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Abstract. It is well-known that, for a finite quiver Γ and its path algebra kΓ over
a field k, the linear-representation category Lin-RepΓ is equivalent to the kΓ-module
category kΓ-Mod . The purpose of this paper is to generalize the conclusion to the so-
called set-representation category Set-RepΓ and its equivalent category P (Γ)-SET �.

The authors firstly introduce the definition of the set-representation category Set-
RepΓ and find out its equivalent category P (Γ)-SET �. Secondly, through a finite
connected quiver Γ on which all objects of P (Γ)-SET � are (positively) graded, they
find some interesting relations between the two categories kΓ-Mod and P (Γ)-SET � (see
Corollary 3.8 and Corollary 3.9 ), although one of them is abelian while the other is
not. Under the equivalence of categories, such relations also exist between Lin-RepΓ
and Set-RepΓ.
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1 Preliminaries Firstly, we explain some concepts and notations used in this paper,
where those on quivers and the representation theory of algebras can be found in [1][2], and
those on S-Systems and the theory of semigroups are from [3].

(1) Quiver
A quiver Γ = (Γ0, Γ1) is an oriented graph, where Γ0 is the set of the vertices and Γ1 is

the set of arrows between vertices. A sub-quiver of Γ is just its oriented sub-graph.
We say a quiver Γ is a finite quiver if Γ0 and Γ1 are both finite sets. We denote by

s : Γ1 → Γ0 and t : Γ1 → Γ0 the maps, where s(α) = i and t(α) = j when α : i → j is an
arrow from the vertex i to the vertex j.

A path p in the quiver Γ is either an ordered sequence of arrows p = αn · · ·α2α1 with
t(αl) = s(αl+1) for 1 ≤ l ≤ n, or the symbol ei for i ∈ Γ0. We call the path ei trivial
path and we define s(ei) = t(ei) = i. For a non-trivial path p = αn · · ·α2α1, we define
s(p) = s(α1), and t(p) = t(αn).

A vertex i in Γ0 is called a sink if there is no arrow α with s(α) = i and a source if there
is no arrow α with t(α) = i.

(2) S-System
Let S be a semigroup and M a non-empty set. If the map ϕ : S ×M −→ M satisfies

ϕ(s2, ϕ(s1, m)) = ϕ(s2s1, m), ∀s1, s2 ∈ S, ∀m ∈ M , then (M, ϕ) is called a left S-System,
or says, S acts on the left of M .

For short, denote ϕ(s,m) by sm, left S-System (M, ϕ) just as M . Similarly, we can
define right S-Systems.
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Let M, N are two S-Systems, f : M −→ N is called a S-morphism from M to N , if
f(sm) = sf(m), ∀s ∈ S and ∀m ∈ M . All left S-Systems and all S-morphisms between
them constitute a category, denoted by S-SET .

Clearly, if the semigroup S contains zero element, then any S-System M must have
an element θ, such that sθ = θ, ∀s ∈ S. If moreover, M contains a unique element θM

satisfying sθM = θM , 0m = θM , ∀s ∈ S and ∀m ∈ M , we call such S-System M central.
All central S-Systems and S-morphisms between them also constitute a category. Clearly
it is a full sub-category of S-SET .

(3) Notations
In this paper, #A or | A | stands for the cardinal number of a set A. ∪̇i∈IAi denotes

the disjoint union of a family of sets {Ai}i∈I . And, Z denotes the set of all integers.

2 Set-Representations of A Quiver

Definition 2.1 Let Γ = (Γ0, Γ1) be a quiver with Γ0 the set of vertices and Γ1 the set of
arrows between vertices. A set-representation (S, f) of a quiver Γ = (Γ0, Γ1) is a set of sets
{S(i) : i ∈ Γ0} together with maps fα: S(i)→ S(j) for each arrow α: i→ j.

A morphism h: (S, f) → (S′, f ′) between two set-representations of Γ is a collection
{hi : S(i)→ S′(i)}i∈Γ0 of maps such that for each arrow α: i→ j in Γ1 the diagram:

S(i) S′(i)

S(j) S′(j)
�

fα

�hi

�

f ′
α

�hj

Figure(I)

commutes. If h: (S, f) → (S′, f ′) and g: (S′, f ′) → (S′′, f ′′) are two morphisms between
set-representations, then the composition gh is defined to be the collection of maps {gihi:
S(i) → S′′(i)}i∈Γ0 . In this way, we get the category of set-representations of Γ, which we
denote by Set-RepΓ.

