H-FILTERS OF HILBERT ALGEBRAS

YOUNG BAE JUN* AND KYUNG HO KIM**

Received April 1, 2005; revised April 6, 2005

Abstract

We introduce the concept of Hilbert filter (H-filter, in abbreviation) in Hilbert algebras, and study how to generate an H-filter by a set.

1. Introduction

Following the introduction of Hilbert algebras by A. Diego [5], the algebra and related concepts were developed by D. Busneag [2-4]. The present author [7, 8] gave a characterization of a deductive system in a Hilbert algebra, and introduced the notion of commutative Hilbert algebras and gave some characterizations of a commutative Hilbert algebra. In this paper, we introduce the concept of a Hilbert filter (H-filter, in abbreviation) in Hilbert algebras, and study how to generate an H-filter by a set. We also discuss how to generate an H-filter by an H-filter and an element.

We include some elementary aspects of Hilbert algebras that are necessary for this paper, and for more details we refer to $[2-4]$ and [5].

A Hilbert algebra is a triple $(H, \rightarrow, 1)$, where H is a nonempty set, " \rightarrow " is a binary operation on $H, 1 \in H$ is an element such that the following three axioms are satisfied for every $x, y, z \in H$:
(i) $x \rightarrow(y \rightarrow x)=1$,
ii) $(x \rightarrow(y \rightarrow z)) \rightarrow((x \rightarrow y) \rightarrow(x \rightarrow z))=1$,
(iii) if $x \rightarrow y=y \rightarrow x=1$ then $x=y$.

If H is a Hilbert algebra, then the relation $x \leq y$ iff $x \rightarrow y=1$ is a partial order on H, which will be called the natural ordering on H. With respect to this ordering 1 is the largest element of H. A bounded Hilbert algebra is a Hilbert algebra with a smallest element 0 relative to the natural ordering. In a bounded Hilbert algebra H we define a unary operation " C " on H by $C(x):=x \rightarrow 0$ for all $x \in H$.

In a Hilbert algebra H, the following hold:
(1) $x \leq y \rightarrow x$,
(2) $x \rightarrow 1=1$,
(3) $x \rightarrow(y \rightarrow z)=(x \rightarrow y) \rightarrow(x \rightarrow z)$,
(4) $1 \rightarrow x=x$,
(5) $x \rightarrow(y \rightarrow z)=y \rightarrow(x \rightarrow z)$,
(6) $x \rightarrow x=1$.
(7) $x \leq y$ implies $z \rightarrow x \leq z \rightarrow y$ and $y \rightarrow z \leq x \rightarrow z$,
(8) $C(0)=1$ and $C(1)=0$,
(9) $x \leq y$ implies $C(y) \leq C(x)$,
(10) $x \leq C(C(x))$,
(11) $x \rightarrow y \leq(y \rightarrow z) \rightarrow(x \rightarrow z)$,

[^0](12) $x \rightarrow y \leq C(y) \rightarrow C(x)$,
(13) $x \leq(x \rightarrow y) \rightarrow y$ and $((x \rightarrow y) \rightarrow y) \rightarrow y=x \rightarrow y$.

In the sequel, the binary operation " \rightarrow " will be denoted by juxtaposition.
For any x, y in a Hilbert algebra H, we define $x \vee y$ by $(y x) x$. Note that $x \vee y$ is an upper bound of x and y.

A Hilbert algebra H is said to be commutative ([8, Definition 2.1]) if for all $x, y \in H$,

$$
(y x) x=(x y) y, \text { i.e., } x \vee y=y \vee x .
$$

A subset D of a Hilbert algebra H is called a deductive system of H if it satisfies:
(i) $1 \in D$,
(ii) $x \in D$ and $x y \in D$ imply $y \in D$.

2. H-Filters

In the sequel H will denote a bounded Hilbert algebra unless otherwise specified. We begin with the following definition.

Definition 2.1. A non-empty subset F of H is called a Hilbert filter (H-filter, in abbreviation) if
(F1) $0 \in F$,
(F2) $C(C(y) C(x)) \in F$ and $y \in F$ imply $x \in F$, for all $x, y \in H$.

Under this definition $\{0\}$ and H are the simplest examples of H-filters.
Example 2.2. Consider a bounded Hilbert algebra $H:=\{1, x, y, z, 0\}$ with Cayley table as follows:

	1	x	y	z	0
1	1	x	y	z	0
x	1	1	y	z	0
y	1	x	1	z	z
z	1	1	y	1	y
0	1	1	1	1	1

It is easily verified that $F:=\{0, y\}$ and $G:=\{0, z\}$ are H-filters of H.
Theorem 2.3. Let F be an H-filter of H and $y \in F$. If $C(y) \leq C(x)$, then $x \in F$ for all $x \in H$.

