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Abstract. In this paper we first develop the notion of tensor products for two topo-

logical semigroups and then study this new structure, and get a number of interesting

results in semigroup compactifications. We show that this structure is very different

from other products such as semidirect products, or Sherier products.

1. Introduction

Our main references in this paper are the books [1], [3]. A semigroup S is called a
right [left] topological semigroup if there is a topology on S with s −→ st [s −→ ts] being
continuous. S is called a semitopological [topological] semigroup if (s, t) −→ st is separately
[jointly] continuous. A topological semigroup S is called a topological group if it is a group
and the inverse mapping s −→ s−1 is continuous.

Let S be a topological semigroup. We recall that the pair (ψ,X) is called a semigroup
compactification of S ifX is a compact, Hausdorff right topological semigroup and ψ : S −→
X is a continuous homomorphism such that ψ(S)− = X , ψ(S) ⊆ Λ(X) where Λ(X) = {t ∈
X : s −→ ts ∈ X is continuous}. We say that the compactification (ψ,X) of S has the
left [right] joint continuity property if the mapping (s, x) −→ ψ(s)x [(x, s) −→ xψ(s)] is
continuous.

Following Howie [3], for a relation l on a set X , we write l∞ for l∞ = {ln|n ≥ 1}, where
ln = l ◦ l ◦ . . . ◦ l. Let l be an equivalence relation on a set X . Then the intersecton of all
equivalence relations containing l, is said to be the equivalence generated by l. Following
[3, Lemma 1.4.8], if l is a reflexive relation on X , then l∞ is the smallest transitive relation
on X containing l. We denote [l∪ l−1∪1X ]∞ by le where l−1 = {(y, x)|(x, y) ∈ l} and 1X =
{(x, x)|x ∈ X}, and by [3, Proposition 1.4.9], we have that le is an equivalence generated by
l. So, if l∞ is an equivalence generated by l, then (x, y) ∈ le if and only if, either x = y or,
for some n ∈ N, there is a sequence of translations x = z1 −→ z2 −→ z3 −→ . . . −→ zn = y

such that, for each 1 ≤ i ≤ n − 1, either (zi, zi+1) ∈ l or, (zi+1, zi) ∈ l [3, Proposition
1.4.10].

An equivalence τ on a semigroup S is called a left [right] S-congruence if (x, y) ∈ τ and
s ∈ S, implies (sx, sy) ∈ τ [(xs, ys) ∈ τ ], and is called an S-congruence if it is both a right
and a left S-congruence.

2. Topological S-systems

Let S, T be two topological semigroups with identities andX be a non-empty topological
space. Then X is called a topological left S-system if there is an action (s, x) −→ sx of
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S×X into X which is jointly continuous and s1(s2x) = (s1s2)x, 1Sx = x (s1, s2 ∈ S, x ∈ X).
A topological right S-system is defined similarly. A topological left S-system which is
also a topological right T -system is called a topological (S − T )-bisystem if (sx)t = s(xt)
(s ∈ S, t ∈ T, x ∈ X).

Let X, Y be two topological left S-systems and φ : X −→ Y be a continuous map. We
say that φ is a topological left S-map if φ(sx) = sφ(x)(x ∈ X, s ∈ S). Similarly, we can
define a topological right T -map.

Now, let X be a topological (S−U)-bisystem, Y be a topological (U −T )-bisystem and
Z be a topological (S−T )-bisystem. Then X×Y has the structure of a topological (S−T )-
bisystem (i.e., s1s2(x, y) = s1(s2x, y), 1S(x, y) = (x, y), (x, y)t1t2 = (x, yt1)t2, (x, y)1T =
(x, y), for all s1, s2 ∈ S and t1, t2 ∈ T ). Let X × Y be equipped with the product topology
and β : X×Y −→ Z be a topological (S−T )-map (i.e., β is a topological left S-map and a
topological right T -map). We say that β is a topological bimap if further β(xu, y) = β(x, uy)
(u ∈ U).

Let (ψ,X) be a compactification of S with the left [right] joint continuity property. In
this case we can regard X as a topological left [right] S-system where sx = ψ(s)x [xs =
xψ(s)] (s ∈ S, x ∈ X).

3. The structure of topological tensor products and compactifications

Let S and T be two topological semigroups with identities 1S, 1T , respectively. Let
σ : S −→ T be a continuous homomorphism. Then T can obviously be regarded as a
topological (S − T )-bisystem by s ∗ t = σ(s)t (s ∈ S, t ∈ T ), and S can be regarded as a
topological (S − S)-bisystem where the action of S on S is just its multiplication.

