H-FILTERS OF HILBERT ALGEBRAS

YOUNG BAE JUN* AND KYUNG HO KIM**

Received April 1, 2005; revised April 6, 2005

ABSTRACT. We introduce the concept of Hilbert filter (H-filter, in abbreviation) in Hilbert algebras, and study how to generate an H-filter by a set.

1. INTRODUCTION

Following the introduction of Hilbert algebras by A. Diego [5], the algebra and related concepts were developed by D. Busneag [2 - 4]. The present author [7, 8] gave a characterization of a deductive system in a Hilbert algebra, and introduced the notion of commutative Hilbert algebras and gave some characterizations of a commutative Hilbert algebra. In this paper, we introduce the concept of a Hilbert filter (*H*-filter, in abbreviation) in Hilbert algebras, and study how to generate an *H*-filter by a set. We also discuss how to generate an *H*-filter by an *H*-filter and an element.

We include some elementary aspects of Hilbert algebras that are necessary for this paper, and for more details we refer to [2 - 4] and [5].

A Hilbert algebra is a triple $(H, \rightarrow, 1)$, where H is a nonempty set, " \rightarrow " is a binary operation on $H, 1 \in H$ is an element such that the following three axioms are satisfied for every $x, y, z \in H$:

- (i) $x \to (y \to x) = 1$,
- ii) $(x \to (y \to z)) \to ((x \to y) \to (x \to z)) = 1$,
- (iii) if $x \to y = y \to x = 1$ then x = y.

If *H* is a Hilbert algebra, then the relation $x \leq y$ iff $x \to y = 1$ is a partial order on *H*, which will be called the *natural ordering* on *H*. With respect to this ordering 1 is the largest element of *H*. A *bounded* Hilbert algebra is a Hilbert algebra with a smallest element 0 relative to the natural ordering. In a bounded Hilbert algebra *H* we define a unary operation "*C*" on *H* by $C(x) := x \to 0$ for all $x \in H$.

In a Hilbert algebra H, the following hold:

(1) $x \leq y \rightarrow x$, (2) $x \rightarrow 1 = 1$, (3) $x \rightarrow (y \rightarrow z) = (x \rightarrow y) \rightarrow (x \rightarrow z)$, (4) $1 \rightarrow x = x$, (5) $x \rightarrow (y \rightarrow z) = y \rightarrow (x \rightarrow z)$, (6) $x \rightarrow x = 1$. (7) $x \leq y$ implies $z \rightarrow x \leq z \rightarrow y$ and $y \rightarrow z \leq x \rightarrow z$, (8) C(0) = 1 and C(1) = 0, (9) $x \leq y$ implies $C(y) \leq C(x)$, (10) $x \leq C(C(x))$, (11) $x \rightarrow y \leq (y \rightarrow z) \rightarrow (x \rightarrow z)$,

²⁰⁰⁰ Mathematics Subject Classification. 03G25, 06F99.

Key words and phrases. Deductive system, H-filter (generated by a set).

(12) $x \to y \le C(y) \to C(x),$

(13) $x \le (x \to y) \to y$ and $((x \to y) \to y) \to y = x \to y$.

In the sequel, the binary operation " \rightarrow " will be denoted by juxtaposition.

For any x, y in a Hilbert algebra H, we define $x \lor y$ by (yx)x. Note that $x \lor y$ is an upper bound of x and y.

A Hilbert algebra H is said to be *commutative* ([8, Definition 2.1]) if for all $x, y \in H$,

$$(yx)x = (xy)y$$
, i.e., $x \lor y = y \lor x$.

A subset D of a Hilbert algebra H is called a *deductive system* of H if it satisfies:

- (i) $1 \in D$,
- (ii) $x \in D$ and $xy \in D$ imply $y \in D$.

2. *H*-filters

In the sequel H will denote a bounded Hilbert algebra unless otherwise specified. We begin with the following definition.

Definition 2.1. A non-empty subset F of H is called a *Hilbert filter* (*H*-filter, in abbreviation) if

(F1) $0 \in F$, (F2) $C(C(y)C(x)) \in F$ and $y \in F$ imply $x \in F$, for all $x, y \in H$.

Under this definition $\{0\}$ and H are the simplest examples of H-filters.

Example 2.2. Consider a bounded Hilbert algebra $H := \{1, x, y, z, 0\}$ with Cayley table as follows:

It is easily verified that $F := \{0, y\}$ and $G := \{0, z\}$ are *H*-filters of *H*.

Theorem 2.3. Let F be an H-filter of H and $y \in F$. If $C(y) \leq C(x)$, then $x \in F$ for all $x \in H$.

