A NOTE ON NORMAL SUBALGEBRAS IN *B*-ALGEBRAS

ANDRZEJ WALENDZIAK

Received September 14, 2004; revised November 11, 2004

ABSTRACT. The concept of normal subalgebras in B- algebras is due to J. Neggers and H. S. Kim. We give an equivalent definition and show that the center $Z(\mathbf{A})$ of a B-algebra \mathbf{A} is a normal subalgebra of \mathbf{A} . Moreover, we prove that the notion of a normal subalgebra is equivalent to the normal subgroup of the derived group. Hence the lattices of normal subalgebras (and also the congruence lattices) of B-algebras are modular.

1 Preliminaries *B*-algebras have been introduced by J. Neggers and H. S. Kim in [4]. They defined a *B*-algebra as an algebra (A; *, 0) of type (2, 0) (i.e., a nonempty set *A* with a binary operation * and a constant 0) satisfying the following axioms:

$$(A1) \quad x * x = 0,$$

(A2) x * 0 = x,

(A3) (x * y) * z = x * [z * (0 * y)].

In [3], Y. B. Jun, E. H. Roh, and H. S. Kim introduced *BH*-algebras, which are a generalization of BCH/BCK/B-algebras. For another useful generalization of *B*-algebras see [6]. J. R. Cho and H. S. Kim ([2]) proved that every *B*-algebra is a quasigroup. The following results show that every group determines a *B*-algebra and every *B*-algebra is group-derived.

Proposition 1.1. ([1], Proposition 3.1) Let $\mathbf{G} = (G; \cdot, ^{-1}, e)$ be a group. We put 0 = e and define the binary operation * on G by setting

$$x * y = x \cdot y^{-1}.$$

Then (G; *, 0) is a B-algebra, which is called the group-derived B-algebra; it will be denoted by $A(\mathbf{G})$.

Proposition 1.2. ([1], Theorem 3.4) Let $\mathbf{A} = (A; *, 0)$ be a B-algebra. For $x, y \in A$, define

x + y = x * (0 * y) and -x = 0 * x.

Then (A; +, -, 0) is a group, which we denote by $G(\mathbf{A})$.

We will need the following two lemmas.

Lemma 1.3. ([5], Proposition 2.8) If (A; *, 0) is a B-algebra, then

$$x * (y * z) = (x * (0 * z)) * y$$

²⁰⁰⁰ Mathematics Subject Classification. 06F35.

Key words and phrases. B-algebra, subalgebra, normal subalgebra, congruence lattice, modular lattice, commutative, center.

for any $x, y, z \in A$.

Lemma 1.4. ([2], Proposition 2.2) A B-algebra (A; *, 0) obeys the equation

$$(x * y) * (0 * y) = x.$$

Proposition 1.5. If (A; *, 0) is a B-algebra, then

(a) (x * z) * (y * z) = x * y,

(b) 0 * (x * y) = y * x

for all $x, y, z \in A$.

Proof. (a): By (A3) we obtain

$$(x * z) * (y * z) = x * [(y * z) * (0 * z)] = x * [y * ((0 * z) * (0 * z))].$$

Hence, applying (A1) and (A2), we get (a).

(b): Using Lemma 1.4 and (A3) we have y * x = y * [(x * y) * (0 * y)] = (y * y) * (x * y). Finally, by (A1) we obtain (b).

Following J. Neggers and H. S. Kim ([4]) we give

Definition 1.6. A *B*-algebra (A; *, 0) is said to be 0-commutative if a * (0 * b) = b * (0 * a) for all $a, b \in A$.

In [2], J. R. Cho and H. S. Kim showed the following result.

Proposition 1.7. A B-algebra $\mathbf{A} = (A; *, 0)$ is 0-commutative if and only if the equation x * (x * y) = y holds in \mathbf{A} .

2. Normal subalgebras in B-algebras

From now on, **A** always denotes a *B*-algebra (A; *, 0). A nonempty subset *N* of *A* is called a *subalgebra* of **A** if $x * y \in N$ for any $x, y \in N$. It is easy to see that if *N* is a subalgebra of **A**, then $0 \in N$.