Proof. If $C(y) \leq C(x)$, then $C(y) C(x)=1$ and so $C(C(y) C(x))=C(1)=0 \in F$. It follows from (F2) that $x \in F$, ending the proof.

Since $x \leq y$ implies $C(y) \leq C(x)$ by (9), we have the following corollary.
Corollary 2.4. Let F be an H-filter of H and $y \in F$. If $x \leq y$, then $x \in F$ for all $x \in H$.
Lemma 2.5. If H is commutative, then
(i) $C(C(x) C(y))=C(y x)$,
(ii) $C(C(x))=x$, for all $x, y \in H$.

Proof. (i) From (9) and (12) we know that $C(C(x) C(y)) \leq C(y x)$. Now

$$
\begin{array}{rlr}
C(y x) C(C(x) C(y)) & =((y x) 0)(((x 0)(y 0)) 0) & \\
& =((x 0)(y 0))(((y x) 0) 0) & {[\mathrm{by}(5)]} \\
& =(y((x 0) 0))(((y x) 0) 0) & {[\mathrm{by}(5)]} \\
& =(y((0 x) x))((0(y x))(y x))[\text { by commutativity }] \\
& =(y x)(y x)=1, & {[\text { by }(4) \text { and }(6)]}
\end{array}
$$

which implies that $C(y x) \leq C(C(x) C(y))$. Hence $C(C(x) C(y))=C(y x)$.
(ii) Note that $x \vee 0=(0 x) x=1 x=x$ and $0 \vee x=(x 0) 0=C(C(x))$. By the commutativity, we have $C(C(x))=x$.

If H is commutative, then we have a characterization of an H-filter by using Lemma 2.5(i).

Theorem 2.6. Assume that H is commutative and let F be a non-empty subset of H. Then F is an H-filter if and only if it satisfies (F1) and
(F3) $C(x y) \in F$ and $y \in F$ imply $x \in F$ for all $x, y \in H$.
For a non-empty subset F of H, we define

$$
C(F):=\{C(x) \mid x \in F\}
$$

In general, $C(F)$ may not be a deductive system even if F is an H-filter of H. In fact, in Example 2.2, $C(F)=\{1, z\}$ is not a deductive system of H since $z x=1 \in C(F)$ and $x \notin C(F)$.
Theorem 2.7. Assume that H is commutative. If F is an H-filter, then $C(F)$ is a deductive system of H.

Proof. If F is an H-filter, then $0 \in F$ and so $C(0)=1 \in C(F)$. Let $x \in C(F)$ and $x y \in C(F)$ for all $x, y \in H$. Then $x=C(u)$ and $x y=C(v)$ for some $u, v \in F$. By using Lemma 2.5(ii), we have

$$
C(C(u) C(C(y)))=C(C(u) y)=C(x y)=C(C(v))=v \in F
$$

It follows from (F2) that $C(y) \in F$ so that $y=C(C(y)) \in C(F)$. This completes the proof.

Observation 2.8 Suppose \mathcal{F} is a non-empty family of H-filters of H. Then $F=\cap \mathcal{F}$ is also an H-filter of H.

Let A be a subset of H. The least H-filter containing A is called the H-filter generated by A, written $\langle A\rangle$.

Since H is clearly an H-filter containing A, in view of Observation 2.8 we know that the definition is well-defined. We start with the following.

Observation 2.9. Let A and B be subsets of H. Then the following hold:
(i) $\langle\{0\}\rangle=\{0\},\langle\emptyset\rangle=\{0\}$.
(ii) $\langle H\rangle=H,\langle\{1\}\rangle=H$.
(iii) $A \subseteq B$ implies $\langle A\rangle \subseteq\langle B\rangle$.
(iv) $x \leq y$ implies $\langle\{x\}\rangle \subseteq\langle\{y\}\rangle$.
(v) if A is an H-filter of H, then $\langle A\rangle=A$.

The next statement gives a description of elements of $\langle A\rangle$.

