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Abstract. A report on an error in the paper [5] is given. The error is in Theorem
2.4 of [5]. The condition imposed on the dominant measure ρ in the theorem of [5] is
insufficient in order to deduce the conclusion of the theorem. In this note a corrected
theorem is given. See Theorem A in §2 of this note. In this note a stronger condition
on ρ is imposed. Corrections for the two corollaries of the theorem in [5] are also given.
See Corollaries A1 and A2 in this note.

1. Introduction. The fact that Theorem 2.4 in [5] is not true is seen by giving a
counter example for a corollary to the theorem. See Example below in this note. Since
Theorem 2.4 in [5] is not true, there must be one or more errors in the proof in [5] of the
theorem. In fact the author found an error in the Step 4 of the proof of the theorem. The
statement

For any f ∈ C(T ) there is a monotone increasing sequence {hn} of step func-
tions such that limn→∞ hn(t) = f(t) for all t ∈ T and T [hn �= 0] = {t ∈
T ; hn(t) �= 0} ⊂ Tn for any n

in Step 4 of the proof of the theorem in [5] is not true. It follows that the statement

η̃ defined in Step 2 belongs to Λ(T ). Therefore one has η̃(T ) = 1.

in Step 5 cannot be proved. Our aim in this note is to give a stronger condition for the
dominant measure ρ in order for the conclusions of the theorem and its corollaries in [5] to
remain true. In the case where the component spaces are Polish spaces the new condition
for the dominant measure ρ is the condition that it is σ-finite on the algebra consisting
of all finite unions of measurable rectangles of the product space. In the cases where the
component spaces are separable metric spaces or separable measurable spaces, the condition
that ρ is rectangle-normal is imposed.

2. Results. Let X be a Hausdorff space. We denote by β(X) the set of all Borel subsets
of X. Let Bb(X) denote the set of all bounded real valued Borel measurable functions on
X.

In what follows, unless the contrary is explicitly stated, (X, A) and (Y, B) denote sepa-
rable measurable spaces. We denote by (Z, A ⊗ B) the product space of these measurable
spaces. Let πX and πY be the canonical projections from Z onto X and Y, respectively.
We denote by R(Z) the algebra consisting of all finite unions of measurable rectangles of
Z. P (Z) denotes the set of all probability measures on Z. When ρ is a σ-finite measure on
Z, we put

Λ(Z) = {λ ∈ P (Z);λ ≤ ρ}.
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For any set A we denote by χA the characteristic function of A.

First we shall give a counterexample for Corollary 2.7 in [5].

Example. Put X = Y = (0, 1] and Z = (0, 1]× (0, 1]. Let λ be the Lebesgue measure

on (0, 1]. Let λ ⊗ λ be the product measure of λ. Let 0 < ε <
2
3
. Put

Sε = {(x, y) ∈ Z; 0 < x < y ≤ min{x + ε, 1}}.

Put

ϕε(x, y) =
2

ε(2 − ε)
χSε(x, y)

We denote by θε the measure on Z having ϕε as the density function concerning λ⊗λ. Put

h(x, y) =

⎧⎨
⎩

1
(y − x)2

if 0 < x < y ≤ 1

0 otherwise

We denote by ρ the σ-finite measure on Z having h as the density function concerning λ⊗λ.

Lemma 2.1. If 0 < ε <
2
3
, then θε ∈ Λ(Z) = {θ ∈ P (Z); θ ≤ ρ}.

Proof. Since the area of Sε is
ε(2 − ε)

2
, we have θε ∈ P (Z). If x < y ≤ x + ε and

0 < x ≤ 1 − ε, then we have 0 < y − x < ε. In this case we have
1
ε2

<
1

(y − x)2
. If

0 < x < y ≤ 1 and 1 − ε < x ≤ 1, then we have 0 < y − x < ε. In this case we have
1
ε2

<
1

(y − x)2
. Therefore for any (x, y) in Z with 0 < x < y ≤ 1 we have

ϕε(x, y) =
2

ε(2 − ε)
χSε(x, y) ≤ 1

ε2
<

1
(y − x)2

= h(x, y).

Hence we have θε ∈ Λ(Z).

For any k ∈ Bb(Z) put

P (k) = sup{
∫

Z

k dθ; θ ∈ Λ(Z)}.

