \in f^{-1}\left(y_{1} \rightarrow y_{2}\right)=A_{12}$. Hence $A_{1} \rightarrow A_{2} \subseteq A_{12}$. It follows that

$$
\begin{aligned}
f[\mu]\left(y_{1} \rightarrow y_{2}\right) & =\sup _{x \in f-1}\left(y_{1} \rightarrow y_{2}\right) \\
& \geq \sup _{x \in A_{1} \rightarrow A_{2}} \mu(x) \geq \sup _{x_{1} \in A_{1}, x_{2} \in A_{2}} \mu\left(x_{1} \rightarrow x_{2}\right) \\
& \geq \sup _{x_{1} \in A_{1}, x_{2} \in A_{2}} \mu\left(x_{1}\right) \otimes \mu\left(x_{2}\right)
\end{aligned}
$$

Since $\otimes:[0,1] \times[0,1] \rightarrow[0,1]$ is continuous, for every $\varepsilon>0$ there exists $\delta>0$ such that if $\tilde{x}_{1} \geq \sup _{x_{1} \in A_{1}} \mu\left(x_{1}\right)-\delta$ and $\tilde{x}_{2} \geq \sup _{x_{2} \in A_{2}} \mu\left(x_{2}\right)-\delta$, then $\tilde{x}_{1} \otimes \tilde{x}_{2} \geq \sup _{x_{1} \in A_{1}} \mu\left(x_{1}\right) \otimes$ $\sup _{x_{2} \in A_{2}} \mu\left(x_{2}\right)-\varepsilon$. Chose $a_{1} \in A_{1}$ and $a_{2} \in A_{2}$ such that $\mu\left(a_{1}\right) \geq \sup _{x_{1} \in A_{1}} \mu\left(x_{1}\right)-\delta$ and $\mu\left(a_{2}\right) \geq \sup _{x_{2} \in A_{2}} \mu\left(x_{2}\right)-\delta$. Then

$$
\mu\left(a_{1}\right) \otimes \mu\left(a_{2}\right) \geq \sup _{x_{1} \in A_{1}} \mu\left(x_{1}\right) \otimes \sup _{x_{2} \in A_{2}} \mu\left(x_{2}\right)-\varepsilon
$$

Consequently,

$$
\begin{aligned}
f[\mu]\left(y_{1} \rightarrow y_{2}\right) & \geq \sup _{x_{1} \in A_{1}, x_{2} \in A_{2}} \mu\left(x_{1}\right) \otimes \mu\left(x_{2}\right) \\
& \geq \sup _{x_{1} \in A_{1}} \mu\left(x_{1}\right) \otimes \sup _{x_{2} \in A_{2}} \mu\left(x_{2}\right) \\
& =f[\mu]\left(y_{1}\right) \otimes f[\mu]\left(y_{2}\right),
\end{aligned}
$$

and hence $f[\mu]$ is a fuzzy \otimes-subalgebra of Y.
Let X and Y be $F I$-algebras and let

$$
X \times Y=\{(x, y) \mid x \in X \text { and } y \in Y\}
$$

We defined the operation \rightarrow on $X \times Y$ by

$$
\left(x_{1}, y_{1}\right) \rightarrow\left(x_{2}, y_{2}\right):=\left(x_{1} \rightarrow x_{2}, y_{1} \rightarrow y_{2}\right)
$$

for all $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times Y$. Then we can easily verify that $(X \times Y, \rightarrow,(0,0))$ is an $F I$-algebra which is called the direct product algebra of X and Y.

Proposition 3.8. For a fuzzy subset σ of an FI-algebra X, let μ_{σ} be a fuzzy subset of $X \times X$ defined by $\mu_{\sigma}(x, y):=\sigma(x) \otimes \sigma(y)$ for all $x, y \in X$. Then σ is a fuzzy \otimes-subalgebra of X if and only if μ_{σ} is a fuzzy \otimes-subalgebra of the direct product algebra $X \times X$.

Proof. Assume that σ is a fuzzy \otimes-subalgebra of X. For any $x_{1}, x_{2}, y_{1}, y_{2} \in X$, we have

$$
\begin{aligned}
\mu_{\sigma}\left(\left(x_{1}, y_{1}\right) \rightarrow\left(x_{2}, y_{2}\right)\right) & =\mu_{\sigma}\left(x_{1} \rightarrow x_{2}, y_{1} \rightarrow y_{2}\right) \\
& =\sigma\left(x_{1} \rightarrow x_{2}\right) \otimes \sigma\left(y_{1} \rightarrow y_{2}\right) \\
& \geq\left(\sigma\left(x_{1}\right) \otimes \sigma\left(x_{2}\right)\right) \otimes\left(\sigma\left(y_{1}\right) \otimes \sigma\left(y_{2}\right)\right) \\
& =\left(\sigma\left(x_{1}\right) \otimes \sigma\left(y_{1}\right)\right) \otimes\left(\sigma\left(x_{2}\right) \otimes \sigma\left(y_{2}\right)\right) \\
& =\mu_{\sigma}\left(x_{1} \rightarrow y_{1}\right) \otimes \mu_{\sigma}\left(x_{2} \rightarrow y_{2}\right),
\end{aligned}
$$

