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GOLDEN TRISECTION NUMBERS AND TWO-PLAYER GAME OF
KEEP-OR-EXCHANGE

MINORU SAKAGUCHI
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Abstract. A two-player game of Keep-or-Exchange, in which players aim to get the
higher score than the opponent in the game, from one, two or three chances of sampling.
The game is investigated as a continuous game on the unit square. It is shown that
there exists a common optimal strategy for the players which would be called “golden
trisection strategy”. Related two other interesting games are also discussed.

1 Two-player Game of “Keep-or-Exchange”. Consider the two players I and II
(sometimes they are denoted by 1 and 2). I(II) observes the sequence of random variables
X1, X2, · · · , Xn(Y1, Y2, · · · , Yn) one-bye-one sequentially. We assume that Xi’s and Yi’ s are
i.i.d., each with uniform distribution in [0, 1]. I(II) chooses his or her decreasing sequence
of decision levels

1 ≡ a
(n)
0 > a

(n)
1 > a

(n)
2 > · · · > a

(n)
n−1 > a(n)

n ≡ 0(1.1)

(1 ≡ b
(n)
0 > b

(n)
1 > b

(n)
2 > · · · > b

(n)
n−1 > b(n)

n ≡ 0)

so that

I accepts (rejects) Xi = x, if x > (<)a(n)
i(1.2)

II accepts (rejects) Yi = y, if y > (<)b(n)
i

Note taht each player should accept the last random variable (r.v.) if all of his past n − 1
r.v.s are rejected, since a

(n)
n = b

(n)
n = 0. Choices of one player’s decision levels are made

independently of the rival’s. The game ends as soon as both of the players accept their
r.v.s.

Define the score for player I by

S1(X1, · · · , Xn) =

⎧⎨
⎩

X1,
Xt if

⎧⎨
⎩

X1 is accepted,
X1, X2, · · · , Xt−1 are rejected

and Xt is accepted.
(1.3)

The score S2(Y1, · · · , Yn), for player II, is defined similarly, with Xi’s replaced by Yi’s.
After the play is over (i.e., each player accepts the observed value of his r.v.), the scores
are compared, and the player with the higher score than his opponent becomes the winner.
Each player aims to maximize the probability of his winning. The game is called “Keep-
or-Exchange”. Here, Keep is, in other words, “Accept” or “Stop”. Exchange is “Reject” or
“Continue”.
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Rejection (or Exchange) in (1.2) entails some extent of disadvantage, since the event
for example, a

(n)
i > Xi > Xi+1 > a

(n)
i+1 which occurs with positive probability, decreases I’s

winning probability. The situation, however, is the same for his rival II.
Let Wi(i = 1, 2) be the event that player i wins. Also let P (Wi) ≡ Mi(a(n),b(n)), i =

1, 2, be the winning probability for player i, if I and II choose the strategies a(n) ≡
(a(n)

1 , a
(n)
2 , · · · , a

(n)
n−1) and b(n) ≡ (b(n)

1 , b
(n)
2 , · · · , b

(n)
n−1), respectively. Since “draw” (i.e.,

the event that there exist no winner) is impossible, we have
∑

i=1,2

P (Wi) = 1.

When n is 2, we already have Ref.[3 ; Theorem 2].

Theorem 1 Solution to the two-player game of “Keep-or-Exchange” (1.1) ∼ (1.3) when n

is 2 is as follows. The game has a unique saddle point (a(2)
1 , b

(2)
1 ) = (g, g), and the saddle

value M1(g, g) = M2(g, g) =
1
2
, where g =

1
2
(
√

5− 1) ≈ 0.61803 is a unique root in [0, 1] of
the equation

g2 + g = 1.(1.4)

The ratio ḡ/g = g = 1/g−1 ≈ 1/1.61804 is called the “golden ratio”, a mark of beauty
in the history of art.

