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DISTRIBUTION
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Abstract. Exact information losses with respect to the maximum likelihood estima-
tor(MLE) in various models are hardly explored. The aim of this paper is to reconsider
a multivariate Efron’s information curvature from the viewpoint of the regression and
to investigate an exact Fisher information loss with respect to MLE in a parameteriza-
tion in the multivariate gamma distribution. The exact information loss was explicitly
calculated in detail and the results were also a natural extension for the Nile problem.

1 Introduction To investigate an exact information loss of a various model is important
to study the efficiency of estimators in detail, especially MLE. But, for the exact loss, there
were few studies, for example, Fisher [4] studied the Nile problem which showed the exact
information loss explicitly all, and Inagaki and Kumagai [6] and furthermore Inoue, Inagaki
and Kumagai [7] studied the spherical model in the normal distribution which showed the
exact information loss explicitly except a part of it. The Nile problem by Fisher showed
the exact information loss with a hyperbolic curve as a parameter in the two dimensional
exponential distribution.

In this paper, we propose a generalized hyperbolic model as a natural extension of the
Nile problem, reconsider a multivariate Efron’s information curvature from the viewpoint
of the regression, which Efron’s information curvature means a natural extension of the
information loss with Efron’s statistical curvature [3]. The projection matrix by regression
has an important role in this calculation, which is partly based on the projection with respect
to the conditional expectation given MLE by Inagaki [5]. Also we explicitly investigate the
exact Fisher information loss with respect to MLE in the generalized hyperbolic model in
detail, so that we find that the limitation of the exact Fisher information loss is equivalent
to Efron’s information curvature, which is the same as the result of Amari’s information
geometric approach [1].

2 Generalized hyperbolic model Let k be a positive integer and let random vari-
ables {Xi}k

i=1 be independent mutually and be each distributed with the gamma distri-
bution {GA(qi, α−1

i )}k
i=1, where {qi}k

i=1 and {αi}k
i=1 are constants and parameters respec-

tively which are all positive and finite. We consider the k-dimensional gamma distribution
(X1, . . . , Xk) whose probability density function is

p(x1, . . . , xk) = exp{〈α,x〉 − ψ(α)}h(x)

= exp

{
−

k∑
i=1

αi xi +
k∑

i=1

logαqi

i

}
k∏

i=1

xqi−1
i

Γ(qi)
,
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where

α =

⎛⎜⎝ α1

...
αk

⎞⎟⎠ , x = −

⎛⎜⎝ x1

...
xk

⎞⎟⎠ , ψ(α) = −
k∑

i=1

qi logαi , h(x) =
k∏

i=1

xqi−1
i

Γ(qi)
.

Thus some properties of the exponential family bring the mean vector µ(α) = ∇ψ(α) and
the covariance matrix Σ(α) = t∇∇ψ(α) as follows;

µ(α) = −

⎛⎜⎝ q1 α
−1
1

...
qk α

−1
k

⎞⎟⎠ , Σ(α) =

⎛⎜⎜⎜⎝
q1 α

−2
1 0 · · · 0

0 q2 α
−2
2 · · · 0

...
. . .

...
0 · · · 0 qk α

−2
k

⎞⎟⎟⎟⎠ ,

where the notations ∇ and t mean the differentiation by α and the transposition, respec-
tively.

We consider the k-dimensional gamma distribution whose parameters satisfy the condi-
tion ψ(α(θ)) = 0, that is, parameters have the relationships as follows:

α(θ) =

⎛⎜⎜⎜⎝
α1(θ)

...
αk−1(θ)
αk(θ)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
θ1
...

θk−1

ϑ−1

⎞⎟⎟⎟⎠ , θ =

⎛⎜⎝ θ1
...