If we think from any set X , there is a unique map 0̄ : X → ∅ and to any set Y , there is
a unique map 0 : ∅ → Y , then we can define the zero object in Set-RepΓ as follows: (S, f)
is called the zero object, which we denote by (∅, 0), if S(i) = ∅ for all i ∈ Γ0 and fα = 1∅
for each arrow α in Γ1.

An object (S, f) is called a sub-object of an object (S′, f ′) in Set-RepΓ, if S(i) ⊆ S′(i)
for all i ∈ Γ0 and fα = f ′

α|S(i) for each arrow α starting from i.
A sum of two objects (S, f) and (S′, f ′) in Set-RepΓ is the object (W,g), where W (i) =

S(i)
∐

S′(i) for each i ∈ Γ0 and gα = fα

∐
f ′

α for all α ∈ Γ1. An object (S, f) is said to be
indecomposable if it can not be written as the sum of any two nonzero set-representations.
An object (S, f) is simple if it has no proper nonzero sub-objects. Clearly, a simple object
is indecomposable.

Next, we illustrate with some examples.

Example 2.1 Let (S, f) be an object in Set-RepΓ and V (i) = {(a, a) | a ∈ S(i)}, gα =
(fα

∐
fα) |V (i) for each i ∈ Γ0 and an arrow α starting from i, then (V, g) is a sub-object

of (S, f)
∐

(S, f), which is denoted as 1(S,f).

Example 2.2 Let Γ be the quiver 1· → ·2, (S, f) and (S
′
, f

′
) be two set-representations,

where S(1) = {x1, y1}, S(2) = {x2, y2}, S
′
(1) = {x′

1, y
′
1}, S

′
(2) = {x′

2, y
′
2}, fα(x1) = x2,
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fα(y1) = y2, f
′
α(x

′
1) = f

′
α(y

′
1) = x

′
2. Let h1 : S(1) → S

′
(1) with h1(x1) = y

′
1 and h1(y1) =

x
′
1, h2 : S(2) → S

′
(2) with h2(x2) = h2(y2) = x

′
2, then h = {h1, h2} is a morphism from

(S, f) to (S
′
, f

′
).

In the category Set-RepΓ, for a morphism h = {hi}i∈Γ0 : (S, f) → (S
′
, f

′
), we define

the image Imh to be the suboject (U, g) of (S
′
, f

′
), where U(i) = Imhi and gα = f

′
α|Imhi

for each arrow α : i → j. We define the kernel Kerh to be the sub-object (V, f
′′
) of

(S, f)
∐

(S, f), where V (i) = {(a, b)|a, b ∈ S(i) withhi(a) = hi(b)} and f
′′
α = (fα

∐
fα)|V (i)

for each arrow α : i→ j.
If each hi is injective (respectively surjective), we call h a monomorphism (respectively

an epimorphism), and h is an isomorphism if and only if h is both monomorphic and epimor-
phic. The morphism h given in Example 2.2 is neither monomorphic nor epimorphic. We call

the sequence (S, f) h→ (S
′
, f

′
) h

′
→ (S

′′
, f

′′
) a related exact sequence if (Imh

∐
Imh)

⋃
1(S′ ,f ′)

= Kerh
′
. Then, we have

Proposition 2.1 (i) The sequence (∅, 0)→ (S, f) h→ (S
′
, f

′
) is related exact if and only if

h is a monomorphism.
(ii) Suppose | S′

(i) |≥ 2 for all i ∈ Γ0, then the sequence (S, f) h→ (S
′
, f

′
) → (∅, 0) is

related exact if and only if h is an epimorphism.

Proof: (i) (∅, 0)→ (S, f) h→ (S
′
, f

′
) related exact

⇐⇒ Kerh = 1(S,f)

⇐⇒ (Kerh)(i) = {(a, a)|a ∈ S(i)}, ∀i ∈ Γ0

⇐⇒ {(a, b)|a, b ∈ S(i), hi(a) = hi(b)} = {(a, a)|a ∈ S(i)}, ∀i ∈ Γ0

⇐⇒ hi(a) = hi(b) implies a = b, ∀i ∈ Γ0 and a, b ∈ S(i)
⇐⇒ hi is injective, ∀i ∈ Γ0

⇐⇒ h is monomorphic.
(ii) (S, f) h→ (S

′
, f

′
)→ (∅, 0) related exact

⇐⇒ (Imh
∐

Imh) ∪ 1(S′ ,f ′) = (S
′
, f

′
)
∐

(S
′
, f

′
)

⇐⇒ (Imhi

∐
Imhi) ∪ {(a

′
, a

′
)|a′ ∈ S

′
(i)} = S

′
(i)