Definition 3.1. Consider S, T and σ as above. Let C be a topological (S − T )-bisystem
and β : S × T −→ C be a topological (S − T )-map. We say that β is a topological σ-bimap
if β(ss′, t) = β(s, σ(s′)t) (s, s′ ∈ S, t ∈ T ).

Definition 3.2. In the situation of Definition 3.1, by a topological tensor product we mean
a pair (P,ψ) where P is a topological (S−T )-bisystem and ψ : S×T −→ P is a topological
σ-bimap such that for every topological (S − T )-bisystem C and every topological σ-bimap
β : S × T −→ C, there exists a unique topological (S − T )- map β̄ : P −→ C such that the
diagram

S × T
ψ−→ P

⏐
⏐
�β ↙β̄

C

commutes.
In the following theorem we prove the existence of the topological tensor product of S

and T with respect to σ, which is denoted by S ⊗σ T .

Theorem 3.3. Let S and T be two topological semigroups with identities and σ : S −→ T

be a continuous homomorphism. Then there is a unique (up to isomorphism) topological
tensor product of S and T .

Proof We regard S × T with the product topology as a topological (S − T )-bisystem.
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Let τ1 be the equivalence relation on S × T generated by

{((ss′, t), (s, σ(s′)t)) : s, s′ ∈ S, t ∈ T }.

Let τ = {(a, b) ∈ (S × T ) × (S × T ) : u, v ∈ S × T, (uav, ubv) ∈ τ1}. By [3, Proposition
1.5.10], τ is the largest congruence on S × T contained in τ1. Now, we denote S×T

τ by
S ⊗σ T and the elements of S×T

τ by s⊗σ t. We use the techniques of [3, Proposition 8.1.8]
to show that if s1 ⊗σ t1 = s2 ⊗σ t2 then s1 = s2 and t1 = t2, or there exist a1, . . . , an−1 ∈ S,
b1, . . . , bn−1 ∈ T , u1, . . . , un, v1, . . . , vn ∈ S (see the introduction) such that

s1 = a1u1, σ(u1)t1 = σ(v1)b1,

a1v1 = a2u2, σ(u2)b1 = σ(v2)b2,(∗)
...

aivi = ai+1ui+1, σ(ui+1)bi = σ(vi+1)bi+1 (i = 2, . . . , n− 2),
...

an−1vn−1 = s2un σ(un)bn−1 = t2.

Let ψ : S× T −→ S⊗σ T be defined by ψ(x, t) = s⊗σ t. We have s1ψ(s2, t1) = ψ(s1s2, t1),
ψ(s1, t1t2) = ψ(s1, t1)t2 and ψ(s1s2, t1) = ψ(s1, σ(s2)t1) for all s1, s2 ∈ S and t1, t2 ∈ T . So
ψ is a topological σ-bimap.

Finally, we show that (S ⊗σ T, ψ) is a topological tensor product of S and T . Let C
be a topological (S − T )-bisystem and β : S × T −→ C be a topological σ-bimap. If we
define β̄ : S ⊗σ T −→ C by β̄(ψ(s, t)) = β(s, t), then β̄ is well defined. By equations (∗) it
is sufficient to find the values of β on generators. So, if s1 ⊗σ t1 = s2 ⊗σ t2, then we have

β(s1, t1) = β(a1u1, t1) = β(a1, σ(u1)t1) = · · · = β(an−1vn−1, bn−1)

= β(s2un, bn−1) = β(s2, σ(un)bn−1) = β(s2, t2).

Since β̄ is a topological (S−T )-map and β̄◦ψ = β, it follows that (S⊗σT, ψ) is a topological
tensor product of S and T .

If (P,ψ) and (P ′, ψ′) are two topological tensor products of S and T , then putting
C = P ′, we can find a unique (S − T )-map β̄ : P −→ P ′ such that β̄ ◦ ψ = ψ′, i.e.,

S × T
ψ−→ P

⏐
⏐
�ψ

′ ↙β̄

P ′

commutes.
Similarly, we can find a unique (S − T )-map ᾱ : P ′ −→ P such that ᾱ ◦ ψ′ = ψ, i.e.,

S × T
ψ′
−→ P ′

⏐
⏐
�ψ ↙ ᾱ

P
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commutes. Thus ᾱ ◦ β̄ ◦ ψ = ψ, i.e.,

S × T
ψ−→ P

⏐
⏐
�ψ ↙ ᾱ ◦ β̄
P

commutes. Hence by the uniquness property ᾱ ◦ β̄ = idP , similarly, β̄ ◦ ᾱ = idP ′ , so P � P ′

(semigroup isomorphism and onto). �

Proposition 3.4. Let S be a right topological semigroup, let R be a congruence on S, and
let the quotient semigroup S/R have the quotient topology. Then the following assertions
hold.

