GOLDEN TRISECTION NUMBERS AND TWO-PLAYER GAME OF KEEP-OR-EXCHANGE

MINORU SAKAGUCHI

Received February 24, 2005

Abstract. A two-player game of Keep-or-Exchange, in which players aim to get the higher score than the opponent in the game, from one, two or three chances of sampling. The game is investigated as a continuous game on the unit square. It is shown that there exists a common optimal strategy for the players which would be called "golden trisection strategy". Related two other interesting games are also discussed.

1 Two-player Game of "Keep-or-Exchange". Consider the two players I and II (sometimes they are denoted by 1 and 2). I(II) observes the sequence of random variables $X_{1}, X_{2}, \cdots, X_{n}\left(Y_{1}, Y_{2}, \cdots, Y_{n}\right)$ one-bye-one sequentially. We assume that X_{i} 's and Y_{i} 's are i.i.d., each with uniform distribution in $[0,1]$. I(II) chooses his or her decreasing sequence of decision levels

$$
\begin{align*}
1 & \equiv a_{0}^{(n)}>a_{1}^{(n)}>a_{2}^{(n)}>\cdots>a_{n-1}^{(n)}>a_{n}^{(n)} \equiv 0 \tag{1.1}\\
(1 & \left.\equiv b_{0}^{(n)}>b_{1}^{(n)}>b_{2}^{(n)}>\cdots>b_{n-1}^{(n)}>b_{n}^{(n)} \equiv 0\right)
\end{align*}
$$

so that

$$
\begin{align*}
& \text { I accepts (rejects) } X_{i}=x, \text { if } x>(<) a_{i}^{(n)} \tag{1.2}\\
& \text { II accepts (rejects) } Y_{i}=y, \text { if } y>(<) b_{i}^{(n)}
\end{align*}
$$

Note taht each player should accept the last random variable (r.v.) if all of his past $n-1$ r.v.s are rejected, since $a_{n}^{(n)}=b_{n}^{(n)}=0$. Choices of one player's decision levels are made independently of the rival's. The game ends as soon as both of the players accept their r.v.s.

Define the score for player I by

$$
S^{1}\left(X_{1}, \cdots, X_{n}\right)=\left\{\begin{array} { c }
{ X _ { 1 } , } \tag{1.3}\\
{ X _ { t } }
\end{array} \quad \text { if } \left\{\begin{array}{l}
X_{1} \text { is accepted, } \\
X_{1}, X_{2}, \cdots, X_{t-1} \text { are rejected } \\
\text { and } X_{t} \text { is accepted. }
\end{array}\right.\right.
$$

The score $S^{2}\left(Y_{1}, \cdots, Y_{n}\right)$, for player II, is defined similarly, with X_{i} 's replaced by $Y_{i}{ }^{\prime}$ s. After the play is over (i.e., each player accepts the observed value of his r.v.), the scores are compared, and the player with the higher score than his opponent becomes the winner. Each player aims to maximize the probability of his winning. The game is called "Keep-or-Exchange". Here, Keep is, in other words, "Accept" or "Stop". Exchange is "Reject" or "Continue".

[^0]Rejection (or Exchange) in (1.2) entails some extent of disadvantage, since the event for example, $a_{i}^{(n)}>X_{i}>X_{i+1}>a_{i+1}^{(n)}$ which occurs with positive probability, decreases I's winning probability. The situation, however, is the same for his rival II.

Let $W_{i}(i=1,2)$ be the event that player i wins. Also let $P\left(W_{i}\right) \equiv M_{i}\left(\mathbf{a}^{(n)}, \mathbf{b}^{(n)}\right), i=$ 1,2 , be the winning probability for player i, if I and II choose the strategies $\mathbf{a}^{(n)} \equiv$ $\left(a_{1}^{(n)}, a_{2}^{(n)}, \cdots, a_{n-1}^{(n)}\right)$ and $\mathbf{b}^{(n)} \equiv\left(b_{1}^{(n)}, b_{2}^{(n)}, \cdots, b_{n-1}^{(n)}\right)$, respectively. Since "draw" (i.e., the event that there exist no winner) is impossible, we have $\sum_{i=1,2} P\left(W_{i}\right)=1$.

When n is 2, we already have Ref.[3; Theorem 2].
Theorem 1 Solution to the two-player game of "Keep-or-Exchange" (1.1)~(1.3) when n is 2 is as follows. The game has a unique saddle point $\left(a_{1}^{(2)}, b_{1}^{(2)}\right)=(g, g)$, and the saddle value $M_{1}(g, g)=M_{2}(g, g)=\frac{1}{2}$, where $g=\frac{1}{2}(\sqrt{5}-1) \approx 0.61803$ is a unique root in $[0,1]$ of the equation

$$
\begin{equation*}
g^{2}+g=1 \tag{1.4}
\end{equation*}
$$

The ratio $\bar{g} / g=g=1 / g^{-1} \approx 1 / 1.61804$ is called the "golden ratio", a mark of beauty in the history of art.

The main purpose of the present paper is to find the solution to the two-player game of "Keep-or-Exchange" when n is 3 . Let denote $\mathbf{a}^{(3)}$ and $\mathbf{b}^{(3)}$, simply by $\mathbf{a}^{(3)}=\left(a_{1}, a_{2}\right)$ and $\mathbf{b}^{(3)}=\left(b_{1}, b_{2}\right)$, respectively. It is shown by Theorem 2 in Section 2 that the game has value $1 / 2$ and a unique saddle point $\left(b_{1}^{0}, b_{2}^{0}\right)$, which is the unique root in the unit diagonal $1>b_{1}>b_{2}>0$ of a simultaneous third-order algebraic equations. Considering Theorems 1 and 2 together, we would call $\left(b_{1}^{0}, b_{2}^{0}\right)$ the "golden trisection numbers". We pass over an unrest that whether do people feel the trisection ratio $\left(b_{1}^{0}-b_{2}^{0}\right):\left(1-b_{1}^{0}\right): b_{2}^{0}$ as beautiful. In Section 3, two remarks are given. One is about another kind of Keep-or-Exchange game which has a different type of optimal strategies. The other is about the game of "Risky Exchange", when n is 3 , which is more difficult to solve, since the game has a positive probability of draw and so becomes non-constant-sum. A sketch of deriving the solution is shown.