Lemma 2.2. For any f ∈ Bb(X) and g ∈ Bb(Y ) one has

∫ 1

0

f(x) dλ(x) +
∫ 1

0

g(y) dλ(y) ≤ P (f ◦ πX + g ◦ πY ).

Proof. Since the measures treated in this lemma are probability measures, it is sufficient
for us to prove the inequality for non-negative functions f and g.

(1) 2
∫ 1

0

∫ 1

0

χSε(x, y)f(x) dλ ⊗ λ(x, y)
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= 2
∫ 1−ε

0

f(x) dλ(x)
∫ x+ε

x

dλ(y)+2
∫ 1

1−ε

f(x) dλ(x)
∫ 1

x

dλ(y)

= 2ε

∫ 1−ε

0

f(x) dλ(x) + 2
∫ 1

1−ε

(1 − x)f(x) dλ(y)

and

(2) ε(2 − ε)
∫ 1

0

f(x) dλ(x) = ε(2 − ε)(
∫ 1−ε

0

f(x) dλ(x) +
∫ 1

1−ε

f(x) dλ(x)).

Hence we have

2
∫ 1

0

∫ 1

0

χSε(x, y)f(x) dλ ⊗ λ(x, y) − ε(2 − ε)
∫ 1

0

f(x) dλ(x)

≥ ε2
∫ 1−ε

0

f(x) dλ(x) − ε(2 − ε)
∫ 1

1−ε

f(x) dλ(x).

Accordingly we have

(3)
∫

Z

f ◦ πX dθε −
∫ 1

0

f(x) dλ(x)

=
2

ε(2 − ε)

∫ 1

0

∫ 1

0

χSε(x, y)f(x) dλ ⊗ λ(x, y) −
∫ 1

0

f(x) dλ(x)

≥ ε

(2 − ε)

∫ 1−ε

0

f(x) dλ(x) −
∫ 1

1−ε

f(x) dλ(x).

By a similar argument we have

(4)
∫

Z

g ◦ πY dθε −
∫ 1

0

g(y) dλ(y) ≥ ε

(2 − ε)

∫ 1

ε

g(y) dλ(y) −
∫ ε

0

g(y) dλ(y).

Since θε ∈ Λ(Z), we have

P (f ◦ πX + g ◦ πY ) −
(∫ 1

0

f(x) dλ(x) +
∫ 1

0

g(y) dλ(y)
)

≥ ε

(2 − ε)

( ∫ 1−ε

0

f(x) dλ(x)+
∫ 1

ε

g(y) dλ(y)
)
−

(∫ 1

1−ε

f(x) dλ(x)+
∫ ε

0

g(y) dλ(y)
)
.

Letting ε → 0, then we have

P (f ◦ πX + g ◦ πY ) −
(∫ 1

0

f(x) dλ(x) +
∫ 1

0

g(y) dλ(y)
)
≥ 0.

This shows that Lemma 2.2 holds.

In this example there does not exist a θ in Λ(Z) having µ = λ and ν = λ as marginals
(see Kellerer [1], page 196). This is a counterexample for Corollary 2.7 in [5]. It follows
that Theorem 2.4 in [5] is not true.

We correct Theorem 2.4 in [5] as follows.

Theorem A Let X and Y be Polish spaces and let Z = X × Y. Let ρ be a measure on
β(Z) such that the restriction ρ0 of ρ to R(Z) is σ-finite on R(Z) and ρ(Z) ≥ 1. Given
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µ ∈ P (X) and ν ∈ P (Y ), then the following two conditions are equivalent to each other:
(1) There exists a θ ∈ Λ(Z) having µ and ν as marginals.
(2) For any functions f ∈ β(X) and g ∈ β(Y ) one has∫

X

f dµ +
∫

Y

g dν ≤ sup{
∫

Z

(f ◦ πX + g ◦ πY ) dλ;λ ∈ Λ(Z)}.

Proof. The implication (1) → (2) is almost obvious. We shall show the converse. Put

Bb
0(Z) = {f ◦ πX + g ◦ πY ; f ∈ Bb(X) and g ∈ Bb(Y )}.

We define a linear functional W0 on Bb
0(Z) by the equation

W0(f ◦ πX + g ◦ πY ) =
∫

X

f dµ +
∫

Y

g dν.