(i) S/R is a right topological semigroup.
(ii) If S is semitopological, then so is S/R.
(iii) If S is a compact right topological (respectively, semitopological, topological) semi-

group and if R is closed (in S × S), then S/R is a compact, Hausdorff, right topological
(respectively, semitopological, topological) semigroup.

Proof See [1, Proposition 1.3.8]. �

Theorem 2.5. Let S and T be two topological semigroups with identities, and σ : S −→ T

be a continuous homomorphism. Then the following assertions hold:

a) S ⊗σ T is a topological semigroup with an identity.

b) If S and T are topological groups, then S ⊗σ T is a topological group.

c) If S and T are compact Hausdorff topological semigroups (groups), then so is S⊗σ T .

Proof a) Clearly, S × T is a topological semigroup with identity. Hence by Theorem
3.4 S ⊗σ T is so as well.

b) It is easy to see that S ⊗σ T is a group whenever S and T are. So, if S and T are
topological groups, then again by Theorem 3.4, S ⊗σ T is a topological group.

c) First, we show that τ (defined in Theorem 3.3) is a closed congruence on S × T .
Let sα −→ s, s′α −→ s′, tα −→ t, t′α −→ t′, and sα ⊗σ tα = s′α ⊗σ t′α. By an argument
similar to the one in the proof of Theorem 3.3, continuity of σ and joint continuity of the
multiplications on S and T imply that s ⊗σ t = s′ ⊗σ t′. So by Theorem 3.4, S ⊗σ T is a
compact, Hausdorff topological semigroup (group). �

Theorem 3.6. Let (ψ1, X1) and (ψ2, X2) be two topological semigroup compactifications
of topological semigroups S and T , respectively. Let σ : S −→ T , η : X1 −→ X2 be two
continuous homomorphisms such that η ◦ ψ1 = ψ2 ◦ σ. Then X1 ⊗η X2 is a topological
semigroup compactification of S ⊗σ T .

Proof If we define the action of S on X1 by (s, x1) −→ ψ1(s)x1, then X1 is a topological
(S−X1)-bisystem. Similarly, X2 is a topological (X2−T )-bisystem, where the action of T on
X2 is defined by (x2, t) −→ x2ψ2(t). Also, the action of X1 on X2 is defined by (x1, x2) −→
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η(x1)x2. By Theorems 3.3 and 3.5, X1 ⊗ηX2 exists and is a compact Hausdorff topological
semigroup and a topological (S−T )-bisystem. Now, let φ1 = ψ1 ×ψ2 : S×T −→ X1 ×X2,
and φ2 : S × T −→ S ⊗σ T be a topological σ-bimap and φ3 : X1 × X2 −→ X1 ⊗η X2

be a topological η-bimap. We first observe that φ3 ◦ φ1 is a topological (S − T )-map. Let
s, s′ ∈ S and t, t′ ∈ T . Indeed

φ3 ◦ φ1(ss′, t) = φ3(ψ1(ss′), ψ2(t)) = φ3(ψ1(s)ψ1(s′), ψ2(t))

= ψ1(s)φ3(ψ1(s′), ψ2(t)) = ψ1(s)(φ3 ◦ φ1(s′, t)).

Similarly, φ3 ◦ φ1(s, tt′) = (φ3 ◦ φ1(s, t))ψ2(t′). Moreover, we have:

φ3 ◦ φ1(ss′, t) = φ3(ψ1(s)ψ1(s′), ψ2(t))

= φ3(ψ1(s), [η ◦ ψ1(s′)]ψ2(t))

= φ3(ψ1(s), [ψ2 ◦ σ(s′)]ψ2(t))

= φ3(ψ1(s), ψ2(σ(s′)t))

= φ3 ◦ φ1(s, σ(s′)t).

Obviously, φ3 ◦φ1 is continuous, thus φ3 ◦φ1 is a topological σ-bimap. Now by the universal
property of topological tensor products, there is a topological (S − T )-map β̄ : S ⊗σ T −→
X1 ⊗η X2, we have

[β̄(S ⊗σ T )]− = [β̄(φ2(S × T ))]− = [φ3(φ1(S × T ))]− ⊇ φ3(φ1(S × T )−)

= φ3(X1 ×X2) = X1 ⊗η X2.