∐
S

′
(i), ∀i ∈ Γ0

⇐⇒ if a
′
, b

′ ∈ S
′
(i) and a

′ �= b
′
, then (a

′
, b

′
) ∈ Imhi

∐
Imhi, ∀i ∈ Γ0

⇐⇒ hi is surjective, ∀i ∈ Γ0

⇐⇒ h is epimorphic.
#
An object (S, f) is said to be projective if for an arbitrary epimorphism h

′
: (S

′
, f

′
) →

(S
′′
, f

′′
), and an arbitrary morphism h

′′
: (S, f) → (S

′′
, f

′′
), there exists a morphism

h : (S, f)→ (S
′
, f

′
) such that h

′′
= h

′
h, i.e. we have the commutative diagram

(S, f)

(S
′
, f

′
) (S

′′
, f

′′
)

�
�

�
��

h

�
h′′

�h′

Figure(II)

Dually, an object (S, f) is said to be injective, if for an arbitrary monomorphism h
′

:
(S

′′
, f

′′
) → (S

′
, f

′
) and an arbitrary morphism h

′′
: (S

′′
, f

′′
) → (S, f), there exists a

morphism h : (S
′
, f

′
)→ (S, f), such that h

′′
= hh

′
, i.e. we have the commutative diagram
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(S, f)

(S
′′
, f

′′
) (S

′
, f

′
)

�
h′′

�h′
�

�
�

�� h
Figure(III)

Let P (Γ) be the set consisting of 0 and all paths in the quiver Γ . Define a multiplication
· on P (Γ) as follows: 0 · ρ = ρ · 0 = 0 for all ρ ∈ P (Γ), for any two paths ρji from i to j

and ρtk from k to t, ρji · ρtk =
{

0, if i �= t
ρjiρtk, if i = t

where ρjiρtk means the connection of

ρji and ρtk for i = t.
Then P (Γ) becomes a semigroup with zero 0 under the multiplication ·. Omitting ·, we

usually write ρ1ρ2 instead of ρ1 · ρ2.
Now, we define a subcategory P (Γ)-SET � of the category P (Γ)-SET : the objects M are

P (Γ)-Systems satisfying (i) P (Γ)M = M ; (ii) there is a unique element θM ∈M such that
0m = θM , for all m ∈ M (Here θM acts as the “zero element” of M); (iii) if eim �= θM ,
then αm �= θM , for all arrows α starting from i.

Note that for any ρ ∈ P (Γ), we always have ρθM = ρ(0m) = (ρ · 0)m = 0m = θM . And
clearly P (Γ) is an object of P (Γ)-SET �, called the regular object, and {θ} is the zero object
of P (Γ)-SET �, if we define the action as ρθ = θ for all ρ ∈ P (Γ).

For two objects M and N in P (Γ)-SET �, a morphism ϕ: M → N is defined as a map
satisfying (i) ϕ(ρm) = ρϕ(m) for any m ∈M and ρ ∈ P (Γ); (ii) ϕ(m) �= θN , if m �= θM .

Note that (ii) is equivalent to say ϕ(M \ {thetaM}) ⊆ N \ {thetaN}, and when ρ = 0,
from (i), it must hold that ϕ(θM ) = θN .

Then, P (Γ)-SET � is exactly a subcategory of the category P (Γ)-SET .
We have known from [1][2] that, for a field k and a finite quiver Γ, there exists an equiva-

lence between the two categories Lin-RepΓ and kΓ-Mod, where Lin-RepΓ is the category
of k-linear representations of Γ and kΓ-Mod the kΓ-module category. It is interesting for
us to find that the similar result also holds between the two weaker categories Set-RepΓ
and P (Γ)-SET �, that is, we have :

Theorem 2.2 The two categories Set-RepΓ and P (Γ)-SET � are equivalent.

Proof: We start by defining two functors F : Set-RepΓ → P (Γ)-SET � and H : P (Γ)-SET �

→ Set-RepΓ.
For an object (S, f) in Set-RepΓ, set M = ∪̇i∈Γ0S(i) ∪ {θM}, where θM is an element

which is not in S(i) for all i ∈ Γ0. Define the action of P (Γ) on the set M as follows: for
any m ∈M , ρ ∈ P (Γ),

(i) ρm = θM , if ρ = 0;
(ii) ρm = m, if m ∈ S(i) and ρ = ei;
(iii) ρm = fα(m), if m ∈ S(i) and ρ is an arrow α : i→ j;
(iv) ρm = fαs · · · fα1(m), if m ∈ S(i), ρ = αs · · ·α1 where αs, · · · , α1 are arrows and α1

starts from i.
From this definition, it is easy to see that P (Γ){θM} = {θM}, and that if m ∈ S(i) but