and so μ_{σ} is a fuzzy \otimes-subalgebra of $X \times X$.
Conversely, suppose that μ_{σ} is a fuzzy \otimes-subalgebra of $X \times X$ and let $x, y \in X$. Then

$$
\begin{aligned}
(\sigma(x \rightarrow y))^{2} & =\mu_{\sigma}(x \rightarrow y, x \rightarrow y) \\
& =\mu_{\sigma}((x, x) \rightarrow(y, y)) \\
& \geq \mu_{\sigma}(x, x) \otimes \mu_{\sigma}(y, y) \\
& =(\sigma(x) \otimes \sigma(y))^{2},
\end{aligned}
$$

and so $\sigma(x \rightarrow y) \geq \sigma(x) \otimes \sigma(y)$, that is, σ is a fuzzy \otimes-subalgebra of X.
A fuzzy relation μ on a set X is a fuzzy subset of $X \times X$, that is, a map $\mu: X \times X \rightarrow[0,1]$.
Proposition 3.9. Let μ be a fuzzy relation on an FI-algebra X satisfying the inequality $\mu(x, y) \leq \mu(x, 1)$ for all $x, y \in X$. Given $z \in X$, let σ_{z} be a fuzzy subset of X defined by $\sigma_{z}(x):=\mu(x, z)$ for all $x \in X$. If μ is a fuzzy \otimes-subalgebra of the direct product algebra $X \times X$, then σ_{z} is a fuzzy \otimes-subalgebra of X for all $z \in X$.
Proof. Let $x, y, z \in X$. Then

$$
\begin{aligned}
\sigma_{z}(x \rightarrow y) & =\mu(x \rightarrow y, z)=\mu(x \rightarrow y, 1 \rightarrow z) \\
& =\mu((x, 1) \rightarrow(y, z)) \\
& \geq \mu(x, 1) \otimes \mu(y, z) \\
& \geq \mu(x, z) \otimes \mu(y, z) \\
& =\sigma_{z}(x) \otimes \sigma_{z}(y),
\end{aligned}
$$

completing the proof.
Proposition 3.10. Let μ be a fuzzy relation on an FI-algebra X and let σ_{μ} be a fuzzy subset of X given by $\sigma_{\mu}(x):=\inf _{y \in X} \mu(x, y) \otimes \mu(y, x)$ for all $x \in X$. If μ is a fuzzy $\otimes-$ subalgebra of the direct product algebra $X \times X$ satisfying the equality $\mu(x, 1)=1=\mu(1, x)$ for all $x \in X$, then σ_{μ} is a fuzzy \otimes-subalgebra of X for all $z \in X$.

Proof. For any $x, y, z \in X$, we have

$$
\begin{aligned}
\mu(x \rightarrow y, z) & =\mu(x \rightarrow y, 1 \rightarrow z)=\mu((x, 1) \rightarrow(y, z)) \\
& \geq \mu((x, 1) \otimes \mu(y, z))=\mu(y, z)
\end{aligned}
$$

and

$$
\begin{aligned}
\mu(z, x \rightarrow y) & =\mu(1 \rightarrow z, x \rightarrow y)=\mu((1, x) \rightarrow(z, y)) \\
& \geq \mu((z, x) \otimes \mu(z, y))=\mu(z, y) .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\sigma_{\mu}(x \rightarrow y) & =\inf _{z \in X} \mu(x \rightarrow y, z) \otimes \mu(z, x \rightarrow y) \\
& \left.\left.\geq \inf _{z \in X} \mu(x, z) \otimes \mu(z, x)\right) \otimes \inf _{z \in X} \mu(y, z) \otimes \mu(z, y)\right) \\
& =\sigma_{\mu}(x) \otimes \sigma_{\mu}(y)
\end{aligned}
$$