For any function h ∈ Bb(Z) put

PZ(h) = sup{
∫

Z

h dλ;λ ∈ Λ(Z)}.

W0 is a linear functional on Bb
0(Z) satisfying W0 ≤ PZ on Bb

0(Z). Since PZ is subadditive
and positively homogeneous on Bb(Z), W0 can be extended, by the Hahn Banach theorem,
to a linear functional W on Bb(Z) such that W ≤ PZ on Bb(Z). For any set E ∈ R(Z) put

θ0(E) = W (χE).

Clearly θ0 is a finitely additive measure on R(X) having µ and ν as marginals. Since X and
Y are Polish spaces, µ and ν are Radon measures on X and Y, respectively. Accordingly
θ0 is a finite Radon measure on R(Z). By Theorem 16 in [3] (page 51) the measure θ0 can
be extended to a probability measure θ on β(Z). Since ρ0 is a σ-finite measure on R(Z), ρ0

can be uniquely extended to the measure ρ∗ on β(Z). By the uniqueness of extension we
have ρ = ρ∗ on β(Z). Since θ0 ≤ ρ0 on R(Z), we have θ ≤ ρ∗ = ρ on β(Z). Clearly θ has µ
and ν as marginals. Thus the theorem has been proved.

We correct Corollary 2.7 in [5] as follows.

Corollary A1 Let X and Y be separable metric spaces and let Z = X × Y. Let ρ be a
rectangle-normal measure on β(Z) with ρ(Z) ≥ 1. Given µ ∈ P (X) and ν ∈ P (Y ), then the
following conditions are equivalent to each other:
(1) There exists a measure θ ∈ Λ(Z) having µ and ν as marginals.
(2) For any functions f ∈ Bb(X) and g ∈ Bb(Y ) one has∫

X

f dµ +
∫

Y

g dν ≤ sup{
∫

Z

(f ◦ πX + g ◦ πY ) dλ;λ ∈ Λ(Z)}.

Proof. The implication (1) → (2) is almost obvious. We shall show the converse. Let X̃

and Ỹ be the completions of X and Y, respectively. Put Z̃ = X̃ × Ỹ . Since ρ is rectangle-
normal measure on Z, there exist disjoint sequences {Xn}∞n=1 and {Ym}∞m=1 of sets in β(X)

and β(Y ) respectively such that X =
∞⋃

n=1

Xn and Y =
∞⋃

m=1

Ym and ρ(Xn×Ym) < ∞, n, m =
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1, 2, . . . . For any positive integer n there exists a set An ∈ β(X̃) such that An ∩ X = Xn.
Put

X̃n = An −
n−1⋃
i=1

Ai, n = 1, 2, . . . .

{X̃n}∞n=1 is a disjoint sequence of sets in β(X̃) such that Xn = X̃n∩X. Put X̃0 = X̃−
∞⋃

n=1

X̃n.

{Xn}∞n=0 is a disjoint sequence of sets in β(X̃) such that X̃ =
∞⋃

n=0

X̃n. Similarly there exists

a disjoint sequence {Ỹm}∞m=0 of sets in β(Ỹ ) such that Ỹ =
∞⋃

m=0

Ỹm and for any positive

integer m Ym = Ỹm ∩ Y and Ỹ0 ∩ Y = ∅. For any Ẽ ∈ β(Z̃) put ρ̃(Ẽ) = ρ(Ẽ ∩ Z). ρ̃ is a
rectangle-normal measure on Z̃. In fact, we have

ρ̃(X̃0 × Ỹm) = ρ((X̃0 ∩ X) × (Ỹm ∩ Y )) = ρ(∅ × Ym) = 0, m = 0, 1, . . .
and, for any positive integer n,

ρ̃(X̃n × Ỹm) = ρ(Xn × Ym) < ∞, m = 0, 1, . . . .