ρ does not start from i, then ρm = ρ(eim) = (ρ · ei)m = 0m = θM .
Clearly, M is a P (Γ)-System under the action defined above. Moreover, we can say M

is an object of P (Γ)-SET �. Firstly, the element θM satisfies 0m = θM for all m ∈M . And,
obviously, P (Γ)M ⊆ M . Conversely, for all m ∈ M , when m �= θM , suppose m ∈ S(i) for
some i, then m = eim; when m = θM , we have P (Γ){θM} = {θM}. Hence M ⊆ P (Γ)M .
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It follows that P (Γ)M = M . If eim �= θM , which implies m ∈ S(i), then for all arrows as
α : i→ j, αm = fα(m) ∈ S(j), so αm �= θM . Then M is an object of P (Γ)-SET �.

Now, we can start to define the functors F : Set-RepΓ→ P (Γ)-SET � by F (S, f) = M .
Let h be a morphism from (S, f) to (S′, f ′) in the category Set-RepΓ. Then, for each

i ∈ Γ0, we have a map hi : S(i) → S′(i) satisfying the Figure (I), i.e. hjfa = f ′
ahi for

each arrow α from i to j. It has been known that M = F (S, f) = ∪̇i∈Γ0S(i) ∪ {θM} and
M ′ = F (S′, f ′) = ∪̇i∈Γ0S

′(i) ∪ {θM ′}, Introducing a map h̃ : M → M ′ satisfying that
h̃|S(i) = hi for all i and h̃(θM ) = θM ′ . Thus, we can get h̃(αm) = αh̃(m) for each m ∈ M .
Moreover, h̃(ρm) = ρh̃(m) for each m ∈ M , ρ ∈ P (Γ). And, when m �= θM , h̃(m) �= θM ′

since h̃(S(i)) = hi(S(i)) ⊆ S′(i). Therefore h̃ is a morphism from M to M ′. This means
one can set F (h) = h̃.

We next want to define a functor H : P (Γ)-SET � → Set-RepΓ. For an object M
in category of P (Γ)-SET �, let S(i) = eiM \ {θM}. For all arrows α : i → j, define
fα : S(i) → S(j) as follows: for all m ∈ S(i), suppose m = eim

′
, let fα(m) = αm, it

is well-defined since αm = α(eim
′
) = αm

′ �= θM and αm = (ejα)m = ej(αm) ∈ S(j).
Therefore let H(M) = (S, f), where S = {S(i) : i ∈ Γ0}, and f = {fα : there is an arrow α
from i to j}. Then H(M) is an object of category Set-RepΓ.

If ϕ : M →M ′ is a morphism in P (Γ)-SET �, we have H(M) = (S, f), H(M ′) = (S′, f ′),
where S(i) = eiM \ {θM} and S′(i) = eiM

′ \ {θM ′}. Since ϕ(eiM) = eiϕ(M) ⊆ eiM
′ and

ϕ(m) �= θM ′ for all m ∈ M and m �= θM , then we get ϕi : eiM \ {θM} → eiM
′ \ {θM ′} by

restriction, i.e. ϕi = ϕ|S(i) : S(i) → S′(i). For each arrow α : i → j, we have αϕ(m) =
ϕ(αm), for all m ∈M . So αϕi(m) = ϕj(αm), for all m ∈ S(i). Hence f ′

αϕi(m) = ϕjfα(m),
for all m ∈ S(i). Then, f ′

αϕi = ϕjfα for any arrow α : i → j. Therefore we can set
H(ϕ) = {ϕi}i∈Γ0 , which is a morphism in Set-RepΓ.

Next, we will prove F and H are mutual-inverse equivalent functors. Let (S, f) be
an object in Set-RepΓ, then M = F (S, f) = ∪̇j∈Γ0S(j) ∪ {θM} and eiM \ {θM} =
ei(∪̇j∈Γ0S(j)) \ {θM} = eiS(i) \ {θM} = S(i). For an arrow α : i → j in Γ1, the
map fα : S(i) → S(j) induces the map f̃α : F (S, f) → F (S, f) satisfying f̃α(m) = αm
for all m ∈ F (S, f). The restriction of f̃α on eiF (S, f) \ {θM} = S(i) is just fα. So
HF (S, f) = (S, f).

For a morphism h = {hi}i∈Γo : (S, f) → (S′, f ′), we have F (h) = h̃ where h̃ |S(i)= hi,
h̃(θM ) = θM ′ . Due to the definition of H , it follows HF (h) = {hi}i∈Γ0 . Thus, HF = id
the identity functor in Set-RepΓ.