This completes the proof.
Proposition 3.11. Let μ and ν be fuzzy \otimes-subalgebras of $F I$-algebras X and Y respectively. Then the cross product $\mu \times \nu$ of μ and ν defined by

$$
(\mu \times \nu)(x, y):=\mu(x) \otimes \nu(y)
$$

for all $(x, y) \in X \times Y$ is a fuzzy \otimes-subalgebra of the direct product algebra $X \times Y$
Proof. The proof is straightforward.
Proposition 3.12. Let X and Y be FI-algebras and let μ be a fuzzy \otimes-subalgebra of the direct product algebra $X \times Y$. Then the fuzzy subset $P_{X}[\mu]$ (resp. $P_{Y}[\mu]$) of X (resp. Y) defined by

$$
P_{X}[\mu](x):=\mu(x, 1)\left(\operatorname{resp} \cdot P_{Y}[\mu](y):=\mu(1, y)\right)
$$

for all $x \in X$ (resp. $y \in Y$) is a fuzzy \otimes-subalgebra of X (resp. Y).
Proof. For any $x_{1}, x_{2} \in X$, we have

$$
\begin{aligned}
P_{X}[\mu]\left(x_{1} \rightarrow x_{2}\right) & =\mu\left(x_{1} \rightarrow x_{2}, 1\right)=\mu\left(x_{1} \rightarrow x_{2}, 1 \rightarrow 1\right) \\
& =\mu\left(x_{1}, 1\right) \rightarrow \mu\left(x_{2}, 1\right) \\
& \geq \mu\left(x_{1}, 1\right) \otimes \mu\left(x_{2}, 1\right) \\
& =P_{X}[\mu]\left(x_{1}\right) \otimes P_{X}[\mu]\left(x_{2}\right) .
\end{aligned}
$$

Hence $P_{X}[\mu]$ is a fuzzy \otimes-subalgebra of X. Similarly, we can prove that $P_{Y}[\mu]$ is a fuzzy \otimes-subalgebra of Y.

References

[1] L. Z. Liu and G. J. Wang, Fuzzy implication algebras and MV-algebras, Fuzzy Systems and Mathematics, 12(1) (1998), 20-25.
[2] J. C. Li and W. X. Zhang Quasi-fuzzy valuations on HFI-algebras, Fuzzy Systems and Mathematics, 14(2) (2000), 1-3.
[3] J. Ma On solutions of fuzzy implication equations, J. Southwest Jiaotong Univ., 33 (1998), 14-17.
[4] D. W. Pei and G. J. Wang A new kind of algebraic systems for fuzzy logic, J. Southwest Jiaotong Univ. (in Chinese), 35(5) (2000), 564-568.
[5] E. H. Roh, Y. Xu and Y. B. Jun Some operations on fuzzy implication algebras, Proceedings of the 9th Symposium On Multiple Valued Logic and Fuzzy Logic in China, (2000), 118-123.
[6] E. H. Roh, Y. Xu, T. R. Zou and K. Y. Qin A uniform structure of fuzzy implication algebras, Comm. Korean Math. Soc., 17(2) (2002), 207-213.
[7] G. J. Wang Logic foundations of fuzzy modus ponens and fuzzy modus tollens, J. Fuzzy Math., 5(1) (1997), 229-250.
[8] G. J. Wang On the logic foundation of fuzzy reasoning, Information Sciences, 117 (1999), 47-88.
[9] G. J. Wang Non-classical mathematical logics and approximate reasoning, Science Publishing Co., Beijing (in Chinese), 2000.
[10] W. M. Wu Fuzzy implication algebra, Fuzzy Systems and Mathematics, 4(1) (1990), 56-63.
[11] D. Wu Commutative fuzzy implication algebra, Fuzzy Systems and Mathematics, 13(1) (1999), 27-30.
[12] Y. Xu Lattice implication algebras, J. of Southwest Jiaotong Univ., 28(1) (1993), 20-27.
[13] L. A. Zadeh Fuzzy sets, Inform. Control., 8 (1965), 338-353.
[14] T. R. Zou Fuzzy algebra, BCK-algebra and implication semigroup, Fuzzy Systems and Mathematics, 13(2) (1999), 64-70
[15] T. R. Zou PFI-algebras and its p-filters, J. of Math. (PRC) (in Chinese), 20(3) (2000), 323-328.
K. H. Kim and J. G. Lee, Department of Mathematics, Chungju National University, Chungju 380-702 Korea

E-mail address: ghkim@chungju.ac.kr jglee@chungju.ac.kr
Sang Moon Lee, Department of Computer Science, Chungju National University, Chunguu 380-702 Korea

E-mail address: smlee@chungju.ac.kr
E. H. Roh, Department of Mathematics Education, Chinju National University of Education, Jinju 660-756, Korea

E-mail address: ehroh@cue.ac.kr

[^0]: 2000 Mathematics Subject Classification. 06B10, 03G10, 94D05.
 Key words and phrases. FI-algebra, fuzzy \otimes-subalgebra.
 *Corresponding author: Tel. +8255 7401232.