Theorem 2.8. If A is a non-empty subset of H, then

$$
\langle A\rangle=\left\{x \in H \mid C\left(a_{n}\right)\left(\ldots\left(C\left(a_{1}\right) C(x)\right) \ldots\right)=1 \text { for some } a_{1}, \ldots, a_{n} \in A\right\} .
$$

In order to prove Theorem 2.10 we need the following facts: For any natural number n we define $x^{n} y$ recursively as follows: $x^{1} y=x y$ and $x^{n+1} y=x\left(x^{n} y\right)$. By (5) and induction we know that
(14) $z\left(x_{n}\left(\ldots\left(x_{1} y\right) \ldots\right)\right)=x_{n}\left(\ldots\left(x_{1}(z y)\right) \ldots\right)$.

As a special case of (14) we get
(15) $z\left(x^{n} y\right)=x^{n}(z y)$.

Now let $a, y, x_{1}, \ldots, x_{n}$ be elements of a Hilbert algebra H. Then

$$
\begin{array}{lr}
\left(\left(\left(x_{n}\left(\ldots\left(x_{1}(y a)\right) \ldots\right)\right) a\right) a\right)\left(x_{n}\left(\ldots\left(x_{1}(y a)\right) \ldots\right)\right) \\
=x_{n}\left(\ldots\left(x_{1}\left(y\left(\left(\left(\left(x_{n}\left(\ldots\left(x_{1}(y a)\right) \ldots\right)\right) a\right) a\right) a\right)\right)\right) \ldots\right) & {[\text { by }(5)]} \\
=x_{n}\left(\ldots\left(x_{1}\left(y\left(\left(x_{n}\left(\ldots\left(x_{1}(y a)\right) \ldots\right)\right) a\right)\right)\right) \ldots\right) & {[\text { by }(13)]} \\
=\left(x_{n}\left(\ldots\left(x_{1}(y a)\right) \ldots\right)\right)\left(x_{n}\left(\ldots\left(x_{1}(y a)\right) \ldots\right)\right) & {[\text { by }(5)]} \\
=1, & {[\text { by }(6)]}
\end{array}
$$

which implies that

$$
\left(\left(x_{n}\left(\ldots\left(x_{1}(y a)\right) \ldots\right)\right) a\right) a \leq x_{n}\left(\ldots\left(x_{1}(y a)\right) \ldots\right)
$$

The reverse inequality follows from (13). Hence we have
(16) $\left(\left(x_{n}\left(\ldots\left(x_{1}(y a)\right) \ldots\right)\right) a\right) a=x_{n}\left(\ldots\left(x_{1}(y a)\right) \ldots\right)$.

Substituting 0 for a and assuming $x_{1}=x_{2}=\ldots=x_{n}=x$ in (16), we obtain
(17) $C\left(C\left(x^{n} C(y)\right)\right)=x^{n} C(y)$.

Proof of Theorem 2.10. Denote

$$
U=\left\{x \in H \mid C\left(a_{n}\right)\left(\ldots\left(C\left(a_{1}\right) C(x)\right) \ldots\right)=1 \text { for some } a_{1}, \ldots, a_{n} \in A\right\}
$$

We first prove that U is an H-filter. Since A is non-empty, there exists $a \in A$. Then $C(a) C(0)=C(a) 1=1$, whence $0 \in U$. Let $C(C(y) C(x)) \in U$ and $y \in U$. Then there exist $a_{i} \in A(i=1, \ldots, n)$ and $b_{j} \in A(j=1, \ldots m)$ such that
(18) $C\left(a_{n}\right)\left(\ldots\left(C\left(a_{1}\right) C(C(C(y) C(x)))\right) \ldots\right)=1$ and $C\left(b_{m}\right)\left(\ldots\left(C\left(b_{1}\right) C(y)\right) \ldots\right)=1$.

It follows from (17) that (18) implies

$$
C\left(a_{n}\right)\left(\ldots\left(C\left(a_{1}\right)(C(y) C(x))\right) \ldots\right)=1
$$

and so $C(y) \leq C\left(a_{n}\right)\left(\ldots\left(C\left(a_{1}\right) C(x)\right) \ldots\right)$. By using (7) we get

$$
\begin{aligned}
1 & =C\left(b_{m}\right)\left(\ldots\left(C\left(b_{1}\right) C(y)\right) \ldots\right) \\
& \leq C\left(b_{m}\right)\left(\ldots\left(C\left(b_{1}\right)\left(C\left(a_{n}\right)\left(\ldots\left(C\left(a_{1}\right) C(x)\right) \ldots\right)\right)\right) \ldots\right)
\end{aligned}
$$