Also,

[β̄(S ⊗σ T )] = β̄(φ2(S × T )) = φ3(φ1(S × T ))

= φ3(ψ1(S) × ψ2(T )) ⊆ φ3(Λ(X1) × Λ(X2))

= φ3(Λ(X1 ×X2)) = Λ(φ3(X1 ×X2))

= Λ(X1 ⊗η X2).

Clearly β̄ is a continuous homomorphism, since φ1, φ2, φ3 are so. Therefore, X1 ⊗η X2 is a
compactification of S ⊗σ T . Note that X ⊗η X2 is in fact the topological tensor product of
X1 and X2 with respect to η. �

Corollary 3.7. Let (εi, SFi

i ) (i = 1, 2) be two canonical compacitifications of topological
semigroups Si such that SFi

i is a topological semigroup. Let σ : S −→ T be a cotinuous
homomorphism such that σ∗(F2) ⊆ F1. Then SF1

1 ⊗η SF2
2 exists and is a compactification

of S ⊗σ T . �

4. The spaces of functions on topological tensor products

Theorem 4.1. Let S and T be two topological semigroups with identities, and σ : S −→ T

be a continuous homomorphism. Then (S ⊗σ T )ap � Sap ⊗η T ap.

Proof Let (εS⊗σT , (S⊗σT )ap), (εS , Sap) and (εT , T ap) be topological ap-compactifications
of S⊗σT , S and T respectively. By Theorem 3.6, (δS⊗σT , S

ap ⊗η T ap) is a topological semi-
group compactification of S ⊗σ T .
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The universal property of the ap-compactification (εS⊗σT , (S ⊗σ T )ap) of S ⊗σ T [1,
Theorem 1.4.10] gives a continuous homomorphism φ : (S ⊗σ T )ap −→ Sap ⊗η T ap such
that the following diagram

S ⊗σ T εS⊗σT−→ (S ⊗σ T )ap
⏐
⏐
�δS⊗σT ↙φ

Sap ⊗η T ap
commutes.

Also, since (εS × εT , (S × T )ap) is a topological semigroup compactification of S × T

via the homomorphism θ : S × T
π1−→ S ⊗σ T εS⊗σT−→ (S ⊗σ T )ap, there is a continuous

homomorphism φ1 : (S × T )ap −→ (S ⊗σ T )ap such that the diagram

S × T
θ−→ (S ⊗σ T )ap

⏐
⏐
�εS×εT ↗φ1

(S × T )ap

commutes. On the other hand (S × T )ap � Sap × T ap [2], [4], [1, Theorem 5.2.4]. Thus we
can assume (up to isomorphism), φ1 : Sap × T ap −→ (S ⊗ T )ap. By equations (∗) in the
proof of the Theorem 3.3 it is sufficient to apply φ1 to generators. Indeed, if vv′ ⊗η µ =
v ⊗η η(v′)µ (v, v′ ∈ Sap, µ ∈ T ap), we can get nets {sα}, {s′β} in S and {tγ} in T such that
limα εS(sα) = v, limβ εS(sβ) = v′, limγ εT (tγ) = µ. Thus

φ1(vv′ ⊗η µ) = φ1( lim
α,β,γ

εS × εT (sαsβ , tγ))

= lim
α,β,γ

φ1(εS × εT (sαsβ , tγ))

= lim
α,β,γ

εS⊗σT (π1(sαsβ , tγ))

= lim
α,β,γ

εS⊗σT (sα, σ(sβ)tγ)

= φ1( lim
α,β,γ

εS × εT (sα, σ(sβ)tγ)

= φ1(v ⊗η η(v′)µ).

Now by an argument similar to equations (∗) of Theorem 3.3 one can get that φ1 preservers
congruence. So there exists a continuous homomorphism φ2 : Sap ⊗η T ap −→ (S ⊗σ T )ap

such that the diagram
Sap × T ap

φ1−→ (S ⊗σ T )ap
⏐
⏐
�π2 ↗φ2

Sap ⊗η T ap
commutes. But φ ◦ φ2 is the identity on Sap ⊗η T ap, for, if u ⊗η v ∈ Sap ⊗η T ap, then we
can find a net {sα} in S and a net {tβ} in T such that εS(sα) −→ u, εT (tβ) −→ v. Now

φ ◦ φ2(u⊗η v) = φ ◦ φ2(π2(u, v)) = φ(φ1(u, v))

= lim
α,β

φ(φ1(εS × εT (sα, tβ)) = lim
α,β

φ ◦ θ(sα, tβ)

= lim
α,β

φ(εS⊗σT (sα ⊗σ tβ)) = lim
α,β

δS⊗σT (sα ⊗σ tβ)

= u⊗η v.
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So (S ⊗σ T )ap � Sap ⊗η T ap. �

Theorem 3.2. Let S and T be two topological semigroups with identities, and σ : S −→ T

be a continuous homomorphism. Then (S ⊗σ T )sap � Ssap ⊗η T sap.