θk−1

⎞⎟⎠ ,(2.1)

where

ϑ =
k−1∏
i=1

θri

i , 0 < θ1, . . . , θk−1 <∞, r1 =
q1
qk
, . . . , rk−1 =

qk−1

qk
.(2.2)

Note that r1, . . . , rk−1 are positive constants. We call this a generalized hyperbolic model.
The above condition with respect to the cumulant generating function also makes this
model an ”equipotential” curved exponential model. Remark that this model is based on
the parameterization in the k-dimensional gamma distribution and this is different from a
generalized hyperbolic distribution, for instance, in Blæsild [2], and that this restriction is
independent of the former results, for example, Inagaki and Kumagai [6] and Inoue, Ina-
gaki and Kumagai [7], because they just considered the dimensional relationships between
the parameter space {α} with the dimension k and the parameter subspace {θ} with the
dimension k − 1 with respect to the subspace {α(θ)}.

Thus the mean vector and the covariance matrix parameterized with θ are represented
as follows:

µ(θ) = −

⎛⎜⎜⎜⎝
q1 θ

−1
1

...
qk−1 θ

−1
k−1

qk ϑ

⎞⎟⎟⎟⎠ , Σ(θ) =

⎛⎜⎜⎜⎝
q1 θ

−2
1 0 · · · 0

0 q2 θ
−2
2 · · · 0

...
. . .

...
0 · · · 0 qk ϑ

2

⎞⎟⎟⎟⎠ .

The probability density function of the generalized hyperbolic model is

f(x1, . . . , xk | θ) = exp

{
−

k−1∑
i=1

θi xi − ϑ−1 xk

}
h(x),(2.3)
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and the log-likelihood function and its derivatives are

�(θ) = −
k−1∑
i=1

θi xi − ϑ−1 xk + log h(x),

�̇(θ)i =
∂

∂θi
�(θ) = −xi + riϑ

−1θ−1
i xk,

�̈(θ)ij =
∂2

∂θi∂θj
�(θ) =

{ −ri(ri + 1)ϑ−1θ−2
i xk (i = j),

−rirjϑ−1θ−1
i θ−1

j xk (i �= j),

so that, since E(Xk) = qkϑ, each component of Fisher information matrix I(θ) is repre-
sented by

I(θ)ij = −E{�̈(θ)ij} =
{
qkri(ri + 1)θ−2

i (i = j),
qkrirjθ

−1
i θ−1

j (i �= j).(2.4)

In the differentiations of α(θ) with respect to θ, the first derivative is

α̇(θ) =
∂α(θ)
∂ tθ

= (α̇1(θ) · · · α̇k−1(θ)) , α̇i(θ) =

⎛⎜⎜⎝
0
1
0

−ri ϑ−1 θ−1
i

⎞⎟⎟⎠ < i

and the second is

α̈(θ) =
∂ α̇(θ)
∂ θ

=
∂2 α(θ)
∂ θ ∂ tθ

=

⎛⎜⎝ α̈11(θ) · · · α̈1 k−1(θ)
... · · · ...

α̈k−1 1(θ) · · · α̈k−1 k−1(θ)

⎞⎟⎠ ,

where

α̈ii(θ) =
(

0
ri(ri + 1)ϑ−1 θ−2

i

)
, α̈ij(θ) =

(
0

rirjϑ
−1 θ−1

i θ−1
j

)
(i �= j).

The following theorem holds with respect to this generalized hyperbolic model:

Theorem 1 In the k-dimensional generalized hyperbolic model, let P ∗(θ) be the projection
matrix into the subspace spanned by Σ

1
2 (θ)α̇(θ), that is,

P ∗(θ) = Σ
1
2 (θ)α̇(θ)

(
tα̇(θ)Σ(θ)α̇(θ)

)−1 tα̇(θ)Σ
1
2 (θ),

so that the generalized statistical curvature Γ(θ)2 is represented as follows:

Γ(θ)2

=
(
tα̇(θ)Σ(θ)α̇(θ)

)−2
{

tα̈(θ)
[
Ik−1 ⊗ Σ

1
2 (θ)(Ik − P ∗(θ))Σ

1
2 (θ)

]
α̈(θ)

}
=

1
q1 + · · · + qk

Ik−1,(2.5)

where Ik−1 and Ik are the k − 1 and k dimensional identity matrices, respectively, and the
notation ⊗ means the Kronecker product.
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Before the proof, note that the derivation of Γ(θ)2 is on the analogy of the relationship
between the mathematical curvature and the statistical curvature of a surface in the three
dimensional space, and that the formulation of Γ(θ)2 will be also justified by the limitation
of the exact information loss in the next section.