and hence $C\left(b_{m}\right)\left(\ldots\left(C\left(b_{1}\right)\left(C\left(a_{n}\right)\left(\ldots\left(C\left(a_{1}\right)(C(x)) \ldots\right)\right)\right) \ldots\right)=1\right.$. This shows that $x \in U$. Therefore U is an H-filter. Now it is clear that $A \subseteq U$. Let V be any H-filter containing A and let $x \in U$. Then $C\left(a_{n}\right)\left(\ldots\left(C\left(a_{1}\right) C(x)\right) \ldots\right)=1$ for some $a_{1}, \ldots, a_{n} \in A$. Thus

$$
\begin{aligned}
1 & =C\left(a_{n}\right)\left(C\left(a_{n-1}\right)\left(\ldots\left(C\left(a_{1}\right) C(x)\right) \ldots\right)\right) \\
& =C\left(a_{n}\right)\left(C\left(a_{n-1}\right)\left(\ldots\left(C\left(a_{1}\right)(x 0)\right) \ldots\right)\right) \\
& =C\left(a_{n}\right)\left(\left(\left(C\left(a_{n-1}\right)\left(\ldots\left(C\left(a_{1}\right)(x 0)\right) \ldots\right)\right) 0\right) 0\right) \quad[\text { by }(17)] \\
& =C\left(a_{n}\right)\left(C\left(C\left(C\left(a_{n-1}\right)\left(\ldots\left(C\left(a_{1}\right) C(x)\right) \ldots\right)\right)\right)\right),
\end{aligned}
$$

which implies that

$$
C\left(C\left(a_{n}\right)\left(C\left(C\left(C\left(a_{n-1}\right)\left(\ldots\left(C\left(a_{1}\right) C(x)\right) \ldots\right)\right)\right)\right)\right)=C(1)=0 \in V
$$

Noticing $a_{n} \in A \subseteq V$ and V to be an H-filter, we have $C\left(C\left(a_{n-1}\right)\left(\ldots\left(C\left(a_{1}\right) C(x)\right) \ldots\right)\right) \in V$. Now

$$
\begin{aligned}
& C\left(C\left(a_{n-1}\right)\left(\ldots\left(C\left(a_{1}\right) C(x)\right) \ldots\right)\right) \\
& =C\left(C\left(a_{n-1}\right)\left(C\left(a_{n-2}\right)\left(\ldots\left(C\left(a_{1}\right) C(x)\right) \ldots\right)\right)\right) \\
& =C\left(C\left(a_{n-1}\right)\left(C\left(C\left(C\left(a_{n-2}\right)\left(\ldots\left(C\left(a_{1}\right) C(x)\right) \ldots\right)\right)\right)\right)\right) \cdot[\mathrm{by}(17)]
\end{aligned}
$$

Since $a_{n-1} \in A \subseteq V$, it follows from (F2) that $C\left(C\left(a_{n-2}\right)\left(\ldots\left(C\left(a_{1}\right) C(x)\right) \ldots\right)\right) \in V$. Repeating the above argument we conclude that $C(C(x)) \in V$. Since $x \leq C(C(x))$, we have $x \in V$ by Corollary 2.4. This proves that $U \subseteq V$, whence $U=\langle A\rangle$. This completes the proof.

If $A=\left\{a_{1}, \ldots, a_{n}\right\}$, we will denote $\left\langle\left\{a_{1}, \ldots, a_{n}\right\}\right\rangle=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ for the sake of convenience. The following corollary is immediate from Theorem 2.10.
Corollary 2.9. For any $a \in H$, we have

$$
\langle a\rangle=\left\{x \in H \mid C(a)^{n} C(x)=1 \text { for some natural number } n\right\} .
$$

The following theorem shows how to generate an H-filter by given an H-filter and an element.

Theorem 2.10. Let F be an H-filter of H and $a \in H$. Then

$$
\langle F \cup\{a\}\rangle=\left\{x \in H \mid C\left(C(a)^{n} C(x)\right) \in F \text { for some natural number } n\right\} .
$$

Proof. Denote

$$
U=\left\{x \in H \mid C\left(C(a)^{n} C(x)\right) \in F \text { for some natural number } n\right\} .
$$

Since $C\left(C(a)^{n} C(a)\right)=C(1)=0 \in F$, therefore $a \in U$. Let $x \in F$. Since $C(x) \leq$ $C(a) C(x)=C(C(C(a) C(x)))$, it follows from Theorem 2.3 that $C(C(a) C(x)) \in F$ so that $x \in U$. Hence $F \cup\{a\} \subseteq U$. In order to prove that U is an H-filter, let $C(C(y) C(x)) \in U$ and $y \in U$. Then there are natural numbers n and m such that
(19) $C\left(C(a)^{n} C(C(C(y) C(x)))\right) \in F$ and
(20) $C\left(C(a)^{m} C(y)\right) \in F$, respectively.