Proof. If $C(y) \leq C(x)$, then C(y)C(x) = 1 and so $C(C(y)C(x)) = C(1) = 0 \in F$. It follows from (F2) that $x \in F$, ending the proof.

Since $x \leq y$ implies $C(y) \leq C(x)$ by (9), we have the following corollary.

Corollary 2.4. Let F be an H-filter of H and $y \in F$. If $x \leq y$, then $x \in F$ for all $x \in H$.

Lemma 2.5. If H is commutative, then

- (i) C(C(x)C(y)) = C(yx),
- (ii) C(C(x)) = x, for all $x, y \in H$.

232

Proof. (i) From (9) and (12) we know that $C(C(x)C(y)) \leq C(yx)$. Now

$$C(yx)C(C(x)C(y)) = ((yx)0)(((x0)(y0))0)$$

= ((x0)(y0))(((yx)0)0) [by (5)
= (y((x0)0))(((yx)0)0) [by (5)
= (y((0x)x))((0(yx))(yx))[by commutativity

$$= (yx)(yx) = 1,$$
 [by (4) and (6)]

which implies that $C(yx) \leq C(C(x)C(y))$. Hence C(C(x)C(y)) = C(yx).

(ii) Note that $x \lor 0 = (0x)x = 1x = x$ and $0 \lor x = (x0)0 = C(C(x))$. By the commutativity, we have C(C(x)) = x.

If H is commutative, then we have a characterization of an H-filter by using Lemma 2.5(i).

Theorem 2.6. Assume that H is commutative and let F be a non-empty subset of H. Then F is an H-filter if and only if it satisfies (F1) and

(F3) $C(xy) \in F$ and $y \in F$ imply $x \in F$ for all $x, y \in H$.

For a non-empty subset F of H, we define

 $C(F) := \{C(x) | x \in F\}.$

In general, C(F) may not be a deductive system even if F is an H-filter of H. In fact, in Example 2.2, $C(F) = \{1, z\}$ is not a deductive system of H since $zx = 1 \in C(F)$ and $x \notin C(F)$.

Theorem 2.7. Assume that H is commutative. If F is an H-filter, then C(F) is a deductive system of H.

Proof. If F is an H-filter, then $0 \in F$ and so $C(0) = 1 \in C(F)$. Let $x \in C(F)$ and $xy \in C(F)$ for all $x, y \in H$. Then x = C(u) and xy = C(v) for some $u, v \in F$. By using Lemma 2.5(ii), we have

$$C(C(u)C(C(y))) = C(C(u)y) = C(xy) = C(C(v)) = v \in F.$$

It follows from (F2) that $C(y) \in F$ so that $y = C(C(y)) \in C(F)$. This completes the proof.

Observation 2.8 Suppose \mathcal{F} is a non-empty family of *H*-filters of *H*. Then $F = \cap \mathcal{F}$ is also an *H*-filter of *H*.

Let A be a subset of H. The least H-filter containing A is called the H-filter generated by A, written $\langle A \rangle$.

Since H is clearly an H-filter containing A, in view of Observation 2.8 we know that the definition is well-defined. We start with the following.

Observation 2.9. Let A and B be subsets of H. Then the following hold:

(i)
$$\langle \{0\} \rangle = \{0\}, \langle \emptyset \rangle = \{0\}.$$

(ii)
$$\langle H \rangle = H$$
, $\langle \{1\} \rangle = H$.

- (iii) $A \subseteq B$ implies $\langle A \rangle \subseteq \langle B \rangle$.
- (iv) $x \leq y$ implies $\langle \{x\} \rangle \subseteq \langle \{y\} \rangle$.
- (v) if A is an H-filter of H, then $\langle A \rangle = A$.

The next statement gives a description of elements of $\langle A \rangle$.

Theorem 2.8. If A is a non-empty subset of H, then

 $\langle A \rangle = \{ x \in H | C(a_n)(...(C(a_1)C(x))...) = 1 \text{ for some } a_1, ..., a_n \in A \}.$

In order to prove Theorem 2.10 we need the following facts: For any natural number n we define $x^n y$ recursively as follows: $x^1 y = xy$ and $x^{n+1}y = x(x^n y)$. By (5) and induction we know that

- (14) $z(x_n(...(x_1y)...)) = x_n(...(x_1(zy))...).$ As a special case of (14) we get
- $(15) \ z(x^n y) = x^n(zy).$