Proof. We define the term

Λ(θ)2 = tα̈(θ)
[
Ik−1 ⊗ Σ

1
2 (θ)(Ik − P ∗(θ))Σ

1
2 (θ)

]
α̈(θ)

= ν22(θ) − ν12(θ)
[
Ik−1 ⊗ ν11(θ)−1

]
tν12(θ),

where ν11(θ) = tα̇(θ)Σ(θ) α̇(θ), ν12(θ) = tα̈(θ) [Ik−1⊗Σ(θ) α̇(θ)] and ν22(θ) = tα̈(θ) [Ik−1⊗
Σ(θ)] α̈(θ). We shall investigate the above three terms and ν11(θ)−2 in turn.

First, we calculate the term ν11(θ). Because of the term

Σ(θ) α̇i(θ) =

⎛⎜⎜⎝
0

qiθ
−2
i

0
−qiϑ θ−1

i

⎞⎟⎟⎠ < i
,

each component of ν11(θ) is represented by

ν11(θ)ij = tα̇i(θ)Σ(θ) α̇j(θ) =
{
qi(ri + 1)θ−2

i , (i = j),
qirjθ

−1
i θ−1

j , (i �= j),

so that the determinant is

det(ν11(θ)) =
k−1∏
i=1

qi θ
−2
i

⎛⎝1 +
k−1∑
j=1

rj

⎞⎠ = r∗
k−1∏
i=1

qi θ
−2
i ,

where r∗ = 1 +
∑k−1

i=j rj . Thus components of the inverse matrix are

(
ν11(θ)−1

)
ij

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
r∗ − ri
qi r∗

θ2i , (i = j),

− 1
qk r∗

θi θj , (i �= j).

Secondly we calculate the term ν12(θ). Because of

Σ(θ) α̈ii(θ) =
(

0
qkri(ri + 1)ϑ θ−2

i

)
and Σ(θ) α̈ij(θ) =

(
0

qkrirjϑ θ
−1
i θ−1

j

)
,

it holds that

tα̈ji(θ)Σ(θ) α̇a(θ) =
{ −qkri(ri + 1)ra θ−2

i θ−1
a , (i = j),

−qkrirjra θ−1
i θ−1

j θ−1
a , (i �= j),

so that each component of ν12(θ) is the following 1 × (k − 1) vector:

ν12(θ)ij = tα̈ij(θ)Σ(θ) α̇(θ)

=

{ (−qkri(ri + 1)θ−2
i raθ

−1
a

)
a=1,... ,k−1

, (i = j),(−qkrirjθ−1
i θ−1

j raθ
−1
a

)
a=1,... ,k−1

, (i �= j).
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Thus, since

ν12(θ)ij ν11(θ)−1 =

⎧⎨⎩
(
− ri(ri+1)

r∗
θ−2

i θb

)
b=1,... ,k−1

, (i = j),(
− rirj

r∗
θ−1

i θ−1
j θb

)
b=1,... ,k−1

, (i �= j)

and

ν12(θ)ji ν11(θ)−1 tν12(θ)ja =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qk
r∗ − 1
r∗

r2i (ri + 1)2

θ4i
, (i = j = a),

qk
r∗ − 1
r∗

r2i r
2
j

θ2i θ
2
j

, (i = a �= j),

qk
r∗ − 1
r∗

r2i (ri + 1)ra
θ3i θa

, (i = j �= a),

qk
r∗ − 1
r∗

rir
2
j ra

θiθ2jθa
, (i �= j �= a),

it holds that

(
ν12(θ)

[
Ik−1 ⊗ ν11(θ)−1

]
tν12(θ)

)
ia

=
k−1∑
j=1

ν12(θ)ji ν11(θ)−1 tν12(θ)ja

=

⎧⎨⎩ qk
r∗−1

r∗

[
r2

i (ri+1)2

θ4
i

+ r2
i

θ2
i

∑
j �=i

r2
j

θ2
j

]
, (i = a),

qk
r∗−1

r∗

[
r2

i (ri+1)ra

θ3
i θa

+ r2
a(ra+1)ri

θ3
aθi

+ rira

θiθa

∑
j �=i,a

r2
j

θ2
j

]
, (i �= a).