2 Solution to the Game of "Keep-or-Exchange", when \mathbf{n} is 3. First we note that $P($ draw $)=0, \sum_{i=1,2} M_{i}\left(a_{1}, a_{2}, b_{1}, b_{2}\right)=1$ and if $a_{i}=b_{i}, i=1,2$, then

$$
\begin{equation*}
M_{1}\left(a_{1}, a_{2},, b_{1}, b_{2}\right)=1 / 2, \quad \forall 1 \geq a_{1} \geq a_{2} \geq 0 \tag{2.1}
\end{equation*}
$$

by symmetry of the two players' roles.
Let $p_{R R A-R R A}$ be the winning probability for I, when the play proceeds $X_{1}<a_{1}$ and $X_{2}<a_{2}$ for I, and $Y_{1}<b_{1}, Y_{2}<b_{2}$ for II. Let $p_{R A-A}$ be the winning probability for I, when the play proceeds $X_{1}<a_{1}, X_{2}>a_{2}$ for I and $Y_{1}>b_{1}$ for II. The other seven probabilities $p_{R R A-R A}, p_{R R A-A}$ etc., are defined similarly. Then we find that

$$
\begin{align*}
P\left(W_{1}\right) & \equiv M_{1}\left(a_{1}, a_{2}, b_{1}, b_{2}\right) \tag{2.2}\\
& =p_{R R A-R R A}+p_{R R A-R A}+(\text { other seven probabilities })
\end{align*}
$$

and

$$
\begin{equation*}
p_{R R A-R R A}=P\left\{X_{1}<a_{1}, X_{2}<a_{2}, Y_{1}<b_{1}, Y_{2}<b_{2}, X_{3}>Y_{3}\right\}=\frac{1}{2} a_{1} a_{2} b_{1} b_{2} \tag{2.3}
\end{equation*}
$$

$$
\begin{gather*}
p_{R R A-R A}=a_{1} a_{2} b_{1} P\left\{X_{3}>Y_{2}>b_{2}\right\}=\frac{1}{2} a_{1} a_{2} b_{1} \bar{b}_{2}^{2}, \tag{2.4}\\
p_{R R A-A}=a_{1} a_{2} P\left\{X_{3}>Y_{1}>b_{1}\right\}=\frac{1}{2} a_{1} a_{2} \bar{b}_{1}^{2}, \tag{2.5}\\
p_{R A-R R A}=a_{1} b_{1} b_{2} P\left\{X_{2}>a_{2} \vee Y_{3}\right\}=\frac{1}{2} a_{1} b_{1} b_{2}\left(1-a_{2}^{2}\right), \tag{2.6}\\
p_{R A-R A}=a_{1} b_{1} P\left\{X_{2}>a_{2}, Y_{2}>b_{2}, X_{2}>Y_{2}\right\} \tag{2.7}\\
=\frac{1}{2} a_{1} b_{1}\left\{\bar{b}_{2}^{2}-\left(a_{2}-b_{2}\right)^{2} I\left(a_{2}>b_{2}\right)\right\}, \\
p_{R A-A}=a_{1} P\left\{X_{2}>a_{2}, Y_{1}>b_{1}, X_{2}>Y_{1}\right\}=\frac{1}{2} a_{1}\left\{\bar{b}_{1}^{2}-\left(a_{2}-b_{1}\right)^{2} I\left(a_{2}>b_{1}\right)\right\}, \tag{2.8}
\end{gather*}
$$

(where $I(e)$ is the indicator of the event e),
and finally

$$
\begin{gather*}
p_{A-R R A}=b_{1} b_{2} P\left\{X_{1}>a_{1} \vee Y_{3}\right\}=\frac{1}{2} b_{1} b_{2}\left(1-a_{1}^{2}\right), \tag{2.9}\\
p_{A-R A}=b_{1} P\left\{X_{1}>a_{1}, X_{1}>Y_{2}>b_{2}\right\}=\frac{1}{2} b_{1}\left\{\bar{b}_{2}^{2}-\left(a_{1}-b_{2}\right)^{2} I\left(a_{1}>b_{2}\right)\right\}, \tag{2.10}\\
p_{A-A}=P\left\{X_{1}>a_{1}, X_{1}>Y_{1}>b_{1}\right\}=\frac{1}{2}\left\{\bar{b}_{1}^{2}-\left(a_{1}-b_{1}\right)^{2} I\left(a_{1}>b_{1}\right)\right\} . \tag{2.11}
\end{gather*}
$$

Summing these nine equations $(2.3) \sim(2.11)$, we have from (2.2),

$$
\begin{align*}
P\left(W_{1}\right)= & \frac{1}{2} a_{1} a_{2}\left(b_{1} b_{2}+b_{1} \bar{b}_{2}^{2}+\bar{b}_{1}^{2}\right) \tag{2.12}\\
& +\frac{1}{2} a_{1}\left[b_{1} b_{2}\left(1-a_{2}^{2}\right)+b_{1}\left\{\bar{b}_{2}^{2}-\left(a_{2}-b_{2}\right)^{2} I\left(a_{2}>b_{2}\right)\right\}\right. \\
& \left.+\left\{\bar{b}_{1}^{2}+\left(a_{2}-b_{1}\right)^{2} I\left(a_{2}>b_{1}\right)\right\}\right] \\
& \quad+\frac{1}{2}\left[b_{1} b_{2}\left(1-a_{1}^{2}\right)+b_{1}\left\{\bar{b}_{2}^{2}-\left(a_{1}-b_{2}\right)^{2} I\left(a_{1}>b_{2}\right)\right\}\right. \\
& \left.\quad+\left\{\bar{b}_{1}^{2}-\left(a_{1}-b_{1}\right)^{2} I\left(a_{1}>b_{1}\right)\right\}\right]
\end{align*}
$$