Proof Since (εS⊗σT , (S ⊗σ T )sap) is a universal topological group compactification of
S⊗σ T [1, Theorem 4.3.7], an argument similar to that for Theorem 4.1 (using the universal
property of the topological group compactification (S ⊗σ T )sap, Ssap, T sap, (S × T )sap

and the universal property of the topological tensor product) shows that (S ⊗σ T )sap �
Ssap ⊗η T sap. �

Example 1 (Absorption property). Let T be a topological commutative semigroup with
identity and let S be a topological subsemigroup of T containing the identity, and σ : S −→ T

be a continuous homomorphism. We consider the left [right] action of S on T by (s, t) −→
σ(s)t [(t, s) −→ tσ(s)]. Clearly, S and T are topological (S − S)-bisystems. Then τ =
{((s1s2, t), (s1, σ(s2)t)) : s1, s2 ∈ S, t ∈ T } is a congruence on S × T . We define ψ :
S ⊗σ T −→ T by ψ(s ⊗σ t) = σ(s)t. Then ψ is a surjective continuous homomorphism.
Also, ψ is one-to-one. For, if ψ(s1 ⊗σ t1) = ψ(s2 ⊗σ t2), then σ(s1)t1 = σ(s2)t2. Now
s1 ⊗σ t1 = 1S ⊗σ σ(s1)t1 = 1S ⊗σ σ(s2)t2 = s2 ⊗σ t2. Thus S ⊗σ T � T .

Example 2. Let S be a topological semigroup with identity such that every member of S
is uniquely expressible. Let σ = idS : S −→ S. Now, by the equations (∗) in the proof of
Theorem 3.3, if s1 ⊗σ s2 = s3 ⊗σ s4, then s1 = s2 and s3 = s4 (s1, s2, s3, s4 ∈ S). Thus
S ⊗σ S = {(s1, s2) : s1, s2 ∈ S}, i.e., S ⊗σ S = S × S.

Example 3. Let S = (R,+) and σ = idR : R −→ R. Then we can find a1, . . . , an−1, b1, . . . , bn−1,

u1, . . . , un, v1, . . . , vn in R such that for every (s1, t1) ∈ R × R and (s2, t2) ∈ R × R we
have s1 ⊗σ t1 = s2 ⊗σ t2. Thus R ⊗σ R = s⊗σ t (s, t ∈ R).

Note. The above example shows that our tensor product is very different from other prod-
ucts. In fact R�R ∼= R × R, where R�R is the semidirect product of R and R. While
R ⊗σ R = s⊗σ t is just one equivalence class. So it is different from Sherier product [5].

Acknowledgement. We would like to thank the referee for his careful reading of the
manuscript and giving useful comments.

References

[1] J. F. Berglund, H. D. Junghenn and P. Milnes, ‘Analysis on Semigroups: Function
spaces, Compactifications, Representations’, John Wiley& Sons, New York (1989).

[2] K. de Leeuw and I. Glicksberg, ‘Almost periodic functions on semigroups’, Acta Math.
105 (1961b), 99-104.

[3] J. M. Howie, ‘Fundamentals of Semigroup Theory’, Clarendon Press, Oxford (1995).



230 A.R. MEDGHALCHI - H.R. RAHIMI

[4] P. Milnes, ‘Almost periodic compactifications of direct and semidirect products’, Coll.
Math. 44 (1981), 125-136.

[5] W. R. Scott, “Group Theory”, Prentice Hall. Englewood Cliffs, New Jersey (1964).

Faculty of Mathematical Science and Computer Engineering,

Teacher Training University, 599 Taleghani Ave., Tehran 15614, Iran.

medghalchi@saba.tmu.ac.ir

Department of Mathematics, Faculty of Science,

Islamic Azad University (Central Tehran Branch), Tehran-Iran

h rahimi2004@yahoo.com