Lemma 2.1. Let N be a subalgebra of A and let $x, y \in A$. If $x * y \in N$, then $y * x \in N$.

Proof. Let $x * y \in N$. By Proposition 1.5 (b), y * x = 0 * (x * y). Since $0 \in N$ and $x * y \in N$, we see that $0 * (x * y) \in N$. Consequently, $y * x \in N$.

In [5], J. Neggers and H. S. Kim introduced the notion of a normal subset of a *B*-algebra. A nonempty subset N of A is said to be *normal* (or a *normal subalgebra*) of **A** if

$$(x*a)*(y*b) \in N$$
 for any $x*y, a*b \in N$.

In [5], it is proved that any normal subset of a *B*-algebra \mathbf{A} is a subalgebra of \mathbf{A} . Obviously, $\{0\}$ and A are normal subalgebras of \mathbf{A} .

Let $Sub(\mathbf{A})$ and $N(\mathbf{A})$ be the sets of all subalgebras and normal subalgebras of \mathbf{A} , respectively.

50

Theorem 2.2. Let $N \in Sub(\mathbf{A})$. Then the following statements are equivalent:

- (a) N is a normal subalgebra;
- (b) If $x \in A$ and $y \in N$, then $x * (x * y) \in N$.

Proof. (a) \Rightarrow (b): Let $x \in A$ and $y \in N$. Then $x * x = 0 \in N$ and $0 * y \in N$. Since N is normal, $(x * 0) * (x * y) \in N$. Thus $x * (x * y) \in N$.

(b) \Rightarrow (a): Let $x * y, a * b \in N$. By Lemma 2.1, $b * a \in N$. Applying Proposition 1.5 (a) we have

$$(0*a)*(0*b) = (0*a)*[(0*a)*(b*a)]$$

and using (b) we get

(1)
$$(0*a)*(0*b) \in N.$$

Applying (A3) twice we obtain

$$\begin{array}{rcl} x*(x*[(0*a)*(0*b)])&=&x*[(x*b)*(0*a)]\\ &=&(x*a)*(x*b). \end{array}$$

From this, combining (b) with (1) we deduce that $(x * a) * (x * b) \in N$. We have

(2)
$$[(x*a)*(x*b)]*(y*x) \in N_{t}$$

because N is a subalgebra. Using (A3) and Proposition 1.5 we get

$$\begin{array}{rcl} [(x*a)*(x*b)]*(y*x) &=& (x*a)*[(y*x)*(0*(x*b))]\\ &=& (x*a)*[(y*x)*(b*x)]\\ &=& (x*a)*(y*b). \end{array}$$

Therefore $(x*a)*(y*b) \in N$ by (2), and consequently, N is normal.

From Proposition 1.7 and Theorem 2.2 we obtain

Corollary 2.3. In 0-commutative B-algebras the concepts of subalgebras and normal subalgebras coincide.

Proposition 2.4. Let $\mathbf{G} = (G; \cdot, {}^{-1}, e)$ be a group and let $N \subseteq G$. Then N is a normal subgroup of \mathbf{G} if and only if N is a normal subalgebra of the group-derived B-algebra $A(\mathbf{G})$.

Proof. Let N be a normal subgroup of **G** and let $x, y \in N$. Then $x * y = x \cdot y^{-1} \in N$, and therefore N is a subalgebra of $A(\mathbf{G})$. If $x \in G$ and $y \in N$, then

$$x * (x * y) = x \cdot (x \cdot y^{-1})^{-1} = x \cdot y \cdot x^{-1} \in N.$$

By Theorem 2.2, N is a normal subalgebra of $A(\mathbf{G})$. Since $x \cdot y^{-1} = x * y$ and $x \cdot y \cdot x^{-1} = x * (x * y)$, the converse is obvious.

Definition 2.5. ([1]) The set

$${\rm Z}({\bf A}) \ = \{y \in A: y*(0*x) = x*(0*y) \ \text{ for all } x \in A\}$$

is called the *center* of a *B*-algebra **A**.

 \square

In [1], P. J. Allen, J. Neggers, and H. S. Kim asked the following questions:

Is the center $Z(\mathbf{A})$ a normal subalgebra of \mathbf{A} ?