We make sure that Eqs $(2.3) \sim(2.11)$ do not involve any error, by showing that, if $a_{i}=b_{i}, i=1,2$, then Eq.(2.1) holds true. This is easy since (2.12) becomes

$$
\begin{align*}
P\left(W_{1}\right)= & \frac{1}{2} a_{1} a_{2}\left(a_{1} a_{2}+a_{1} \bar{a}_{2}^{2}+\bar{a}_{1}^{2}\right) \tag{2.13}\\
& +\frac{1}{2} a_{1}\left\{a_{1} a_{2}\left(1-a_{2}^{2}\right)+a_{1} \bar{a}_{2}^{2}+\bar{a}_{1}^{2}\right\} \\
& +\frac{1}{2}\left[a_{1} a_{2}\left(1-a_{1}^{2}\right)+a_{1}\left\{\bar{a}_{2}^{2}-\left(a_{1}-a_{2}\right)^{2}\right\}+\bar{a}_{1}^{2}\right]
\end{align*}
$$

which is found, after some effort of simplification, to be equal to $\frac{1}{2}, \forall 1 \geq a_{1} \geq a_{2} \geq 0$.

Now we prove
Lemma 2.1 Assume that $a_{1}=b_{1}$. Then both of $\max _{a_{2} \in\left[0, a_{1}\right]} P\left(W_{1} \mid 1>b_{1}>b_{2}>0\right)$ and $\min _{b_{1} \in\left[0, b_{1}\right]} P\left(W_{1} \mid 1>a_{1}>a_{2}>0\right)$ are attained at

$$
\begin{equation*}
a_{2}^{*}=b_{2}^{*}=\frac{1}{2}\left\{\sqrt{4 b_{1}^{-1}-3+4 b_{1}}-1\right\} \tag{2.14}
\end{equation*}
$$

if $a_{1}=b_{1} \in\left(b_{1}^{*}, 1\right]$, where $b_{1}^{*}(\approx 0.6825)$ is a unique root in $[0,1]$ of the cubic equation

$$
\begin{equation*}
b^{3}+b-1=0 \tag{2.15}
\end{equation*}
$$

From Eq.(2.14), we see that, if $b_{1}=1$, then $a_{2}^{*}=b_{2}^{*}=g=\frac{1}{2}(\sqrt{5}-1) \approx 0.61803$, the golden bisection number.
Proof. We try to find I's optimal $a_{2} \in\left[0, a_{1}\right)$, when we fix $1>b_{1}>b_{2}>0$. Since the third term of Eq.(2.12) does not involve a_{2}, we have

$$
\begin{align*}
\frac{\partial}{\partial a_{2}} P\left(W_{1} \mid 1>b_{1}>b_{2}>0\right)= & \frac{1}{2} b_{1}\left(b_{1} b_{2}+b_{1} \bar{b}_{2}^{2}+\bar{b}_{1}^{2}\right)-b_{1}^{2} b_{2} a_{2} \tag{2.16}\\
& + \begin{cases}0, & \text { if } 0<a_{2}<b_{2} \\
-b_{1}^{2}\left(a_{2}-b_{2}\right), & \text { if } b_{2}<a_{2}<b_{1}\end{cases}
\end{align*}
$$

The r.h.s. is decreasing in $0<a_{2}<b_{1}=a_{1}$ and equals zero at $a_{2}=b_{2}$, i.e.,

$$
\frac{1}{2} b_{1}\left(b_{1} b_{2}+b_{1} \bar{b}_{2}^{2}+\bar{b}_{1}^{2}\right)-b_{1}^{2} b_{2}^{2}=0
$$

or

$$
b_{2}^{2}+b_{2}-\left(b_{1}^{-1}-1+b_{1}\right)=0
$$

and hence

$$
\begin{equation*}
b_{2}=\frac{1}{2}\left\{\sqrt{4 b_{1}^{-1}-3+4 b_{1}}-1\right\} \tag{2.17}
\end{equation*}
$$

Therefore the restriction $1>b_{1}>b_{2}>0$ requires that

$$
\sqrt{4 b_{1}^{-1}-3+4 b_{1}}<2 b_{1}+1 \quad\left(\text { and so } b_{1}^{3}+b_{1}-1>0\right)
$$

or equivalently $b_{1} \in\left(b_{1}^{*}, 1\right]$, where $b_{1}^{*} \approx 0.6825$ is a unique root in $[0,1]$ of the cubic equation (2.15).

Next we try to find II's optimal $b_{2} \in\left[0, b_{1}\right)$ when we fix $1>a_{1}>a_{2}>0$. From (2.12) we find that

$$
\begin{align*}
& \frac{\partial}{\partial b_{2}} P\left(W_{1} \mid 1>a_{1}>a_{2}>0\right) \tag{2.18}\\
& =\frac{1}{2} a_{1} a_{2}\left(b_{1}-2 b_{1} \bar{b}_{2}\right)+\frac{1}{2} a_{1} b_{1}\left\{\left(1-a_{2}^{2}\right)-2 \bar{b}_{2}+2\left(a_{2}-b_{2}\right) I\left(a_{2}>b_{2}\right)\right\} \\
& +\frac{1}{2} b_{1}\left[\left(1-a_{1}^{2}\right)-2 \bar{b}_{2}+2\left(a_{1}-b_{2}\right) I\left(a_{1}>b_{2}\right)\right] \\
& =\frac{1}{2} a_{1}^{2} a_{2}\left(1-2 \bar{b}_{2}\right)+\frac{1}{2} a_{1}^{2}\left(1-a_{2}^{2}-2 \bar{b}_{2}\right)+\frac{1}{2} a_{1}\left(1-a_{1}^{2}-2 \bar{b}_{2}\right) \\
& + \begin{cases}a_{1}^{2}\left(a_{2}-b_{2}\right)+a_{1}\left(a_{1}-b_{2}\right), & \text { if } 0<b_{2}<a_{2} \\
a_{1}\left(a_{1}-b_{2}\right), & \text { if } a_{2}<b_{2}<a_{1}\end{cases}
\end{align*}
$$