The main purpose of the present paper is to find the solution to the two-player game
of “Keep-or-Exchange” when n is 3. Let denote a(3) and b(3), simply by a(3) = (a1, a2)
and b(3) = (b1, b2), respectively. It is shown by Theorem 2 in Section 2 that the game has
value 1/2 and a unique saddle point (b0

1, b
0
2), which is the unique root in the unit diagonal

1 > b1 > b2 > 0 of a simultaneous third-order algebraic equations. Considering Theorems
1 and 2 together, we would call (b0

1, b
0
2) the “golden trisection numbers”. We pass over an

unrest that whether do people feel the trisection ratio (b0
1 − b0

2) : (1 − b0
1) : b0

2 as beautiful.
In Section 3, two remarks are given. One is about another kind of Keep-or-Exchange game
which has a different type of optimal strategies. The other is about the game of “Risky
Exchange”, when n is 3, which is more difficult to solve, since the game has a positive
probability of draw and so becomes non-constant-sum. A sketch of deriving the solution is
shown.

2 Solution to the Game of “Keep-or-Exchange”, when n is 3. First we note that
P (draw) = 0,

∑
i=1,2

Mi(a1, a2, b1, b2) = 1 and if ai = bi, i = 1, 2, then

M1(a1, a2, , b1, b2) = 1/2, ∀1 ≥ a1 ≥ a2 ≥ 0(2.1)

by symmetry of the two players’ roles.
Let pRRA−RRA be the winning probability for I, when the play proceeds X1 < a1 and

X2 < a2 for I, and Y1 < b1, Y2 < b2 for II. Let pRA−A be the winning probability for I, when
the play proceeds X1 < a1, X2 > a2 for I and Y1 > b1 for II. The other seven probabilities
pRRA−RA, pRRA−A etc., are defined similarly. Then we find that

P (W1) ≡ M1(a1, a2, b1, b2)(2.2)
= pRRA−RRA + pRRA−RA + (other seven probabilities)

and

pRRA−RRA = P{X1 < a1, X2 < a2, Y1 < b1, Y2 < b2, X3 > Y3} =
1
2
a1a2b1b2,(2.3)
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pRRA−RA = a1a2b1P{X3 > Y2 > b2} =
1
2
a1a2b1b̄

2
2 ,(2.4)

pRRA−A = a1a2P{X3 > Y1 > b1} =
1
2
a1a2b̄

2
1 ,(2.5)

pRA−RRA = a1b1b2P{X2 > a2 ∨ Y3} =
1
2
a1b1b2(1 − a2

2),(2.6)

pRA−RA = a1b1P{X2 > a2, Y2 > b2, X2 > Y2}(2.7)

=
1
2
a1b1{b̄ 2

2 − (a2 − b2)2I(a2 > b2)},

pRA−A = a1P{X2 > a2, Y1 > b1, X2 > Y1} =
1
2
a1{b̄ 2

1 − (a2 − b1)2I(a2 > b1)},(2.8)

(where I(e) is the indicator of the event e),
and finally

pA−RRA = b1b2P{X1 > a1 ∨ Y3} =
1
2
b1b2(1 − a2

1),(2.9)

pA−RA = b1P{X1 > a1, X1 > Y2 > b2} =
1
2
b1{b̄ 2

2 − (a1 − b2)2I(a1 > b2)},(2.10)

pA−A = P{X1 > a1, X1 > Y1 > b1} =
1
2
{b̄ 2

1 − (a1 − b1)2I(a1 > b1)}.(2.11)

Summing these nine equations (2.3) ∼ (2.11), we have from (2.2),

P (W1) =
1
2
a1a2(b1b2 + b1b̄

2
2 + b̄ 2

1 )(2.12)

+
1
2
a1

[
b1b2(1 − a2

2) + b1

{
b̄ 2
2 − (a2 − b2)2I(a2 > b2)

}
+
{
b̄ 2
1 + (a2 − b1)2I(a2 > b1)

}]
+

1
2
[
b1b2(1 − a2

1) + b1

{
b̄ 2
2 − (a1 − b2)2I(a1 > b2)

}
+
{
b̄ 2
1 − (a1 − b1)2I(a1 > b1)

}]
We make sure that Eqs (2.3) ∼ (2.11) do not involve any error, by showing that, if

ai = bi, i = 1, 2, then Eq.(2.1) holds true. This is easy since (2.12) becomes

P (W1) =
1
2
a1a2(a1a2 + a1ā

2
2 + ā 2

1 )(2.13)