Thirdly we calculate the term ν22(θ). Since

tα̈ji(θ)Σ(θ) α̈ja(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qk
r2i (ri + 1)2

θ4i
, (i = j = a),

qk
r2i r

2
j

θ2i θ
2
j

, (i = a �= j),

qk
r2i (ri + 1)ra

θ3i θa
, (i = j �= a),

qk
rir

2
j ra

θiθ2j θa
, (i �= j �= a)

it holds that

ν22(θ)ia =
k−1∑
j=1

tα̈ji(θ)Σ(θ) α̈ja(θ)

=

⎧⎨⎩ qk

[
r2

i (ri+1)2

θ4
i

+ r2
i

θ2
i

∑
j �=i

r2
j

θ2
j

]
, (i = a),

qk

[
r2

i (ri+1)ra

θ3
i θa

+ r2
a(ra+1)ri

θ3
aθi

+ rira

θiθa

∑
j �=i,a

r2
j

θ2
j

]
, (i �= a).

Thus we obtain that

Λ(θ)2ia = ν22(θ)ia − (ν12(θ)
[
Ik−1 ⊗ ν11(θ)−1

]
tν12(θ)

)
ia

=

⎧⎨⎩
qk

r∗
r2

i

θ2
i

(
1+2ri

θ2
i

+ ξ
)
, (i = a),

qk

r∗
rira

θiθa

(
ri

θ2
i

+ ra

θ2
a

+ ξ
)
, (i �= a),



122 E.KUMAGAI AND N.INAGAKI

where ξ =
∑k−1

j=1 r
2
j θ

−2
j .

Last it holds that(
ν11(θ)−2

)
ia

=

{
1

q2
kr2∗

θ2
i

r2
i
{(r2∗ − 2r∗ri)θ2i + r2i ζ}, (i = a),

− 1
q2

kr2∗
θiθa

rira
{r∗raθ2i + r∗riθ2a − riraζ}, (i �= a),

where ζ =
∑k−1

j=1 θ
2
j . Therefore, the generalized statistical curvature

Γ(θ)2 = ν11(θ)−2 Λ(θ)2

has the following components:

qkr
3
∗
(
Γ(θ)2

)
ii

= qkr
3
∗

⎛⎝(ν11(θ)−2
)
ii

Λ(θ)2ii +
∑
a�=i

(
ν11(θ)−2

)
ia

Λ(θ)2ai

⎞⎠
= r2∗

and, for i �= j,

qkr
3
∗
riθj

θirj

(
Γ(θ)2

)
ij

= qkr
3
∗
riθj

θirj

⎛⎝(ν(θ)−2
11

)
ii

Λ(θ)2ij +
(
ν(θ)−2

11

)
ij

Λ(θ)2jj +
∑

a�=i,j

(
ν(θ)−2

11

)
ia

Λ(θ)2aj

⎞⎠
= 0,

so that we obtain the generalized statistical curvature

Γ(θ)2 =
1

qkr∗
Ik−1 =

1
q1 + · · · + qk

Ik−1.

This is what we required. �

Definition 1 We define Efron’s information curvature, EIC(θ), by the multiplication of
the Fisher information matrix (2.4) and the generalized statistical curvature matrix (2.5),
that is,

EIC(θ) ≡ I(θ)Γ(θ)2(2.6)

=
(
tα̇(θ)Σ(θ)α̇(θ)

)−1
{

tα̈(θ)
[
Ik−1 ⊗ Σ

1
2 (θ)(Ik − P ∗(θ))Σ

1
2 (θ)

]
α̈(θ)

}
.

This definition has a similarity to the formulation which is partly based on the projection
with respect to the conditional expectation given MLE by Inagaki [5]. And this has a
meaning with respect to the use of projection matrix like a regression form which is different
from the approach by the information geometric framework (for example, Amari [1]) even
if the result is the same.