$$
\text { (from our assumption that } a_{1}=b_{1} \text {) }
$$

The r.h.s. is increasing in $0<b_{2}<b_{1}\left(=a_{1}\right)$, since the sum of the coefficients of b_{2} terms equals $a_{1}^{2} a_{2}$ if $0<b_{2}<a_{2}$ and $a_{1}^{2}\left(1+a_{2}\right)$ if $a_{2}<b_{2}<a_{1}$, and this is equal to zero at $b_{2}=a_{2}$ i.e.,

$$
\frac{1}{2} b_{1}^{2} b_{2}\left(1-2 \bar{b}_{2}\right)+\frac{1}{2} b_{1}^{2}\left(1-b_{2}^{2}-2 \bar{b}_{2}\right)+\frac{1}{2} b_{1}\left(1-b_{1}^{2}-2 \bar{b}_{2}\right)+b_{1}\left(b_{1}-b_{2}\right)=0
$$

which, when simplified, becomes Eq.(2.17) again.
Lemma 2.2 Assume that $a_{2}=b_{2}$. Then both of $\max _{a_{1} \in\left[a_{2}, 1\right]} P\left(W_{1} \mid 1>b_{1}>b_{2}>0\right)$ and $\min _{b_{1} \in\left[b_{2}, 1\right]} P\left(W_{1} \mid 1>a_{1}>a_{2}>0\right)$ are attained at

$$
\begin{equation*}
a_{1}^{*}=b_{1}^{*}=\frac{1}{2\left(1+b_{2}\right)}\left\{\sqrt{4 b_{2}^{2}+8 b_{2}+5}-1\right\} \tag{2.19}
\end{equation*}
$$

if $a_{2}=b_{2} \in\left[0, b_{2}^{*}\right)$, where $b_{2}^{*}(\approx 0.7546)$ is a unique root in $[0,1]$ of the cubic equation

$$
\begin{equation*}
b^{3}+b^{2}-1=0 \tag{2.20}
\end{equation*}
$$

Note that Eq.(2.19) gives $a_{1}^{*}=b_{1}^{*}=g=\frac{1}{2}(\sqrt{5}-1)$, if $b_{2}=0$.
Proof. We try to find I's optimal choice of $a_{1} \in\left[a_{2}, 1\right]$ when we fix $1>b_{1}>b_{2}>0$. From (2.12), we have

$$
\left.\begin{array}{l}
\frac{\partial}{\partial a_{1}} P\left(W_{1} \mid 1>b_{1}>b_{2}>0\right) \tag{2.21}\\
=\frac{1}{2} a_{2}\left(b_{1} b_{2}+b_{1} \bar{b}_{2}^{2}+\bar{b}_{1}^{2}\right) \\
\quad+\frac{1}{2}\left[b_{1} b_{2}\left(1-a_{2}^{2}\right)+b_{1}\left\{\bar{b}_{2}^{2}-\left(a_{2}-b_{2}\right)^{2} I\left(a_{2}>b_{2}\right)\right\}\right. \\
\left.\quad+\left\{\bar{b}_{1}^{2}-\left(a_{2}-b_{1}\right)^{2} I\left(a_{2}>b_{1}\right)\right\}\right] \\
\quad \quad-\left[b_{1} b_{2} a_{1}+b_{1}\left(a_{1}-b_{2}\right) I\left(a_{1}>b_{2}\right)+\left(a_{1}-b_{1}\right) I\left(a_{1}>b_{1}\right)\right]
\end{array}\right\} \begin{aligned}
& \frac{1}{2}\left[b_{2}\left(b_{1} b_{2}+b_{1} \bar{b}_{2}^{2}+\bar{b}_{1}^{2}\right)+\left\{b_{1} b_{2}\left(1-b_{2}^{2}\right)+b_{1} \bar{b}_{2}^{2}+\bar{b}_{1}^{2}\right\}\right]-b_{1} b_{2} a_{1} \\
& \quad- \begin{cases}b_{1}\left(a_{1}-b_{2}\right), \\
b_{1}\left(a_{1}-b_{2}\right)+\left(a_{1}-b_{1}\right), & \text { if } b_{2}<a_{1}<a_{1}<1\end{cases}
\end{aligned}
$$

$$
\text { (since } a_{2}=b_{2} \text { and } I\left(a_{2}>b_{2}\right)=I\left(a_{2}>b_{1}\right)=0 \text {) }
$$

The r.h.s. is decreasing in $\left(a_{2}=\right) b_{2}<a_{1}<1$, and equals zero at $a_{1}=b_{1}$ i.e.,

$$
\frac{1}{2}\left[b_{2}\left(b_{1} b_{2}+b_{1} \bar{b}_{2}^{2}+\bar{b}_{1}^{2}\right)+\left\{b_{1} b_{2}\left(1-b_{2}^{2}\right)+b_{1} \bar{b}_{2}^{2}+\bar{b}_{1}^{2}\right\}\right]-b_{1}^{2} b_{2}-b_{1}\left(b_{1}-b_{2}\right)=0
$$