From (17) it follows that (19) is precisely the following
(21) $C\left(C(a)^{n}(C(y) C(x)) \in F\right.$.
(20) and (21) imply that $C\left(C(a)^{n}(C(y) C(x))=u\right.$ and $C\left(C(a)^{m} C(y)\right)=v$ for some $u, v \in F$. Using (17) we get
(22) $C(a)^{n}(C(y) C(x))=C\left(C\left(C(a)^{n}(C(y) C(x))\right)=C(u)\right.$ and
(23) $C(a)^{m} C(y)=C\left(C\left(C(a)^{m} C(y)\right)\right)=C(v)$.

From (22) we know that $C(y) \leq C(u)\left(C(a)^{n} C(x)\right)$, which implies from (5), (7) and (23) that

$$
C(v)=C(a)^{m} C(y) \leq C(u)\left(C(a)^{m+n} C(x)\right)
$$

Hence

$$
\begin{aligned}
& C(v)\left(C(u)\left(C\left(C\left(C(a)^{m+n} C(x)\right)\right)\right)\right) \\
& =C(v)\left(C(u)\left(C(a)^{m+n} C(x)\right)\right) \quad[\text { by }(17)] \\
& =1
\end{aligned}
$$

Since $u, v \in F$, it follows from Observation 2.9(v) and Theorem 2.10 that

$$
C\left(C(a)^{m+n} C(x)\right) \in F
$$

so that $x \in U$. Clearly, $0 \in U$. Therefore U is an H-filter. Finally let V be an H filter containing F and a. If $x \in U$, then there exists a natural number n such that $C\left(C(a)^{n} C(x)\right) \in F \subseteq V$. Thus, by (17), we have

$$
C\left(C(a)\left(C\left(C\left(C(a)^{n-1} C(x)\right)\right)\right)\right)=C\left(C(a)^{n} C(x)\right) \in V
$$

Combining $a \in V$ and using (F2) we get $C\left(C(a)^{n-1} C(x)\right) \in V$. Repeating the procedure above, we conclude that $C(C(x)) \in V$. It follows from (10) and Corollary 2.4 that $x \in$ V. This proves that $U \subseteq V$. Therefore U is the least H-filter containing F and a, i.e., $\langle F \cup\{a\}\rangle=U$. This completes the proof.

Acknowledgement.

The authors wish to express their sincere thanks to the referees for their kind suggestions to improve this paper.

References

[1] R. Balbes and P. Dwinger, Distributive Lattices, University of Missouri Press, (1974).
[2] D. Busneag, A note on deductive systems of a Hilbert algebra, Kobe J. Math 2, (1985), 29-35.
[3] D. Busneag, Hilbert algebras of fractions and maximal Hilbert algebras of quotients, Kobe J. Math 5, (1988), 161-172.
[4] D. Busneag, Hertz algebras of fractions and maximal Hertz algebras of quotients, Math. Japon 39 , (1993), 461-469.
[5] A. Diego, Sur les algébras de Hilbert, Ed. Hermann, Colléction de Logique Math. 21 , (1966), 1-54.
[6] S. M. Hong and Y. B. Jun, On a special class of Hilbert algebras, Algebra Colloq. 3, (No. 3), (1996), 285-288.
[7] Y. B. Jun, Deductive systems of Hilbert algebras, Math. Japon. 43, (1996), 51-54.
[8] Y. B. Jun, Commutative Hilbert algebras, Soochow J. Math. 22), (No.4)(1996), 477-484.
[9] Y. B. Jun, J. Meng and X. L. Xin, On ordered filters of implicative semigroups, Semigroup Forum 54, (1997), 75-82.

* Department of Mathematics Education, Gyeongsang National University, Chinju 660-701, Korea

E-mail address: ybjun@nongae.gsnu.ac.kr
** Department of Mathematics, Chungju National University, Chungju 380-702, Korea
E-mail address: ghkim@chungju.ac.kr

[^0]: 2000 Mathematics Subject Classification. 03G25, 06F99.
 Key words and phrases. Deductive system, H-filter (generated by a set).