Hence ρ̃ is a rectangle-normal measure on Z̃. iX , etc., denote the canonical injection from
X into X̃. For every µ ∈ P (X) we denote by iX(µ) the image measure of µ by iX . Put
iX(µ) = µ̃ and iY (ν) = ν̃. We have iZ(Λ(Z)) = {θ̃ ∈ P (Z̃); θ̃ ≤ ρ̃} = Λ(Z̃). In fact, it is
obvious that iZ(Λ(Z)) is contained in Λ(Z̃). We shall show that the converse. Let θ̃ ∈ Λ(Z̃).
For any set E ∈ β(Z) there exists an Ẽ ∈ β(Z̃) such that E = Ẽ ∩ Z. Put θ(E) = θ̃(Ẽ). θ

is well defined, that is, if E = Ẽ ∩ Z = F̃ ∩ Z (Ẽ, F̃ ∈ β(Z̃)), then we have θ̃(Ẽ) = θ̃(F̃ ).
In fact, since

(Ẽ � F̃ ) ∩ Z = E � E = ∅,
we have

θ̃(Ẽ � F̃ ) ≤ ρ̃(Ẽ � F̃ ) = ρ((Ẽ � F̃ ) ∩ Z) = ρ(∅) = 0,

where Ẽ � F̃ denotes the symmetric difference of Ẽ and F̃ . Hence we have θ̃(Ẽ) = θ̃(F̃ ).
Since, for any disjoint sequence {En}∞n=1 of sets in β(Z), there exists a disjoint sequence
{Ẽn}∞n=1 of sets in β(Z̃) such that Ẽn ∩ Z = En, n = 1, 2, . . . , θ is a measure on Z. Hence
we have iZ(θ) = θ̃. For any functions f̃ ∈ Bb(X̃) and g̃ ∈ Bb(Ỹ ) put f = f̃ ◦ iX and
g = g̃ ◦ iY . Then we have∫

�X

f̃ dµ̃ +
∫
�Y

g̃ dν̃ =
∫

X

f̃ ◦ iX dµ +
∫

Y

g̃ ◦ iY dν

=
∫

X

f dµ +
∫

Y

g dν

≤ sup{
∫

Z

(f ◦ πX + g ◦ πY ) dλ;λ ∈ Λ(Z)}

= sup{
∫

Z

(f̃ ◦ iX ◦ πX + g̃ ◦ iY ◦ πY ) dλ;λ ∈ Λ(Z)}.

Since π
�X ◦ iZ = iX ◦ πX and π

�Y ◦ iZ = iY ◦ πY and iZ(Λ(Z)) = Λ(Z̃), we have
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∫
�X

f̃ dµ̃ +
∫
�Y

g̃ dν̃ ≤ sup{
∫
�Z

(f̃ ◦ π
�X + g̃ ◦ π

�Y ) dλ̃; λ̃ ∈ Λ(Z̃)}.

Since X̃ and Ỹ are Polish spaces, by Theorem A there exists a θ̃ ∈ Λ(Z̃) having µ̃ and ν̃ as
marginals. Since iZ(Λ(Z)) = Λ(Z̃), there exists a θ ∈ Λ(Z) such that iZ(θ) = θ̃. Then we
have

iX(µ) = µ̃ = π
�X(θ̃) = π

�X ◦ iZ(θ) = iX ◦ πX(θ).

Since iX is an injective map from P (X) into P (X̃), we have µ = πX(θ). Similary we have
ν = πY (θ). Since θ̃ ∈ Λ(Z̃), we have θ̃ ≤ ρ̃. Accordingly θ ≤ ρ holds. Thus Corollary A1
has been proved.

In the case where component spaces are separable measurable spaces Corollary 2.8 in
[5] is corrected as follows.

Corollary A2 Let (X, A) and (Y, B) be separable measurable spaces and (Z, A⊗B) the
cartesian product of these spaces. Let ρ be a rectangle-normal measure on Z with ρ(Z) ≥ 1.
Given probability measures µ and ν on X and Y , respectively, then the following two con-
ditions are equivalent to each other:
(1) There exists a probability measure θ on Z such that θ ≤ ρ and πX(θ) = µ and πY (θ) = ν.
(2) For any real valued bounded measurable functions f and g on X and Y respectively one
has

∫
X

f dµ +
∫

Y

g dν ≤ sup{
∫

Z

(f ◦ πX + g ◦ πY ) dλ;λ ∈ Λ(Z)}.

Proof. Any separable mesurable space is isomorphic to a measurable space consisting of
a subset of the closed interval [0, 1] and its Borel σ-algebra (see [2], page 5, 4◦). Therefore
this corollary can be proved by transforming to the problem into one for the case of sepa-
rable metric spaces
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