This equation becomes, after simplification,

$$
b_{1}^{2}+\left(1+b_{2}\right)^{-1} b_{1}-1=0
$$

or

$$
\begin{equation*}
b_{1}=\frac{1}{2\left(1+b_{2}\right)}\left\{\sqrt{4 b_{2}^{2}+8 b_{2}+5}-1\right\} \tag{2.22}
\end{equation*}
$$

Therefore the restriction $1>b_{1}>b_{2}>0$ requires that

$$
2 b_{2}^{2}+2 b_{2}+1<\sqrt{4 b_{2}^{2}+8 b_{2}+5} \quad\left(\text { and so } b_{2}^{3}+b_{2}^{2}-1<0\right)
$$

or equivalently $b_{2} \in\left[0, b_{2}^{*}\right)$, where $b_{2}^{*} \approx 0.7546$ is a unique root of Eq.(2.20).
Next we try to find II's optimal $b_{1} \in\left(b_{2}, 1\right]$ when we fix $1>a_{1}>a_{2}>0$.
From (2.12) we find that

$$
\left.\begin{array}{l}
\quad \frac{\partial}{\partial b_{1}} P\left(W_{1} \mid 1>a_{1}>a_{2}>0\right) \tag{2.23}\\
=\frac{1}{2} a_{1} a_{2}\left(b_{2}+\bar{b}_{2}^{2}-2 \bar{b}_{1}\right) \\
+\frac{1}{2} a_{1}\left[b_{2}\left(1-a_{2}^{2}\right)+\left\{\bar{b}_{2}^{2}-\left(a_{2}-b_{2}\right)^{2} I\left(a_{2}>b_{2}\right)\right\}-2 \bar{b}_{1}+2\left(a_{2}-b_{1}\right) I\left(a_{2}>b_{1}\right)\right] \\
\quad+\frac{1}{2}\left[b_{2}\left(1-a_{1}^{2}\right)+\left\{\bar{b}_{2}^{2}-\left(a_{1}-b_{2}\right)^{2} I\left(a_{1}>b_{2}\right)\right\}-2 \bar{b}_{1}+2\left(a_{1}-b_{1}\right) I\left(a_{1}>b_{1}\right)\right]
\end{array}\right\} \frac{1}{2}\left[\left(a_{1} a_{2}+a_{1}+1\right)\left(1-b_{2}+b_{2}^{2}\right)-a_{1} a_{2}^{2} b_{2}-a_{1}^{2} b_{2}-\left(a_{1}-b_{2}\right)^{2}\right] .\left[\begin{array}{ll}
a_{1}-b_{1}, & \text { if } b_{2}<b_{1}<a_{1} \\
0, & \text { if } a_{1}<b_{1}<1 .
\end{array}\right.
$$

$$
\left(\text { since } a_{2}=b_{2}, I\left(a_{2}>b_{2}\right)=I\left(a_{2}>b_{1}\right)=0 \text { and } I\left(a_{1}>b_{2}\right)=1\right)
$$

The r.h.s. is increasing in $\left(a_{2}=\right) b_{2}<b_{1}<1$, since the sum of coefficients of b_{1} is $\left(a_{1} a_{2}+a_{1}+1\right)-1=a_{1}\left(1+a_{2}\right)>0$. And this is equal to zero at $b_{1}=a_{1}$ i.e.,

$$
\frac{1}{2}\left[\left(1-b_{2}+b_{2}^{2}\right)\left(b_{1} b_{2}+b_{1}+1\right)-\left\{b_{1} b_{2}^{3}+b_{1}^{2} b_{2}+\left(b_{1}-b_{2}\right)^{2}\right\}\right]-\bar{b}_{1}\left(b_{1} b_{2}+b_{1}+1\right)=0
$$

which becomes, after some effort of simplification,

$$
b_{1}^{2}+\left(1+b_{2}\right)^{-1} b_{1}-1=0
$$

that is, Eq.(2.22) again.
Considering symmetry for the two players and combining Lemmas 2.1 and 2.2 we obtain
Theorem 2 Solution to the two-player game of "Keep-or-Exchange" (1.1) ~ (1.3), when n is 3 , is as follows. The game has a unique saddle point $\left(a_{1}^{(3)}, a_{2}^{(3)}, b_{1}^{(3)}, b_{2}^{(3)}\right)=\left(b_{1}^{0}, b_{2}^{0}, b_{1}^{0}, b_{2}^{0}\right)$, where $\left(b_{1}^{0}, b_{2}^{0}\right) \approx(0.743,0.657)$ is a unique root in the triangle $0<b_{2}<b_{1}<1$ of the simultaneous equation

$$
\begin{align*}
& b_{2}=\frac{1}{2}\left\{\sqrt{4 b_{1}^{-1}-3+4 b_{1}}-1\right\} \tag{2.14}\\
& b_{1}=\frac{1}{2\left(1+b_{2}\right)}\left\{\sqrt{4 b_{2}^{2}+8 b_{2}+5}-1\right\} \tag{2.17}
\end{align*}
$$

(in Lemma 2.1)
(in Lemma 2.2)

The values of the game are $1 / 2,1 / 2$.

Proof. We have to show that Eqs (2.14)-(2.17) has the stated unique root. In the triangle $0<b_{2}<b_{1}<1$, Eq.(2.14) is a convex decreasing function in $b_{1} \in\left(b_{1}^{*}, 1\right]$ connecting the two points $\left(b_{1}^{*}, b_{1}^{*}\right)$ and $(1, g)$. And Eq. (2.17) is a concave increasing function in $b_{2} \in\left[0, b_{2}^{*}\right)$ connecting the two points $\left(b_{1}, b_{2}\right)=(g, 0)$ and $\left(b_{2}^{*}, b_{2}^{*}\right)$. Here, $b_{1}^{*} \approx 0.6825$ and $b_{2}^{*} \approx 0.7546$ are given by (2.15) and (2.20), respectively. Therefore a unique root $\left(b_{1}^{0}, b_{2}^{0}\right)$ exists in the triangle $0<b_{2}<b_{1}<1$, and a rough computation gives $b_{1}^{0} \approx 0.743$ and $b_{2}^{0} \approx 0.657$.