Now let $a, y, x_1, ..., x_n$ be elements of a Hilbert algebra H. Then

$$\begin{array}{ll} (((x_n(\dots(x_1(ya))\dots))a)a)(x_n(\dots(x_1(ya))\dots)) \\ &= x_n(\dots(x_1(y((((x_n(\dots(x_1(ya))\dots))a)a)))\dots) & [by\ (5)] \\ &= x_n(\dots(x_1(y((x_n(\dots(x_1(ya))\dots))a)))\dots) & [by\ (13)] \\ &= (x_n(\dots(x_1(ya))\dots))(x_n(\dots(x_1(ya))\dots)) & [by\ (5)] \end{array}$$

= 1, [by (6)]

which implies that

$$((x_n(...(x_1(ya))...))a)a \le x_n(...(x_1(ya))...).$$

The reverse inequality follows from (13). Hence we have

(16) $((x_n(...(x_1(y_a))...))a)a = x_n(...(x_1(y_a))...).$

Substituting 0 for a and assuming $x_1 = x_2 = \dots = x_n = x$ in (16), we obtain (17) $C(C(x^n C(y))) = x^n C(y)$.

Proof of Theorem 2.10. Denote

$$U = \{x \in H | C(a_n)(...(C(a_1)C(x))...) = 1 \text{ for some } a_1, ..., a_n \in A\}.$$

We first prove that U is an H-filter. Since A is non-empty, there exists $a \in A$. Then C(a)C(0) = C(a)1 = 1, whence $0 \in U$. Let $C(C(y)C(x)) \in U$ and $y \in U$. Then there exist $a_i \in A$ (i = 1, ..., n) and $b_j \in A$ (j = 1, ..., m) such that

(18) $C(a_n)(...(C(a_1)C(C(C(y)C(x))))...) = 1$ and $C(b_m)(...(C(b_1)C(y))...) = 1$.

It follows from (17) that (18) implies

$$C(a_n)(...(C(a_1)(C(y)C(x)))...) = 1,$$

and so $C(y) \leq C(a_n)(...(C(a_1)C(x))...)$. By using (7) we get

$$1 = C(b_m)(...(C(b_1)C(y))...)$$

$$\leq C(b_m)(...(C(b_1)(C(a_n)(...(C(a_1)C(x))...)))...),$$

and hence $C(b_m)(...(C(b_1)(C(a_n)(...(C(a_1)(C(x))...)))...) = 1$. This shows that $x \in U$. Therefore U is an H-filter. Now it is clear that $A \subseteq U$. Let V be any H-filter containing A and let $x \in U$. Then $C(a_n)(...(C(a_1)C(x))...) = 1$ for some $a_1, ..., a_n \in A$. Thus

$$1 = C(a_n)(C(a_{n-1})(...(C(a_1)C(x))...))$$

= $C(a_n)(C(a_{n-1})(...(C(a_1)(x0))...))$
= $C(a_n)(((C(a_{n-1})(...(C(a_1)(x0))...))0)0)$ [by (17)]
= $C(a_n)(C(C(C(a_{n-1})(...(C(a_1)C(x))...)))),$

which implies that

$$C(C(a_n)(C(C(C(a_{n-1})(...(C(a_1)C(x))...))))) = C(1) = 0 \in V.$$

Noticing $a_n \in A \subseteq V$ and V to be an H-filter, we have $C(C(a_{n-1})(...(C(a_1)C(x))...)) \in V$. Now

$$C(C(a_{n-1})(...(C(a_1)C(x))...))$$

= $C(C(a_{n-1})(C(a_{n-2})(...(C(a_1)C(x))...)))$
= $C(C(a_{n-1})(C(C(C(a_{n-2})(...(C(a_1)C(x))...))))).$ [by (17)]

Since $a_{n-1} \in A \subseteq V$, it follows from (F2) that $C(C(a_{n-2})(...(C(a_1)C(x))...)) \in V$. Repeating the above argument we conclude that $C(C(x)) \in V$. Since $x \leq C(C(x))$, we have $x \in V$ by Corollary 2.4. This proves that $U \subseteq V$, whence $U = \langle A \rangle$. This completes the proof.

If $A = \{a_1, ..., a_n\}$, we will denote $\langle \{a_1, ..., a_n\} \rangle = \langle a_1, ..., a_n \rangle$ for the sake of convenience. The following corollary is immediate from Theorem 2.10.

Corollary 2.9. For any $a \in H$, we have

$$\langle a \rangle = \{ x \in H | C(a)^n C(x) = 1 \text{ for some natural number } n \}.$$

The following theorem shows how to generate an H-filter by given an H-filter and an element.