+
1
2
a1

{
a1a2(1 − a2

2) + a1ā
2

2 + ā 2
1

}
+

1
2
[
a1a2(1 − a2

1) + a1

{
ā 2
2 − (a1 − a2)2

}
+ ā 2

1

]

which is found, after some effort of simplification, to be equal to
1
2
, ∀1 ≥ a1 ≥ a2 ≥ 0.
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Now we prove

Lemma 2.1 Assume that a1 = b1. Then both of max
a2∈[0,a1]

P (W1|1 > b1 > b2 > 0) and

min
b1∈[0,b1]

P (W1|1 > a1 > a2 > 0) are attained at

a∗
2 = b∗2 =

1
2

{√
4b−1

1 − 3 + 4b1 − 1
}

,(2.14)

if a1 = b1 ∈ (b∗1, 1], where b∗1(≈ 0.6825) is a unique root in [0, 1] of the cubic equation

b3 + b − 1 = 0.(2.15)

From Eq.(2.14), we see that, if b1 = 1, then a∗
2 = b∗2 = g =

1
2
(
√

5 − 1) ≈ 0.61803, the
golden bisection number.

Proof. We try to find I’s optimal a2 ∈ [0, a1), when we fix 1 > b1 > b2 > 0.
Since the third term of Eq.(2.12) does not involve a2, we have

∂

∂a2
P (W1|1 > b1 > b2 > 0) =

1
2
b1(b1b2 + b1b̄

2
2 + b̄ 2

1 ) − b2
1b2a2(2.16)

+
{

0, if 0 < a2 < b2

−b2
1(a2 − b2), if b2 < a2 < b1.

The r.h.s. is decreasing in 0 < a2 < b1 = a1 and equals zero at a2 = b2, i.e.,

1
2
b1(b1b2 + b1b̄

2
2 + b̄ 2

1 ) − b2
1b

2
2 = 0

or
b2
2 + b2 − (b−1

1 − 1 + b1) = 0

and hence

b2 =
1
2

{√
4b−1

1 − 3 + 4b1 − 1
}

.(2.17)

Therefore the restriction 1 > b1 > b2 > 0 requires that√
4b−1

1 − 3 + 4b1 < 2b1 + 1 (and so b3
1 + b1 − 1 > 0),

or equivalently b1 ∈ (b∗1, 1], where b∗1 ≈ 0.6825 is a unique root in [0, 1] of the cubic equation
(2.15).

Next we try to find II’s optimal b2 ∈ [0, b1) when we fix 1 > a1 > a2 > 0. From (2.12)
we find that

∂

∂b2
P (W1|1 > a1 > a2 > 0)(2.18)

=
1
2
a1a2(b1 − 2b1b̄2) +

1
2
a1b1

{
(1 − a2

2) − 2b̄2 + 2(a2 − b2)I(a2 > b2)
}

+
1
2
b1

[
(1 − a2

1) − 2b̄2 + 2(a1 − b2)I(a1 > b2)
]

=
1
2
a2
1a2(1 − 2b̄2) +

1
2
a2
1(1 − a2

2 − 2b̄2) +
1
2
a1(1 − a2

1 − 2b̄2)

+
{

a2
1(a2 − b2) + a1(a1 − b2), if 0 < b2 < a2

a1(a1 − b2), if a2 < b2 < a1
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(from our assumption that a1 = b1)

The r.h.s. is increasing in 0 < b2 < b1(= a1), since the sum of the coefficients of b2 terms
equals a2

1a2 if 0 < b2 < a2 and a2
1(1+a2) if a2 < b2 < a1, and this is equal to zero at b2 = a2

i.e.,
1
2
b2
1b2(1 − 2b̄2) +

1
2
b2
1(1 − b2

2 − 2b̄2) +
1
2
b1(1 − b2

1 − 2b̄2) + b1(b1 − b2) = 0

which, when simplified, becomes Eq.(2.17) again. �

Lemma 2.2 Assume that a2 = b2. Then both of max
a1∈[a2,1]

P (W1|1 > b1 > b2 > 0) and

min
b1∈[b2,1]

P (W1|1 > a1 > a2 > 0) are attained at

a∗
1 = b∗1 =

1
2(1 + b2)

{√
4b2

2 + 8b2 + 5 − 1
}

,(2.19)

if a2 = b2 ∈ [0, b∗2), where b∗2(≈ 0.7546) is a unique root in [0, 1] of the cubic equation

b3 + b2 − 1 = 0.(2.20)

Note that Eq.(2.19) gives a∗
1 = b∗1 = g =

1
2
(
√

5 − 1), if b2 = 0.