¿From Theorem 1, we easily obtain (2.6) for the generalized hyperbolic model as follows:

Theorem 2 For the generalized hyperbolic model, the (i, j)-th element of EIC(θ) is repre-
sented by

EIC(θ)ij =
1

q1 + · · · + qk
I(θ)ij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
qkri(ri + 1)

(q1 + · · · + qk) θ−2
i

(i = j),

qkrirj

(q1 + · · · + qk) θ−1
i θ−1

j

(i �= j).
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Proof. By calculating the definition of (2.6) with the Fisher information (2.4) and the
statistical curvature (2.5), we easily obtain the result. �

3 Exact information loss Apart from the generalized statistical curvature, we directly
investigate the exact information loss in the k-dimensional hyperbolic model. For n random
vectors ⎛⎜⎝ X11

...
X1k

⎞⎟⎠ , · · · ,

⎛⎜⎝ Xn1

...
Xnk

⎞⎟⎠
which are independently distributed with k-dimensional hyperbolic model (2.3), we redefine
random vectors as follows:

X1 = (X11, . . . , Xn1), · · · , Xk = (X1k, . . . , Xnk).

Note that the length of each Xi is n. Then the joint probability density function is

fn(x1, . . . ,xk |θ) = exp

⎧⎨⎩−
k−1∑
j=1

(
θj

n∑
i=1

xij

)
− ϑ−1

n∑
i=1

xik

⎫⎬⎭
k∏

i=1

h(xi),

so that the log-likelihood and its derivative for a, b = 1, . . . , k − 1 are

�n(θ) = −
k−1∑
j=1

(
θj

n∑
i=1

xij

)
− ϑ−1

n∑
i=1

xik +
k∑

i=1

log h(xi),

�̇n(θ)a =
∂

∂θa
�n(θ) = −

n∑
i=1

xia + raϑ
−1θ−1

a

n∑
i=1

xik,

�̈n(θ)ab =
∂2

∂θa∂θb
�n(θ) =

{ −ra(ra + 1)ϑ−1θ−2
a

∑n
i=1 xik, (a = b),

−rarbϑ−1θ−1
a θ−1

b

∑n
i=1 xik, (a �= b).

Here we newly redefine {Xi}k
i=1 as follows:

X1 =
n∑

i=1

Xi1, . . . , Xk−1 =
n∑

i=1

Xi k−1, Xk =
n∑

i=1

Xik.(3.1)

Then, by the reproducibility of the gamma distribution, it holds that each Xi is distributed
with the gamma distribution GA(nq1, θ−1

1 ), . . . , GA(nqk−1, θ
−1
k−1), GA(nqk, ϑ), respectively.

By the relation �̇n(θ) = 0, the maximum likelihood estimator(MLE) θ̂ = t(θ̂1, . . . , θ̂k−1) is,
for i = 1, . . . , k − 1,

θ̂i =
(
riXk

Xi

) r∗−ri
r∗ ∏

j �=i

(
rjXk

Xj

)− rj
r∗

=
(
Xi

ri

)−1

X
1

r∗
k

k−1∏
j=1

(
Xj

rj

) rj
r∗
.(3.2)

For the joint density function of (X1, . . . , Xk)

f(x1, . . . , xk) =

⎛⎝ k∏
j=1

x
nqj−1
j

Γ(nqj)

⎞⎠ exp

{
−

k−1∑
i=1

θixi − ϑ−1xk

}
,
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we suppose the variable transformation t = t(t1, . . . , tk−1, tk) as follows:

ti =
(
xi

ri

)−1

x
1

r∗
k

k−1∏
j=1

(
xj

rj

) rj
r∗

(i = 1, . . . , k − 1), tk = x
1

r∗
k

k−1∏
j=1

(
xj

rj

) rj
r∗
.

Remark that MLE (3.2) is equivalent to (t1, . . . , tk−1), that is,

ti = θ̂i (i = 1, . . . , k − 1).