Is the notion of a normal subalgebra equivalent to the normal subgroup of the derived group?

By Theorem 4.7 of [1], $Z(\mathbf{A})$ is a subalgebra of \mathbf{A} . Observe that $Z(\mathbf{A})$ is normal. Indeed, let $x \in A$ and $y \in Z(\mathbf{A})$. It follows that

x * (x * y)	=	$[x \ast (0 \ast y)] \ast x$	[use Lemma 1.3]
	=	[y * (0 * x)] * x	[since $y \in \mathbf{Z}(\mathbf{A})$]
	=	y * (x * x)	[use Lemma 1.3]
	=	y.	[by $(A1)$ and $(A2)$].

Thus $x * (x * y) = y \in Z(\mathbf{A})$. By Theorem 2.2, $Z(\mathbf{A})$ is a normal subalgebra of \mathbf{A} , that is, the first one of the preceding two questions has a positive answer. Moreover, the next theorem shows that the answer to the second one is also positive.

Theorem 2.6. Let $\mathbf{A} = (A; *, 0)$ be a *B*-algebra and let $N \subseteq A$. Then $N \in N(\mathbf{A})$ if and only if N is a normal subgroup of the group $G(\mathbf{A})$.

Proof. By Proposition 1.2, $G(\mathbf{A}) = (A; +, -, 0)$ is a group, where x + y = x * (0 * y) and -x = 0 * x for all $x, y \in A$. Applying Proposition 1.5 (b) we have

$$x - y = x * [0 * (0 * y)] = x * (y * 0) = x * y$$

and

$$x + (y - x) = x * [0 * (y * x)] = x * (x * y).$$

Now, the proof is straightforward.

Remark 2.7. It is easy to see that the center $Z(\mathbf{A})$ of a *B*-algebra \mathbf{A} is the center of the group $G(\mathbf{A})$. Therefore, from Theorem 2.6 it follows that $Z(\mathbf{A})$ is a normal subalgebra of \mathbf{A} .

Let $\operatorname{Con}(\mathbf{A})$ be the set of all congruences on \mathbf{A} . With respect to set inclusion, $\operatorname{Con}(\mathbf{A})$ forms a lattice, which we denote by $\operatorname{Con}(\mathbf{A}) = (\operatorname{Con}(\mathbf{A}); \subseteq)$. Similarly, $\operatorname{Sub}(\mathbf{A}) = (\operatorname{Sub}(\mathbf{A}); \subseteq)$ and $\mathbf{N}(\mathbf{A}) = (\operatorname{N}(\mathbf{A}); \subseteq)$ are lattices. The theory of groups and Theorem 2.6 yield

Theorem 2.8. Let \mathbf{A} be a B-algebra. Then $\mathbf{Con}(\mathbf{A})$ and $\mathbf{N}(\mathbf{A})$ are isomorphic modular lattices. Moreover, the lattice $\mathbf{Sub}(\mathbf{A})$ is modular, if \mathbf{A} is 0-commutative.

Acknowledgements

The author thanks the referee for his remarks which were incorporated into this revised version.

References

- P. J. Allen, J. Neggers, and H. S. Kim, *B-algebras and groups*, Sci. Math. Japonicae 59 (2004), 23-29.
- [2] J. R. Cho and H. S. Kim, On B-algebras and quasigroups, Quasigroups and related systems 7 (2001), 1-6.
- [3] Y. B. Jun, E. H. Roh, and H. S. Kim, On BH-algebras, Sci. Math. 1 (1998), 347-354.
- [4] J. Neggers and H. S. Kim, On B-algebras, Mate. Vesnik 54 (2002), 21-29.
- [5] J. Neggers and H. S. Kim, A fundamental theorem of B-homomorphism for B-algebras, Intern. Math. J. 2 (2002), 207-214.
- [6] J. Neggers and H. S. Kim, On β -algebras, Math. Slovaca 52 (2002), 517-530.

Andrzej Walendziak Institute of Mathematics and Physics University of Podlasie 08-110 Siedlce, POLAND walent@interia.pl