Proof. We try to find I’s optimal choice of a1 ∈ [a2, 1] when we fix 1 > b1 > b2 > 0. From
(2.12), we have

∂

∂a1
P (W1|1 > b1 > b2 > 0)(2.21)

=
1
2
a2(b1b2 + b1b̄

2
2 + b̄ 2

1 )

+
1
2
[
b1b2(1 − a2

2) + b1

{
b̄ 2
2 − (a2 − b2)2I(a2 > b2)

}
+
{
b̄ 2
1 − (a2 − b1)2I(a2 > b1)

}]
− [b1b2a1 + b1(a1 − b2)I(a1 > b2) + (a1 − b1)I(a1 > b1)]

=
1
2
[
b2(b1b2 + b1b̄

2
2 + b̄ 2

1 ) +
{
b1b2(1 − b2

2) + b1b̄
2

2 + b̄ 2
1

}]− b1b2a1

−
{

b1(a1 − b2), if b2 < a1 < b1

b1(a1 − b2) + (a1 − b1), if b1 < a1 < 1.

(since a2 = b2 and I(a2 > b2) = I(a2 > b1) = 0)

The r.h.s. is decreasing in (a2 =)b2 < a1 < 1, and equals zero at a1 = b1 i.e.,

1
2
[
b2(b1b2 + b1b̄

2
2 + b̄ 2

1 ) +
{
b1b2(1 − b2

2) + b1b̄
2

2 + b̄ 2
1

}]− b2
1b2 − b1(b1 − b2) = 0.

This equation becomes, after simplification,

b2
1 + (1 + b2)−1b1 − 1 = 0,

or

b1 =
1

2(1 + b2)

{√
4b2

2 + 8b2 + 5 − 1
}

.(2.22)
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Therefore the restriction 1 > b1 > b2 > 0 requires that

2b2
2 + 2b2 + 1 <

√
4b2

2 + 8b2 + 5 (and so b3
2 + b2

2 − 1 < 0),

or equivalently b2 ∈ [0, b∗2), where b∗2 ≈ 0.7546 is a unique root of Eq.(2.20).
Next we try to find II’s optimal b1 ∈ (b2, 1] when we fix 1 > a1 > a2 > 0.
From (2.12) we find that

∂

∂b1
P (W1|1 > a1 > a2 > 0)(2.23)

=
1
2
a1a2(b2 + b̄ 2

2 − 2b̄1)

+
1
2
a1

[
b2(1 − a2

2) +
{
b̄ 2
2 − (a2 − b2)2I(a2 > b2)

} − 2b̄1 + 2(a2 − b1)I(a2 > b1)
]

+
1
2
[
b2(1 − a2

1) +
{
b̄ 2
2 − (a1 − b2)2I(a1 > b2)

} − 2b̄1 + 2(a1 − b1)I(a1 > b1)
]

=
1
2
[
(a1a2 + a1 + 1)(1 − b2 + b2

2) − a1a
2
2b2 − a2

1b2 − (a1 − b2)2
]

−b̄1(a1a2 + a1 + 1) +
{

a1 − b1, if b2 < b1 < a1

0, if a1 < b1 < 1.

(since a2 = b2, I(a2 > b2) = I(a2 > b1) = 0 and I(a1 > b2) = 1)

The r.h.s. is increasing in (a2 =)b2 < b1 < 1, since the sum of coefficients of b1 is
(a1a2 + a1 + 1) − 1 = a1(1 + a2) > 0. And this is equal to zero at b1 = a1 i.e.,

1
2
[
(1 − b2 + b2

2)(b1b2 + b1 + 1) − {b1b
3
2 + b2

1b2 + (b1 − b2)2
}]− b̄1(b1b2 + b1 + 1) = 0,

which becomes, after some effort of simplification,

b2
1 + (1 + b2)−1b1 − 1 = 0,

that is, Eq.(2.22) again. �

Considering symmetry for the two players and combining Lemmas 2.1 and 2.2 we obtain