Let M be an object in P (Γ)-SET �, then H(M) = (S, f), where S(i) = eiM \ {θM} and

f = {fα : S(i)→ S(j) | fα(mi) = αmi for an arrow α : i→ j and mi ∈ S(i)}.

When i �= j, if there exists two elements m, m
′ ∈M , such that eim = ejm

′ �= θM , then for
an arrow α : i → k, α(eim) = αm �= θM , but α(ejm

′
) = (αej)m

′
= 0m

′
= θM , this is a

contradiction. Hence S(i)∩S(j) = ∅ when i �= j. So if we can prove M = ∪i∈ΓoS(i)∪{θM},
then FH(M) = M . In fact, ∪i∈ΓoS(i) ∪ {θM} ⊆ P (Γ)M = M . Conversely, for all m ∈M ,
if m = θM , it is clearly that m ∈ ∪i∈ΓoS(i)∪{θM}, when m �= θM , since m ∈M = P (Γ)M ,
there is ρji ∈ P (Γ),m′ ∈ M , such that m = ρjim

′. Clearly m′ �= θM , so m = ρjim
′ =

ej(ρjim
′) ∈ ejM \ {θM} = S(j). Therefore, M ⊆ ∪i∈ΓoS(i) ∪ {θM}.

For a morphism ϕ : M → M ′, we have H(ϕ) = {ϕi : S(i)→ S′(i) | ϕi = ϕ |S(i)}i∈Γ0 .
Moreover, due to the definition of F , it follows FH(ϕ) = ϕ. Therefore, FH = id the
identity functor in P (Γ)-SET �.

#
As a corollary, the following holds naturally:
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Corollary 2.3 (i) An object (V, f) in the category Set-RepΓ is projective (respectively
injective, simple, indecomposable) if and only if F (V, f) is projective (respectively injective,
simple, indecomposable) in the category P (Γ)-SET �;

(ii) A sequence (U, f) → (V, g) → (W,h) in the category Set-RepΓ is related exact
if and only if the induced sequence F (U, f) → F (V, g) → F (W,h) is related exact in the
category P (Γ)-SET �.

A relation σ on a quiver Γ is a set of paths which have the same two endpoints. If
ρ = {σt}t∈T is a set of relations on Γ, the pair (Γ, ρ) denotes a quiver with relations.

Associating with (Γ, ρ), we define P (Γ, ρ) to be P (Γ)/ ∼, where x ∼ y in P (Γ) if and
only if x = y or x and y lie in the same σt for a certain t ∈ T . The category Set-
Rep(Γ, ρ) of representations is the full subcategory of Set-RepΓ, whose objects are (S, f)
with fσt1

= fσt2
, when σt1 and σt2 lie in the same σt for some t ∈ T and here fσt1

stands
for fαs · · · fα1 , when σt1 = αs · · ·α1 with each αi an arrow. The subcategory P (Γ, ρ)-SET �

of category P (Γ)-SET � can be defined to be with objects M which satisfy σt1M = σt2M ,
if σt1 and σt2 lie in the same σt for some t ∈ T .

Combining this concept with Theorem 2.2, we get :

Proposition 2.4 Let (Γ, ρ) be a quiver with relations, then the functor F : Set-RepΓ →
P (Γ)-SET � induces an equivalence between Set-Rep(Γ, ρ) and P (Γ, ρ)-SET �.

Proof: If (S, f) is an object in Set-Rep(Γ, ρ), then by definition, fσt1
= fσt2

if σt1 and
σt2 lie in the same σt ∈ ρ. Hence σt1F (S, f) = σt2F (S, f), so that F (S, f) is an object of
P (Γ, ρ)-SET �.

Conversely, if F (S, f) is an object of P (Γ, ρ)-SET �, then σt1F (S, f) = σt2F (S, f) when
σt1 and σt2 lie in the same σt ∈ ρ, i.e. they have the same two endpoints. So fσt1

= fσt2
,

and hence (S, f) is an object of Set-Rep(Γ, ρ).
#
Let (Γ, ρ) be a quiver with relations and F : Set-Rep(Γ, ρ) → P (Γ, ρ)-SET � be the

above equivalence. Then as Corollary 2.3 we have the same conclusion between the two
categories Set-Rep(Γ, ρ) and P (Γ, ρ)-SET � by F .