Thus the relationship between x and t is

x =

⎛⎜⎜⎜⎝
x1

...
xk−1

xk

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
r1 t

−1
1 tk
...

rk−1 t
−1
k−1 tk

tk
∏k−1

i=1 t
ri

i

⎞⎟⎟⎟⎠ ,

and the Jacobian is∣∣∣∣∂(x1, . . . , xk)
∂(t1, . . . , tk)

∣∣∣∣ =

⎛⎝k−1∏
j=1

rj

⎞⎠ r∗

⎛⎝k−1∏
j=1

t
rj−2
j

⎞⎠ tk−1
k ,

so that the joint density function of (T1, . . . , Tk) is represented by

g(t1, . . . , tk)

=
r∗

(∏k−1
j=1

r
nqj
j

tj

)
∏k

j=1 Γ(nqj)
t
n(q1+···+qk)−1
k exp

⎧⎨⎩−tk
⎛⎝k−1∑

j=1

rj
θj

tj
+

k−1∏
j=1

(
tj
θj

)rj

⎞⎠⎫⎬⎭ .

Hence, by the probability density function of the gamma distribution, the marginal density
function of (T1, . . . , Tk−1), that is, the density function of MLE θ̂ (3.2) is

g1···k−1(t1, . . . , tk−1) =
∫ ∞

0

g(t1, . . . , tk)dtk(3.3)

=
Γ(n(q1 + · · · + qk))∏k

j=1 Γ(nqj)
r∗

⎛⎝k−1∏
j=1

r
nqj

j

tj

⎞⎠ ⎛⎝k−1∑
j=1

rj
θj

tj
+

k−1∏
j=1

(
tj
θj

)rj

⎞⎠−n(q1+···+qk)

and the conditional density function of Tk given θ̂ = (T1, . . . , Tk−1) is

gk(tk|t1, . . . , tk−1) =
g(t1, . . . , tk)

g1···k−1(t1, . . . , tk−1)

=

(∑k−1
j=1 rj

θj

tj
+
∏k−1

j=1

(
tj

θj

)rj
)−n(q1+···+qk)

Γ(n(q1 + · · · + qk))

× t
n(q1+···+qk)−1
k exp

⎧⎨⎩−tk
⎛⎝k−1∑

j=1

rj
θj

tj
+

k−1∏
j=1

(
tj
θj

)rj

⎞⎠⎫⎬⎭ .



EXACT INFORMATION LOSS 125

This is just the probability density function of the following gamma distribution :

GA

⎛⎜⎝n(q1 + · · · + qk),

⎛⎝k−1∑
j=1

rj
θj

tj
+

k−1∏
j=1

(
tj
θj

)rj

⎞⎠−1
⎞⎟⎠ .

Here we investigate the density (3.3) in detail, because it is the density of MLE and we
use it to calculate the Fisher information by MLE.

Lemma 1 The marginal density (3.3) is equivalent to the density of k-dimensional Dirich-
let distribution Diri(nq1, . . . , nqk−1;nqk).

Proof. In (3.3), we consider the transformation as follows:

ti = θi

(
wi

ri

)−1

w
1

r∗
k

k−1∏
j=1

(
wj

rj

) rj
r∗

(i = 1, . . . , k − 1),

where we assume that wk = 1 −∑k−1
i=1 wi, so that the Jacobian is

∂(t1, . . . , tk−1)
∂(w1, . . . , wk−1)

=
∏k−1

i=1 ti

r∗
∏k

i=1 wi

.

Since
k−1∑
j=1

rj
θj

tj
+

k−1∏
j=1

(
tj
θj

)rj

=

⎛⎝w 1
r∗
k

k−1∏
j=1

(
wj

rj

) rj
r∗

⎞⎠−1

and n(q1 + · · · + qk) = nqkr∗, it holds that

h1···k−1(w1, . . . , wk−1) =
Γ(n(q1 + · · · + qk))∏k

j=1 Γ(nqj)

k∏
j=1

w
nqj−1
j .

This is just the probability density function of k-dimensional Dirichlet distributionDiri(nq1, . . . , nqk−1;nqk).
�

Note that the assumption wk = 1 −∑k−1
i=1 wi in the proof of the above lemma is based

on the property of the variables in k-dimensional Dirichlet distribution.