Theorem 2 Solution to the two-player game of “Keep-or-Exchange” (1.1) ∼ (1.3), when n
is 3, is as follows. The game has a unique saddle point (a(3)

1 , a
(3)
2 , b

(3)
1 , b

(3)
2 ) = (b0

1, b
0
2, b

0
1, b

0
2),

where (b0
1, b

0
2) ≈ (0.743, 0.657) is a unique root in the triangle 0 < b2 < b1 < 1 of the

simultaneous equation

b2 =
1
2

{√
4b−1

1 − 3 + 4b1 − 1
}

(in Lemma 2.1)(2.14)

b1 =
1

2(1 + b2)

{√
4b2

2 + 8b2 + 5 − 1
}

(in Lemma 2.2)(2.17)

The values of the game are 1/2, 1/2.
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Proof. We have to show that Eqs (2.14)-(2.17) has the stated unique root. In the triangle
0 < b2 < b1 < 1, Eq.(2.14) is a convex decreasing function in b1 ∈ (b∗1, 1] connecting the
two points (b∗1, b

∗
1) and (1, g). And Eq.(2.17) is a concave increasing function in b2 ∈ [0, b∗2)

connecting the two points (b1, b2) = (g, 0) and (b∗2, b
∗
2). Here, b∗1 ≈ 0.6825 and b∗2 ≈ 0.7546

are given by (2.15) and (2.20), respectively. Therefore a unique root (b0
1, b

0
2) exists in the

triangle 0 < b2 < b1 < 1, and a rough computation gives b0
1 ≈ 0.743 and b0

2 ≈ 0.657. �

As was mentioned in Section 1, when we compare Theorem 2 with Theorem 1, we would
call (b0

1, b
0
2) the golden trisection numbers. We, however, pass over some unrest, whether do

people feel the trisection ratio (1−b0
1) : (b0

1−b0
2) : b0

2 ≈ 0.257 : 0.086 : 0.657 ≈ 1 : 0.335 : 2.556
is beautiful. A more reasonable understanding may be as follows. In the game of Keep-
or-Exchange, an intelligent player would choose his decision levels greater than 1/2 since
EX = EY = 1/2 (a direct proof will be needed). If we consider the strategy space, the

one-fourth of the unit square (i.e.,
1
2
≤ a, b ≤ 1), then the player’s common decision level(s)

has the ratio

ḡ : (g − 1
2
) ≈ 0.382 : 0.118 ≈ 1 : 0.309

when n is 2, by Theorem 1; and

(1 − b0
1) : (b0

1 − b0
2) : (b0

2 −
1
2
) ≈ 0.257 : 0.086 : 0.157 ≈ 1 : 0.335 : 0.611

when n is 3, by Theorem 2.
An ingenious work by Mazalov (Ref.[1]) in 1996 gave the same result by using dynamic

programming (DP). The optimality equation is

Vi(x|b) = h(x|b) ∨ EVi+1(X |b), (i = 1, 2, · · · , n; Vn+1(x|b) ≡ 0)(2.24)

where

h(x|b) =
n∑

j=1

b1b2 · · · bj−1(x − bj)I(x > bj)(2.25)

is I’s winning probability if he stops when Xi = x. He shows that a∗
i = b∗i , i = 1, 2, · · · , n−

1, and these values satisfy the system of equations

n∑
j=1

(
j−1∏
k=0

bk

)[
1 − 2(bj ∨ bi) + (bj ∨ bi+1)2

]
= 0, i = 1, 2, · · · , n − 1.(2.26)

This system gives
b2
1 + b1 − 1 = 0

i.e., (1.4), where n is 2, and {
b2
2 + b2 − (b−1

1 − 1 + b1) = 0,
b2
1 + (1 + b2)−1b1 − 1 = 0

i.e., (2.17)-(2.22), when n is 3.
Mazalov’s work shows a wonderful effect of applying DP to n-stage dynamic games. The

present author feels that the routine procedure to derive Theorem 2 without using DP has
yet an instructive worth.
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3 Remarks.