Corollary 2.5 (i) An object (V, f) in Set-Rep(Γ, ρ) is projective (respectively injective,
simple, indecomposable) if and only if F (V, f) is projective (respectively injective, simple,
indecomposable) in P (Γ, ρ)-SET � . (ii) A sequence (U, f) → (V, g) → (W,h) in Set-
Rep(Γ, ρ) is related exact if and only if the induced sequence F (U, f)→ F (V, g)→ F (W,h)
is related exact in P (Γ, ρ)-SET �.

3 Relations between Set-Representations and Linear-
Representations on A Quiver This section consists of four parts, every semigroup
mentioned contains a zero element, and the quiver Γ is finite. Here we use υ, ω, · · · stand
for the vertices in the quiver Γ.

PART ONE (Positively) graded semigroups and (positively) graded S-systems

1) A semigroup S is graded if there exists a family of non-empty subsets {S(i)}i∈Z, where
S(0) is a sub-semigroup, S = ∪i∈ZS(i), S(i)S(j) ⊆ S(i+j), and S(i) ∩ S(j) = {0} for i �= j.
When S = ∪i≥0S(i) is a graded semigroup, S is called positively graded. And a positively
graded semigroup S is called strongly graded if S(i)S(j) = S(i+j) for any i, j ≥ 0.

Note that, the path semigroup P (Γ) which consists of 0 and all paths in Γ has a natural
positive gradation: P (Γ) = ∪i≥0(P (Γ))(i), where (P (Γ))(i) consists of 0 and all the paths
whose length is i. This positive gradation of P (Γ) is strongly graded obviously.
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2) Let S be a graded semigroup, M be an S-System in S-SET �, if there exists a family
of nonempty subsets {M(i)}i∈Z, such that M = ∪i∈ZM(i), S(i)M(j) ⊆ M(i+j), and M(i) ∩
M(j) = {θM} for i �= j, then M is said to be graded. Similarly, for positively graded
semigroup S, we can give the definition of positive gradation for M.

3) Let M be positively graded P (Γ)-System in P (Γ)-SET �, where the gradation of P (Γ)
is natural, if every homogeneous component is the union of some Mυ = eυM , that is,
for every vertex υ ∈ Γ0, eυM is contained in some a homogeneous component, then M is
said to be vertex positively graded. Clearly, if M is positively graded and for any vertex
υ ∈ Γ0, Mυ contains at most one element except for θM , then M is vertex positively graded.

PART TWO Arrow Positive Functions and Symmetric Cycles

Definition 3.1 (i) Function F : Γ0 −→ Z is called an arrow function on Γ, if F (t(α)) =
F (s(α)) + 1 for any arrow α ∈ Γ1(see [4]).

(ii) If function F : Γ0 −→ Z+ ∪ {0} is an arrow function on Γ, we call F an arrow
positive function on Γ.

Proposition 3.1 F is an arrow positive function on a connected quiver Γ, G : Γ0 −→
Z+∪{0} is another positive function, then G is an arrow positive function on Γ if and only
if there exists an integer k, such that F = G + k.

Proof: (⇐) For any arrow α ∈ Γ1, G(t(α)) = F (t(α))−k = F (s(α))+1−k = G(s(α))+1.
(⇒) Consider the function H : Γ0 −→ Z, where H = F − G. We have known that F

and G are both arrow positive functions, so H(t(α)) = F (t(α))−G(t(α)) = (F (s(α))+1)−
(G(s(α)) + 1) = F (s(α)) − G(s(α)) = H(s(α)), for any arrow α ∈ Γ1. From the fact that
Γ is connected, we have H(υ) = H(ω), for any two vertices υ, ω ∈ Γ0. If we let H(υ) = k
for any υ ∈ Γ0, then F = G + k.

#

Definition 3.2 For a non-trivial path ρ in a quiver Γ, if s(ρ) = e(ρ), we say it is an
oriented cycle. A sub-quiver ∆ of a quiver Γ is said to be a cycle , if when omitted the
direction of all arrows, the graph, which we call the base graph, is closed . In a cycle , when
the number of clockwise arrows equals to the number of anti-clockwise arrows, we say the
cycle is symmetric.

By Definition 3.1 and 3.2, when a quiver has no cycle, we can always define an arrow
positive function on it. And it is clearly that, an oriented cycle is not symmetric. Indeed,
we have the following conclusion:

Lemma 3.2 A finite cycle ∆ is symmetric if and only if there is an arrow positive function
on ∆.

Proof: (⇐) Suppose F : ∆0 −→ Z+∪{0} is an arrow positive function, the base graph of
∆ is like Figure(IV ), we consider the vertex 1 the same as n+1, then F (n+1) = F (1). From
the definition, F (n + 1) = F (1)+ #{clockwise arrows in ∆}−#{anti-clockwise arrows in ∆
}, that is, #{clockwise arrows in ∆ }−#{anti-clockwise arrows in ∆ }= F (n+1)−F (1) = 0.
So the cycle ∆ is symmetric.