Theorem 2.10. Let F be an H-filter of H and $a \in H$. Then

 $\langle F \cup \{a\} \rangle = \{x \in H | C(C(a)^n C(x)) \in F \text{ for some natural number } n\}.$

Proof. Denote

$$U = \{x \in H | C(C(a)^n C(x)) \in F \text{ for some natural number } n\}.$$

Since $C(C(a)^n C(a)) = C(1) = 0 \in F$, therefore $a \in U$. Let $x \in F$. Since $C(x) \leq C(a)C(x) = C(C(C(a)C(x)))$, it follows from Theorem 2.3 that $C(C(a)C(x)) \in F$ so that $x \in U$. Hence $F \cup \{a\} \subseteq U$. In order to prove that U is an H-filter, let $C(C(y)C(x)) \in U$ and $y \in U$. Then there are natural numbers n and m such that

- (19) $C(C(a)^n C(C(C(y)C(x)))) \in F$ and
- (20) $C(C(a)^m C(y)) \in F$, respectively.

From (17) it follows that (19) is precisely the following

- (21) $C(C(a)^n(C(y)C(x)) \in F.$ (20) and (21) imply that $C(C(a)^n(C(y)C(x)) = u$ and $C(C(a)^mC(y)) = v$ for some $u, v \in F.$ Using (17) we get
- (22) $C(a)^n(C(y)C(x)) = C(C(C(a)^n(C(y)C(x)))) = C(u)$ and
- (23) $C(a)^m C(y) = C(C(C(a)^m C(y))) = C(v).$

From (22) we know that $C(y) \leq C(u)(C(a)^n C(x))$, which implies from (5), (7) and (23) that

$$C(v) = C(a)^m C(y) \le C(u)(C(a)^{m+n}C(x)).$$

Hence

$$C(v)(C(u)(C(C(C(a)^{m+n}C(x))))) = C(v)(C(u)(C(a)^{m+n}C(x)))$$
 [by (17)]
= 1.

Since $u, v \in F$, it follows from Observation 2.9(v) and Theorem 2.10 that

$$C(C(a)^{m+n}C(x)) \in F$$

so that $x \in U$. Clearly, $0 \in U$. Therefore U is an H-filter. Finally let V be an H-filter containing F and a. If $x \in U$, then there exists a natural number n such that $C(C(a)^n C(x)) \in F \subseteq V$. Thus, by (17), we have

$$C(C(a)(C(C(C(a)^{n-1}C(x))))) = C(C(a)^n C(x)) \in V.$$

Combining $a \in V$ and using (F2) we get $C(C(a)^{n-1}C(x)) \in V$. Repeating the procedure above, we conclude that $C(C(x)) \in V$. It follows from (10) and Corollary 2.4 that $x \in V$. This proves that $U \subseteq V$. Therefore U is the least H-filter containing F and a, i.e., $\langle F \cup \{a\} \rangle = U$. This completes the proof.

Acknowledgement.

The authors wish to express their sincere thanks to the referees for their kind suggestions to improve this paper.

References

- [1] R. Balbes and P. Dwinger, *Distributive Lattices*, University of Missouri Press, (1974).
- [2] D. Busneag, A note on deductive systems of a Hilbert algebra, Kobe J. Math 2, (1985), 29-35.
- [3] D. Busneag, Hilbert algebras of fractions and maximal Hilbert algebras of quotients, Kobe J. Math 5, (1988), 161-172.
- [4] D. Busneag, Hertz algebras of fractions and maximal Hertz algebras of quotients, Math. Japon 39, (1993), 461-469.
- [5] A. Diego, Sur les algébras de Hilbert, Ed. Hermann, Colléction de Logique Math. 21, (1966), 1-54.
- [6] S. M. Hong and Y. B. Jun, On a special class of Hilbert algebras, Algebra Colloq. 3, (No. 3), (1996), 285-288.
- [7] Y. B. Jun, Deductive systems of Hilbert algebras, Math. Japon. 43, (1996), 51-54.
- [8] Y. B. Jun, Commutative Hilbert algebras, Soochow J. Math. 22), (No.4)(1996), 477-484.
- [9] Y. B. Jun, J. Meng and X. L. Xin, On ordered filters of implicative semigroups, Semigroup Forum 54, (1997), 75-82.

 \ast Department of Mathematics Education, Gyeongs ang National University, Chinju 660-701, Korea

E-mail address: ybjun@nongae.gsnu.ac.kr

** DEPARTMENT OF MATHEMATICS, CHUNGJU NATIONAL UNIVERSITY, CHUNGJU 380-702, KOREA *E-mail address*: ghkim@chungju.ac.kr