As was mentioned in Section 1, when we compare Theorem 2 with Theorem 1, we would call $\left(b_{1}^{0}, b_{2}^{0}\right)$ the golden trisection numbers. We, however, pass over some unrest, whether do people feel the trisection ratio $\left(1-b_{1}^{0}\right):\left(b_{1}^{0}-b_{2}^{0}\right): b_{2}^{0} \approx 0.257: 0.086: 0.657 \approx 1: 0.335: 2.556$ is beautiful. A more reasonable understanding may be as follows. In the game of Keep-or-Exchange, an intelligent player would choose his decision levels greater than $1 / 2$ since $E X=E Y=1 / 2$ (a direct proof will be needed). If we consider the strategy space, the one-fourth of the unit square (i.e., $\frac{1}{2} \leq a, b \leq 1$), then the player's common decision level(s) has the ratio

$$
\bar{g}:\left(g-\frac{1}{2}\right) \approx 0.382: 0.118 \approx 1: 0.309
$$

when n is 2 , by Theorem 1 ; and

$$
\left(1-b_{1}^{0}\right):\left(b_{1}^{0}-b_{2}^{0}\right):\left(b_{2}^{0}-\frac{1}{2}\right) \approx 0.257: 0.086: 0.157 \approx 1: 0.335: 0.611
$$

when n is 3 , by Theorem 2 .
An ingenious work by Mazalov (Ref.[1]) in 1996 gave the same result by using dynamic programming (DP). The optimality equation is

$$
\begin{equation*}
V_{i}(x \mid \mathbf{b})=h(x \mid \mathbf{b}) \vee E V_{i+1}(X \mid \mathbf{b}), \quad\left(i=1,2, \cdots, n ; V_{n+1}(x \mid \mathbf{b}) \equiv 0\right) \tag{2.24}
\end{equation*}
$$

where

$$
\begin{equation*}
h(x \mid \mathbf{b})=\sum_{j=1}^{n} b_{1} b_{2} \cdots b_{j-1}\left(x-b_{j}\right) I\left(x>b_{j}\right) \tag{2.25}
\end{equation*}
$$

is I's winning probability if he stops when $X_{i}=x$. He shows that $a_{i}^{*}=b_{i}^{*}, i=1,2, \cdots, n-$ 1 , and these values satisfy the system of equations

$$
\begin{equation*}
\sum_{j=1}^{n}\left(\prod_{k=0}^{j-1} b_{k}\right)\left[1-2\left(b_{j} \vee b_{i}\right)+\left(b_{j} \vee b_{i+1}\right)^{2}\right]=0, \quad i=1,2, \cdots, n-1 \tag{2.26}
\end{equation*}
$$

This system gives

$$
b_{1}^{2}+b_{1}-1=0
$$

i.e., (1.4), where n is 2 , and

$$
\left\{\begin{array}{l}
b_{2}^{2}+b_{2}-\left(b_{1}^{-1}-1+b_{1}\right)=0 \\
b_{1}^{2}+\left(1+b_{2}\right)^{-1} b_{1}-1=0
\end{array}\right.
$$

i.e., (2.17)-(2.22), when n is 3 .

Mazalov's work shows a wonderful effect of applying DP to n-stage dynamic games. The present author feels that the routine procedure to derive Theorem 2 without using DP has yet an instructive worth.

3 Remarks.

Remark 1. Consider the one-player version of the Keep-or-Exchange game, when n is 3, where player aims to maximize his expected score. Let $v^{(n)}$ be the optimal expected score. Then the equation

$$
v^{(n)}=E\left[X \vee v^{(n-1)}\right], \quad\left(n=1,2, \cdots, v^{(1)}=1 / 2\right)
$$

gives the optimal decision levels $(1>) v^{(3)} \approx 0.695>v^{(2)}=5 / 8=0.625(>0)$.
Remark 2. If the players are restricted to choosing $a_{1}^{(3)}=a_{2}^{(3)}(=a)$ and $b_{1}^{(3)}=b_{2}^{(3)}(=b)$. Then the solution to the game becomes different. We prove
Theorem 3 If the player's choices of decision levels are restricted by $a_{1}^{(3)}=a_{2}^{(3)}=a$ and $b_{1}^{(3)}=b_{2}^{(3)}=b$, then the solution is as follows. The game has a unique saddle point $(a, b)=\left(b_{0}, b_{0}\right)$, where $b_{0} \approx 0.728$ is a unique root in $[0,1]$ of the fourth-order algebraic equation

$$
\begin{equation*}
b^{4}+b^{3}+2 b^{2}-b-1=0 \tag{3.1}
\end{equation*}
$$

The saddle value of the game is $1 / 2$.
Proof. By substituting $a_{1}=a_{2}$ and $b_{1}=b_{2}$ into Eq.(2.12). collecting terms and simplifying, we get

$$
\begin{align*}
& 2 P\left(W_{1}\right)=\left[-a^{3} b^{2}+\left(1-b-b^{2}+b^{3}\right) a^{2}+(1+a)\left(1-b+b^{3}\right)\right] \tag{3.2}\\
& -(a b-a+b+1)(a-b)^{2} I(a>b) . \\
& 2 \frac{\partial}{\partial a} P\left(W_{1}\right)=-3 a^{2} b^{2}+2 a(1-b)\left(1-b^{2}\right)+1-b+b^{3} \tag{3.3}\\
& + \begin{cases}0, & \text { if } a<b \\
(3-b)(a-b)^{2}-2(a-b)(a b+1), & \text { if } a>b\end{cases} \\
& 2 \frac{\partial}{\partial b} P\left(W_{1}\right)=-2 a^{3} b+\left(3 b^{2}-2 b-1\right) a^{2}+(1+a)\left(3 b^{2}-1\right) \tag{3.4}\\
& + \begin{cases}0, & \text { if } a<b \\
-(3+a)(a-b)^{2}+2(a-b)(a b+1), & \text { if } a>b\end{cases}
\end{align*}
$$