Remark 1. Consider the one-player version of the Keep-or-Exchange game, when n is 3,
where player aims to maximize his expected score. Let v(n) be the optimal expected score.
Then the equation

v(n) = E
[
X ∨ v(n−1)

]
, (n = 1, 2, · · · , v(1) = 1/2)

gives the optimal decision levels (1 >)v(3) ≈ 0.695 > v(2) = 5/8 = 0.625(> 0).
Remark 2. If the players are restricted to choosing a

(3)
1 = a

(3)
2 (= a) and b

(3)
1 = b

(3)
2 (= b).

Then the solution to the game becomes different. We prove

Theorem 3 If the player’s choices of decision levels are restricted by a
(3)
1 = a

(3)
2 = a

and b
(3)
1 = b

(3)
2 = b, then the solution is as follows. The game has a unique saddle point

(a, b) = (b0, b0), where b0 ≈ 0.728 is a unique root in [0, 1] of the fourth-order algebraic
equation

b4 + b3 + 2b2 − b − 1 = 0.(3.1)

The saddle value of the game is 1/2.

Proof. By substituting a1 = a2 and b1 = b2 into Eq.(2.12). collecting terms and simplify-
ing, we get

2P (W1) =
[−a3b2 + (1 − b − b2 + b3)a2 + (1 + a)(1 − b + b3)

]
(3.2)

−(ab − a + b + 1)(a − b)2I(a > b).

2
∂

∂a
P (W1) = −3a2b2 + 2a(1 − b)(1 − b2) + 1 − b + b3(3.3)

+
{

0, if a < b
(3 − b)(a − b)2 − 2(a − b)(ab + 1), if a > b

2
∂

∂b
P (W1) = −2a3b + (3b2 − 2b − 1)a2 + (1 + a)(3b2 − 1)(3.4)

+
{

0, if a < b
−(3 + a)(a − b)2 + 2(a − b)(ab + 1), if a > b

Both of
[

∂

∂a
P (W1)

]
a=b

= 0 and
[

∂

∂b
P (W1)

]
a=b

= 0 give the same equation (3.1). There-

fore, if b0 ≈ 0.728 is determined by Eq.(3.1), then we find that

P (W1|0, b0) = P (W1|1, b0) =
1
2
(1 − b0 + b3

0) ≈ 0.3289 < 1/2,(3.5)

[
∂

∂a
P (W1|a, b0)

]
a=0

=
1
2
(1 − b0 + b3

0) > 0 >

[
∂

∂a
P (W1|a, b0)

]
a=1

(3.6)

= b3
0 + b2

0 − 5b0 + 2 ≈ −0.7242.

∂2P (W1|a, b0)
∂a2

=
{ −3ab2

0 + (1 − b0)(1 − b2
0), if a < b0

−3a(b2
0 + b0 − 1) + b0(b2

0 + b0 − 4) < 0, if a > b0
(3.7)
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Hence P (W1|a, b0) is, as a function of a ∈ [0, 1], increasing and convex-concave for

0 < a < b0 (with the point of inflexion a =
(1 − b0)(1 − b2

0)
3b2

0

≈ 0.0804), P (W1|b0, b0) =
1
2
,

and decreasing, concave for b0 < a < 1. So we finally find that

max
a∈[0,1]

P (W1|a, b0) = P (W1|b0, b0) = 1/2.(3.8)

The proof of the remained part that min
b∈[0,1]

P (W1|b0, b) = P (W1|b0, b0) = 1/2 is almost

the same, and so we will not repeat the detail. �

A closely related (and partly more general) game is investigated by the present author
in Ref[2 ; Section 4].
Remark 3. The game with the score for player I

S1(X1, · · · , Xn)(3.9)

=

⎧⎪⎪⎨
⎪⎪⎩

X1,
Xt,

XnI(Xn > Xn−1),

if

⎧⎪⎪⎨
⎪⎪⎩

X1 is accepted,
X1, X2, · · · , Xt−1 are rejected,
and Xt is accepted, for 2 ≤ t ≤ n − 1
X1, · · · , Xn−1 are rejected.

and the score S2(Y1, · · · , Yn) for player II, given by similarly with Xi’s replaced by Yi’s, is
called “Risky Exchange”.