Lemma 2 In the k-dimensional Dirichlet distribution Diri(nq1, . . . , nqk−1;nqk), we have
the following expectations:

E(Wi) =
qi

q1 + · · · + qk
(i = 1, . . . , k),

E(W 2
i ) =

qi(nqi + 1)
(q1 + · · · + qk)(n(q1 + · · · + qk) + 1)

(i = 1, . . . , k),

E(WiWj) =
nqiqj

(q1 + · · · + qk)(n(q1 + · · · + qk) + 1)
(i �= j).

Proof. For arbitrary non-negative integers a, b, c and i, j = 1, . . . , k − 1, it holds that

E(W a
i W

b
j W

c
k ) =

Γ(n(q1 + · · · + qk))∏k
j=1 Γ(nqj)

Γ(nqi + a) Γ(nqj + b) Γ(nqk + c)
Γ(n(q1 + · · · + qk) + a+ b+ c)

,

so that we obtain the results easily. �
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Theorem 3 The exact Fisher information of MLE θ̂ is represented by

I
�θ
(θ) =

n(q1 + · · · + qk)
n(q1 + · · · + qk) + 1

nI(θ).

Proof. The derivative of log-likelihood function of MLE θ̂ = t(T1, . . . , Tk−1) is

�̇
�θ
(θ) = −n(q1 + · · · + qk)

⎛⎝ ri

ti
− ri

θi

∏k−1
j=1

(
tj

θj

)rj

∑k−1
j=1 rj

θj

tj
+
∏k−1

j=1

(
tj

θj

)rj

⎞⎠
i=1,... ,k−1

and is transformed by W as follows:

�̇
�θ
(θ) = −n(q1 + · · · + qk)

(
wi − riwk

θi

)
i=1,... ,k−1

.

Hence the exact Fisher information is

I
�θ
(θ) = E

{
�̇
�θ
(θ) t�̇

�θ
(θ)
}

=
(
E{(Wi − riWk)(Wj − rjWk)} (n(q1 + · · · + qk))2

θiθj

)
i,j=1,... ,k−1

and each component of the information is

E{(Wi − riWk)2} =
qkri(ri + 1)

(q1 + · · · + qk)(n(q1 + · · · + qk) + 1)
,

E{(Wi − riWk)(Wj − rjWk)} =
qkrirj

(q1 + · · · + qk)(n(q1 + · · · + qk) + 1)
.

Since the whole Fisher information is (2.4), we have the required result. �

Theorem 4 The exact Fisher information loss of k-dimensional hyperbolic model is repre-
sented by

In(θ) − I
�θ
(θ) =

n

n(q1 + · · · + qk) + 1
I(θ)(3.4)

and this converges to EIC(θ) as follows:

lim
n→∞

{
In(θ) − I

�θ
(θ)
}

=
1

q1 + · · · + qk
I(θ) = EIC(θ).

Proof. Because of Theorem 3, the exact Fisher information loss is

In(θ) − I
�θ
(θ) =

(
1 − n(q1 + · · · + qk)

n(q1 + · · · + qk) + 1

)
nI(θ) =

n

n(q1 + · · · + qk) + 1
I(θ),

so that the convergence holds easily. �

The main contribution in this theorem is the exact formulation (3.4) of the exact infor-
mation loss of k-dimensional hyperbolic model, because the exact representation does not
seem to be appeared in the multi-dimensional model like this. Remark that the asymp-
totic representation of information loss in the above theorem is equivalent to Theorem 7 in
Amari [1] which calculated the asymptotic information loss for Fisher-efficient estimators
in multi-parameter curved exponential families. Note that if the statistical curvature is
defined as the determinant of the residual by the projection, the convergence in Theorem
4 does not hold, that is, the limitation of Fisher’s exact information loss is not equal to
Efron’s information curvature.
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4 Discussion We explicitly investigated the exact information loss in the generalized
hyperbolic model as an extension of the Nile problem. This would be useful for studying an
exact information loss with respect to MLE for various models. But our parameterization
in this model has a small problem which is the assumption of vanishing the cumulant
generating function in it. Thus, in a generalized parameterization for the k-dimensional
gamma distribution, the exact information loss could be a problem in the future. Further
it is an interesting issue whether a similar result holds or not if other ”equipotential”
curved exponential model is considered, so that we need to investigate the properties and
effectiveness of equipotentiality in the ”equipotential” curved exponential model.
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