Both of $\left[\frac{\partial}{\partial a} P\left(W_{1}\right)\right]_{a=b}=0$ and $\left[\frac{\partial}{\partial b} P\left(W_{1}\right)\right]_{a=b}=0$ give the same equation (3.1). Therefore, if $b_{0} \approx 0.728$ is determined by Eq.(3.1), then we find that

$$
\begin{gather*}
P\left(W_{1} \mid 0, b_{0}\right)=P\left(W_{1} \mid 1, b_{0}\right)=\frac{1}{2}\left(1-b_{0}+b_{0}^{3}\right) \approx 0.3289<1 / 2 \tag{3.5}\\
{\left[\frac{\partial}{\partial a} P\left(W_{1} \mid a, b_{0}\right)\right]_{a=0}=\frac{1}{2}\left(1-b_{0}+b_{0}^{3}\right)>0>\left[\frac{\partial}{\partial a} P\left(W_{1} \mid a, b_{0}\right)\right]_{a=1}} \tag{3.6}\\
=b_{0}^{3}+b_{0}^{2}-5 b_{0}+2 \approx-0.7242
\end{gathered} \begin{gathered}
\frac{\partial^{2} P\left(W_{1} \mid a, b_{0}\right)}{\partial a^{2}}= \begin{cases}-3 a b_{0}^{2}+\left(1-b_{0}\right)\left(1-b_{0}^{2}\right), & \text { if } a<b_{0} \\
-3 a\left(b_{0}^{2}+b_{0}-1\right)+b_{0}\left(b_{0}^{2}+b_{0}-4\right)<0, & \text { if } a>b_{0}\end{cases}
\end{gather*}
$$

Hence $P\left(W_{1} \mid a, b_{0}\right)$ is, as a function of $a \in[0,1]$, increasing and convex-concave for $0<a<b_{0}$ (with the point of inflexion $\left.a=\frac{\left(1-b_{0}\right)\left(1-b_{0}^{2}\right)}{3 b_{0}^{2}} \approx 0.0804\right), P\left(W_{1} \mid b_{0}, b_{0}\right)=\frac{1}{2}$, and decreasing, concave for $b_{0}<a<1$. So we finally find that

$$
\begin{equation*}
\max _{a \in[0,1]} P\left(W_{1} \mid a, b_{0}\right)=P\left(W_{1} \mid b_{0}, b_{0}\right)=1 / 2 \tag{3.8}
\end{equation*}
$$

The proof of the remained part that $\min _{b \in[0,1]} P\left(W_{1} \mid b_{0}, b\right)=P\left(W_{1} \mid b_{0}, b_{0}\right)=1 / 2$ is almost the same, and so we will not repeat the detail.

A closely related (and partly more general) game is investigated by the present author in $\operatorname{Ref}[2$; Section 4].
Remark 3. The game with the score for player I

$$
\begin{align*}
& S^{1}\left(X_{1}, \cdots, X_{n}\right) \tag{3.9}\\
& \quad=\left\{\begin{array} { l }
{ X _ { 1 } , } \\
{ X _ { t } , } \\
{ X _ { n } I (X _ { n } > X _ { n - 1 }) , }
\end{array} \quad \text { if } \left\{\begin{array}{l}
X_{1} \text { is accepted, } \\
X_{1}, X_{2}, \cdots, X_{t-1} \text { are rejected } \\
\text { and } X_{t} \text { is accepted, for } 2 \leq t \leq n-1 \\
X_{1}, \cdots, X_{n-1} \text { are rejected. }
\end{array}\right.\right.
\end{align*}
$$

and the score $S^{2}\left(Y_{1}, \cdots, Y_{n}\right)$ for player II, given by similarly with X_{i} 's replaced by Y_{i} 's, is called "Risky Exchange".

Differently from the Keep-or-Exchange game,

$$
P(\text { draw })=\left[\prod_{i=1}^{n-2} a_{i}^{(n)} b_{i}^{(n)}\right] P\left\{X_{n}<X_{n-1}<a_{n-1}^{(n)}, Y_{n}<Y_{n-1}<b_{n-1}^{(n)}\right\}
$$

is positive, and the game is not a constant-sum game.
When n is 2, we already have (Ref.[4 ; Theorems 1 and 2]and Ref.[5 ; Theorem 2])
Theorem 4 Solution to the two-player game of "Risky Exchange" when n is 2 is as follows. The game has a unique equilibrium point $\left(a_{1}^{(2)}, b_{1}^{(2)}\right)=\left(a^{*}, a^{*}\right)$, and the equilibrium payoffs

$$
\begin{gathered}
P(\mathrm{draw})=\frac{1}{4} a^{* 4} \approx 0.02184 \\
M_{1}\left(a^{*}, a^{*}\right)=M_{2}\left(a^{*}, a^{*}\right)=\frac{1}{2}\left(1-\frac{1}{4} a^{* 4}\right) \approx 0.48908
\end{gathered}
$$

where $a \approx 0.54368$ is a unique root in $[0,1]$ of the cubic equation

$$
\begin{equation*}
a^{3}+a^{2}+a=1 \tag{3.10}
\end{equation*}
$$

Players want to stop(=accept) a little bit earlier than in the Keep-or-Exchange game, in order to avoid his risk in his final(i.e., the n-th) stage (Compare Theorem 4 with Theorem 1 , both when n is 2).