Differently from the Keep-or-Exchange game,

P (draw) =

[
n−2∏
i=1

a
(n)
i b

(n)
i

]
P
{
Xn < Xn−1 < a

(n)
n−1, Yn < Yn−1 < b

(n)
n−1

}

is positive, and the game is not a constant-sum game.
When n is 2, we already have (Ref.[4 ; Theorems 1 and 2]and Ref.[5 ; Theorem 2])

Theorem 4 Solution to the two-player game of “Risky Exchange” when n is 2 is as follows.
The game has a unique equilibrium point (a(2)

1 , b
(2)
1 ) = (a∗, a∗), and the equilibrium payoffs

P (draw) =
1
4
a∗4 ≈ 0.02184,

M1(a∗, a∗) = M2(a∗, a∗) =
1
2
(1 − 1

4
a∗4) ≈ 0.48908,

where a ≈ 0.54368 is a unique root in [0, 1] of the cubic equation

a3 + a2 + a = 1.(3.10)

Players want to stop(=accept) a little bit earlier than in the Keep-or-Exchange game, in
order to avoid his risk in his final(i.e., the n-th) stage (Compare Theorem 4 with Theorem
1, both when n is 2).

It would be interesting to derive the solution of the game of “Risky Exchange” when
n is 3, and find how the single characterizing equation (3.10) changes to a simultaneous
equation characterizing the equilibrium point (a(3)

1 = b
(3)
1 , a

(3)
2 = b

(3)
2 ). This would not be

difficult. First we find

P (draw) = a1b1P {X3 < X2 < a2, Y3 < Y2 < b2} =
1
4
a1a

2
2b1b

2
2.
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Using again the definitions of probabilities pRRA−RRA etc, as the same as in Section 2,
we introduce the winning probabilities qRRA−RRA etc for player II with similar meanings
as in p’s. Then we find that

pRRA−RRA = a1b1P [(X2 < a2 ∧ X3) ∩ {(Y2 < b2 ∧ Y3, X3 > Y3) ∪ (Y3 < Y2 < b2)}]

= a1b1

⎡
⎣∫ ∫

1>t>s>0

(a2 ∧ t)(b2 ∧ s)dtds +
1
2
(a2 − 1

2
a2
2)b

2
2

⎤
⎦ ,

pRRA−RA = a1b1P [{X2 < a2 ∧ X3} ∩ {X3 > Y2 > b2}] = a1b1

∫ ∫
1>t>s>0

(a2 ∧ t)(s − b2)dtds,

pRRA−A = a1P [(X2 < a2 ∧ X3) ∩ (b1 < Y1 < X3)] = a1

∫ 1

b1

(a2 ∧ t)(t − b1)dt

and for other six probabilities. Also

qRRA−RRA = a1b1P [{Y2 < b2 ∧ Y3} ∩ {(X2 < a2 ∧ X3, X3 < Y3) ∪ (X3 < X2 < a2)}]

= a1b1

⎡
⎣∫ ∫

1>s>t>0

(a2 ∧ t)(b2 ∧ s)dtds +
1
2
a2
2(b2 − 1

2
b2
2)

⎤
⎦ ,

qRRA−RA = a1b1P [{Y2 > b2} ∩ {(X2 < a2, X2 < X3 < Y2) ∪ (X3 < X2 < a2)}]

= a1b1

[∫ 1

b2

ds

∫
t<a2∧s

(s − t)dt +
1
2
a2
2b̄2

]
,

qRRA−A = a1P [{Y1 > b1} ∩ {(X2 < a2, X2 < X3 < Y1) ∪ (X3 < X2 < a2)}]

= a1

[∫ 1

b1

ds

∫
t<a2∧s

(s − t)dt +
1
2
a2
2b̄1

]
,

and for other six probalities. In order to compute the above eighteen probabilities p’s and
q’s, Lemmas 1.1 and 1.2 in Ref.[6] are helpful. The game reduces to a non-constant-sum
continuous game on the unit square.

Remark 4. Three-player game “Keep-or-Exchange” and “Risky Exchange” both for n = 2
are solved in Ref [4] and [6], respectively. Three-player games of these two when n is 3 are
left to be solved.
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