(⇒) Suppose the base graph of ∆ is like Figure(IV ), inductively define F : ∆0 −→
Z+ ∪ {0} as follows: F (1) = n, and when m ≥ 2,

F (m) = F (m− 1) + 1, if m− 1→ m
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F (m) = F (m− 1)− 1, if m→ m− 1

because ∆ is symmetric and F (n + 1) = F (1), it is easy to check that the definition above
is well-defined and it is an arrow positive function on ∆.

#
The lemma below answers to the question that for what quiver, there exists an arrow

positive function.

Lemma 3.3 Suppose Γ is a finite connected quiver, if any cycle in Γ is symmetric, there
must exist an arrow positive function on Γ.

Proof: Inducing on | Γ0 |. Clearly, the conclusion is right when | Γ0 |= 1.
Since Γ does not contain oriented cycles, Γ0 contains at least one source, denote by s. Let

{υ1, υ2, · · · , υt} denotes the set of all ending points of the arrows starting from s, throwing
the source s, we get a full sub-graph of Γ, which we denote by Γ′. Suppose Γ′ = ∪l

i=1Γ(i),
where Γ(1), Γ(2), · · · , Γ(l) are all the connected components of Γ′. Since quiver Γ is connect,
then l ≤ t, and we get a partition of {υ1, υ2, · · · , υt}: {υ1, υ2, · · · , υt} = S1 ∪ S2 ∪ · · · ∪ Sl,
where the union is disjoint and Si ⊆ Γ(i)0, i = 1, · · · , l.

For any Γ(i), the cycle in it is also symmetric, and by induction, on each Γ(i) we can
define an arrow positive function Fi : Γ(i)0 −→ Z+ ∪ {0}.

From the fact that each Γ(i) is connected, for any two vertices υ1, υ2 ∈ Si, there exists
a path ρ from υ1 to υ2 or from υ2 to υ1, suppose that is υ1·

p→ ·υ2, so s· → υ1·
p→ ·υ2 ← ·s

forms a cycle in Γ, so it is symmetric and hence in the path p the number of the clockwise
arrows equals to the number of the anti-clockwise arrows. We know that Fi is an arrow
positive function on Γ(i), so Fi(υ2) = Fi(υ1)+ #{clockwise arrows in p}−#{anti-clockwise
arrows in p}=Fi(υ1). So for all υ ∈ Si, Fi(υ) is fixed.

Now we define another positive function Gi : Γ(i)0 −→ Z+ ∪ {0}, i = 1, 2, · · · , l as
follows:

Gi = Fi − Fi(υ) + k + 1, where υ ∈ Si, and k is a positive integer large enough
such that Gi ≥ 1 for all i = 1, 2, · · · , l. Then by Proposition 3.1 Gi is also an arrow
positive function on Γ(i), and Gi(υ) = k + 1 for any υ ∈ Si, i = 1, 2, · · · , l. We know
Γ0 = {s} ∪ {∪l

i=1Γ(i)0}, define F : Γ0 −→ Z+ ∪ {0} by F (s) = k, and F (υ) = Gi(υ) if
υ ∈ Γ(i)0, then F (υ1) = F (υ2) = · · · = F (υt) = k +1 = F (s)+1. So F is an arrow positive
function on Γ.

#
By then, we get the following result:

Proposition 3.4 Γ is a finite connected quiver, then there exists an arrow positive function
on Γ if and only if it does not contain any non-symmetric cycle.
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Proof: Since the restriction of an arrow positive function on its sub-graph is also an
arrow positive function, we get the theorem easily from the Lemma 3.3 and Lemma 3.2
above.

#

PART THREE The quiver Γ on which all P (Γ)-Systems in P (Γ)-SET � are positively
graded

Lemma 3.5 For a finite quiver Γ, if all P (Γ)-Systems in P (Γ)-SET � are positively graded,
then any cycle in Γ is symmetric.

Proof: Suppose Γ contains a cycle ∆ with the base graph like Figure(IV ), consider a
special P (Γ)-System M in P (Γ)-SET �, its set-representation according to the equivalence
in Theorem 2.3 is (S, f), where all S(υ) are equal and contain only one element, the maps
between them are all identity maps.