It would be interesting to derive the solution of the game of "Risky Exchange" when n is 3 , and find how the single characterizing equation (3.10) changes to a simultaneous equation characterizing the equilibrium point $\left(a_{1}^{(3)}=b_{1}^{(3)}, a_{2}^{(3)}=b_{2}^{(3)}\right)$. This would not be difficult. First we find

$$
P(\text { draw })=a_{1} b_{1} P\left\{X_{3}<X_{2}<a_{2}, Y_{3}<Y_{2}<b_{2}\right\}=\frac{1}{4} a_{1} a_{2}^{2} b_{1} b_{2}^{2}
$$

Using again the definitions of probabilities $p_{R R A-R R A}$ etc, as the same as in Section 2, we introduce the winning probabilities $q_{R R A-R R A}$ etc for player II with similar meanings as in p 's. Then we find that

$$
\begin{gathered}
p_{R R A-R R A}=a_{1} b_{1} P\left[\left(X_{2}<a_{2} \wedge X_{3}\right) \cap\left\{\left(Y_{2}<b_{2} \wedge Y_{3}, X_{3}>Y_{3}\right) \cup\left(Y_{3}<Y_{2}<b_{2}\right)\right\}\right] \\
=a_{1} b_{1}\left[\int_{1>t>s>0}\left(a_{2} \wedge t\right)\left(b_{2} \wedge s\right) d t d s+\frac{1}{2}\left(a_{2}-\frac{1}{2} a_{2}^{2}\right) b_{2}^{2}\right], \\
p_{R R A-R A}=a_{1} b_{1} P\left[\left\{X_{2}<a_{2} \wedge X_{3}\right\} \cap\left\{X_{3}>Y_{2}>b_{2}\right\}\right]=a_{1} b_{1} \int_{1>t>s>0}\left(a_{2} \wedge t\right)\left(s-b_{2}\right) d t d s, \\
p_{R R A-A}=a_{1} P\left[\left(X_{2}<a_{2} \wedge X_{3}\right) \cap\left(b_{1}<Y_{1}<X_{3}\right)\right]=a_{1} \int_{b_{1}}^{1}\left(a_{2} \wedge t\right)\left(t-b_{1}\right) d t
\end{gathered}
$$

and for other six probabilities. Also

$$
\begin{aligned}
q_{R R A-R R A} & =a_{1} b_{1} P\left[\left\{Y_{2}<b_{2} \wedge Y_{3}\right\} \cap\left\{\left(X_{2}<a_{2} \wedge X_{3}, X_{3}<Y_{3}\right) \cup\left(X_{3}<X_{2}<a_{2}\right)\right\}\right] \\
& =a_{1} b_{1}\left[\int_{1>s>t>0}\left(a_{2} \wedge t\right)\left(b_{2} \wedge s\right) d t d s+\frac{1}{2} a_{2}^{2}\left(b_{2}-\frac{1}{2} b_{2}^{2}\right)\right] \\
q_{R R A-R A} & =a_{1} b_{1} P\left[\left\{Y_{2}>b_{2}\right\} \cap\left\{\left(X_{2}<a_{2}, X_{2}<X_{3}<Y_{2}\right) \cup\left(X_{3}<X_{2}<a_{2}\right)\right\}\right] \\
& =a_{1} b_{1}\left[\int_{b_{2}}^{1} d s \int_{t<a_{2} \wedge s}(s-t) d t+\frac{1}{2} a_{2}^{2} \bar{b}_{2}\right] \\
q_{R R A-A} & =a_{1} P\left[\left\{Y_{1}>b_{1}\right\} \cap\left\{\left(X_{2}<a_{2}, X_{2}<X_{3}<Y_{1}\right) \cup\left(X_{3}<X_{2}<a_{2}\right)\right\}\right] \\
& =a_{1}\left[\int_{b_{1}}^{1} d s \int_{t<a_{2} \wedge s}(s-t) d t+\frac{1}{2} a_{2}^{2} \bar{b}_{1}\right]
\end{aligned}
$$

and for other six probalities. In order to compute the above eighteen probabilities p's and q's, Lemmas 1.1 and 1.2 in Ref.[6] are helpful. The game reduces to a non-constant-sum continuous game on the unit square.

Remark 4. Three-player game "Keep-or-Exchange" and "Risky Exchange" both for $n=2$ are solved in Ref [4] and [6], respectively. Three-player games of these two when n is 3 are left to be solved.

Acknowledgement

I would like to thank Professor Vladimir Mazalov of Karelian Research Center, Petrozadvsk, for some very helpful discussion of this area of problems.

References

[1] Mazalov, V.V., A game related to optimal stopping of two sequences of independent random variables having different distributions, Math.Japonica, 43(1996), 121-128.
[2] Sakaguchi, M. and Szajowski, K., Single-level strategies for Full-Information best-choice problems II, Math.Japonica, 46(1997), 199-208.
[3] Sakaguchi, M., Two-player games of "Score Showdown", Scientiae Math. Japonicae, 60(2004), 411-421.
[4] Sakaguchi, M., Three-player game of "Keep-or-Exchange", Game Th. Appl. 10(2005), 148-160.
[5] Sakaguchi, M., Equilibrium in two-player games of "Showcase Showdown", Scientiae Math. Japonicae 61(2005), 145-151.
[6] Sakaguchi, M., Equilibrium in the three-player game of "Risky Exchange", Scientiae Math. Japonicae 61(2005), 335-344.
*3-26-4 Midorigaoka, Toyonaka, Osaka, 560-0002, Japan,
Fax: $+81-6-6856-2314$ E-mail: minorus@tcct.zaq.ne.jp

[^0]: 2000 Mathematics Subject Classification. 60G40, 90C99, 90D40
 Key words and phrases. Two-player continuous games on the unit square, optimal strategy, equlibrium strategy, golden bisection number.