Since M is positively graded, from its special construction it is also vertex positively
graded. Define a function F : Γ0 −→ Z+ ∪ {0} as follows: F (υ) = i, if eυM ⊆ M(i). It
is easy to know F is an arrow positive function on Γ, and so it is on ∆. Indeed, if for an
arrow α : υ → ω, F (υ) = i, then from the construction of M , eωM = α(eυM) ⊆ αM(i) ⊆
P (Γ)(1)M(i) ⊆M(i+1), i.e. F (ω) = F (υ) + 1. By Lemma 3.2, ∆ is a symmetric cycle.

#
Thus, we get the main result of this section:

Theorem 3.6 Suppose Γ is a finite connected quiver, P (Γ) is the path semigroup consisting
of zero and all paths in Γ, then the following properties are equivalent:

(i) all P (Γ)-Systems in P (Γ)-SET � are positively graded;
(ii) any cycle in Γ is symmetric;
(iii) there exists an arrow positive function on Γ;
(iv) all P (Γ)-Systems in P (Γ)-SET � are vertex positively graded.

Proof: (i)⇒(ii): By Lemma 3.5.
(ii)⇒(iii): By Lemma 3.3.
(iii)⇒(iv): Suppose F : Γ0 −→ Z+ ∪{0} is an arrow positive function on quiver Γ, since

for any P (Γ)-System M in P (Γ)-SET �, M = ∪υ∈Γ0eυM , let M(i) = ∪υ∈Γ0,F (υ)=ieυM ,
then M = ∪F (υ)=i,υ∈Γ0M(i) is a positive gradation. Actually, for any arrow α in Γ1, we
have F (t(α)) = F (s(α)) + 1. Then when i �= F (s(α)), αM(i) = {θM} ⊆ M(i+1), since
αM = αes(α)M . And from the definition of M(i) and αM(F (s(α))) ⊆ et(α)M ⊆M(F (t(α))) =
M(F (s(α))+1), we know M is vertex positively graded.

(iv)⇒(i): By the definition of vertex positively graded.
#

Next, we give an example.

Example 3.1 Let Γ be a quiver as 1 α1→ 2 α2→ 3 α3→ · · · αn−1→ n , then all P (Γ)-Systems in
P (Γ)-SET � are positively graded.

Indeed, if M is a P (Γ)-System of P (Γ)-SET �, let M(i) = eiM , i = 1, 2, · · · , n. From the proof
of Theorem 2.3, we know M = ∪n

i=1(eiM\{θM})∪{θM} and (eiM\{θM})∩(ejM\{θM}) = ∅
when i �= j, so M = ∪n

i=1M(i) and M(i) ∩M(j) = {θM} when i �= j. And the inclusion
(P (Γ))(i)M(j) ⊆M(i+j)is also easy to prove, here M(i) = {θM} for any i > n.
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PART FOUR Relations between the two categories of set-representations and linear-
representations

At first, we cite the major theorem in [4] below:

Theorem 3.7 ([4]) Let Γ be a finite connected quiver, kΓ is the corresponding path
algebra, then the following properties are equivalent:

(i) all kΓ-modules are graded;
(ii) any cycle in Γ is symmetric;
(iii) there exists an arrow function on Γ;
(iv) all kΓ-modules are vertex graded.

From Theorem 3.6 and Theorem 3.7, we know that for a finite connected quiver Γ,
there is an arrow function on it if and only if there is an arrow positive function on it.
Since all the proofs in [4] about gradation were based on positive gradation, all conclusions
about gradation in [4] can be equivalently replaced by the ones about positive gradation.
Similarly, our results about positive gradation in this paper can be equivalently replaced
by the ones about gradation. Then through the common statement (ii) in Theorem 3.6
and Theorem 3.7, we have a collection of equivalent statements. In particular, we have the
following corollaries:

Corollary 3.8 Let Γ be a finite connected quiver and k a field, then the following two
properties are equivalent:

(i) all kΓ-modules are (positively) graded;
(ii) all P (Γ)-Systems in P (Γ)-SET � are (positively) graded.

Corollary 3.9 Let Γ be a finite connected quiver and k a field, then the following two
properties are equivalent:

(i) all kΓ-modules are vertex (positively) graded;
(ii) all P (Γ)-Systems in P (Γ)-SET � are vertex (positively) graded.

From the two theorems above, we find that on a finite connected quiver Γ, there are some
interesting relations between the two categories P (Γ)-SET � and kΓ-Mod, one of which is not
abelian while the other is. Since the set-representation category Set-RepΓ is equivalent to
the category P (Γ)-SET �, and the linear-representation category Lin-RepΓ is equivalent to
the category kΓ-Mod, there are also some similar relations between the two representation
categories Set-RepΓ and Lin-RepΓ
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