# A NOTE ON NORMAL SUBALGEBRAS IN $B$-ALGEBRAS 

Andrzej Walendziak

Received September 14, 2004; revised November 11, 2004


#### Abstract

The concept of normal subalgebras in $B$ - algebras is due to J. Neggers and H. S. Kim. We give an equivalent definition and show that the center $Z(\mathbf{A})$ of a $B$-algebra $\mathbf{A}$ is a normal subalgebra of $\mathbf{A}$. Moreover, we prove that the notion of a normal subalgebra is equivalent to the normal subgroup of the derived group. Hence the lattices of normal subalgebras (and also the congruence lattices) of $B$-algebras are modular.


1 Preliminaries $B$-algebras have been introduced by J. Neggers and H. S. Kim in [4]. They defined a $B$-algebra as an algebra $(A ; *, 0)$ of type $(2,0)$ (i.e., a nonempty set $A$ with a binary operation $*$ and a constant 0 ) satisfying the following axioms:

$$
\begin{array}{ll}
\text { (A1) } & x * x=0 \\
\text { (A2) } & x * 0=x \\
\text { (A3) } & (x * y) * z=x *[z *(0 * y)] .
\end{array}
$$

In [3], Y. B. Jun, E. H. Roh, and H. S. Kim introduced $B H$-algebras, which are a generalization of $B C H / B C K / B$-algebras. For another useful generalization of $B$-algebras see [6]. J. R. Cho and H. S. Kim ([2]) proved that every $B$-algebra is a quasigroup. The following results show that every group determines a $B$-algebra and every $B$-algebra is group-derived.

Proposition 1.1. ([1], Proposition 3.1) Let $\mathbf{G}=\left(G ; \cdot{ }^{-1}\right.$, e) be a group. We put $0=e$ and define the binary operation $*$ on $G$ by setting

$$
x * y=x \cdot y^{-1}
$$

Then $(G ; *, 0)$ is a B-algebra, which is called the group-derived $B$-algebra; it will be denoted by $A(\mathbf{G})$.

Proposition 1.2. ([1], Theorem 3.4) Let $\mathbf{A}=(A ; *, 0)$ be a B-algebra. For $x, y \in A$, define

$$
x+y=x *(0 * y) \text { and }-x=0 * x
$$

Then $(A ;+,-, 0)$ is a group, which we denote by $G(\mathbf{A})$.
We will need the following two lemmas.
Lemma 1.3. ([5], Proposition 2.8) If $(A ; *, 0)$ is a B-algebra, then

$$
x *(y * z)=(x *(0 * z)) * y
$$

[^0]for any $x, y, z \in A$.
Lemma 1.4. ([2], Proposition 2.2) A B-algebra $(A ; *, 0)$ obeys the equation
$$
(x * y) *(0 * y)=x
$$

Proposition 1.5. If $(A ; *, 0)$ is a $B$-algebra, then
(a) $(x * z) *(y * z)=x * y$,
(b) $0 *(x * y)=y * x$
for all $x, y, z \in A$.
Proof. (a): By (A3) we obtain

$$
(x * z) *(y * z)=x *[(y * z) *(0 * z)]=x *[y *((0 * z) *(0 * z))]
$$

Hence, applying (A1) and (A2), we get (a).
(b): Using Lemma 1.4 and (A3) we have $y * x=y *[(x * y) *(0 * y)]=(y * y) *(x * y)$. Finally, by (A1) we obtain (b).

Following J. Neggers and H. S. Kim ([4]) we give
Definition 1.6. A $B$-algebra $(A ; *, 0)$ is said to be 0 -commutative if $a *(0 * b)=b *(0 * a)$ for all $a, b \in A$.

In [2], J. R. Cho and H. S. Kim showed the following result.
Proposition 1.7. A B-algebra $\mathbf{A}=(A ; *, 0)$ is 0 -commutative if and only if the equation $x *(x * y)=y$ holds in A.

## 2. Normal subalgebras in $B$-algebras

From now on, A always denotes a $B$-algebra $(A ; *, 0)$. A nonempty subset $N$ of $A$ is called a subalgebra of $\mathbf{A}$ if $x * y \in N$ for any $x, y \in N$. It is easy to see that if $N$ is a subalgebra of $\mathbf{A}$, then $0 \in N$.

Lemma 2.1. Let $N$ be a subalgebra of $\mathbf{A}$ and let $x, y \in A$. If $x * y \in N$, then $y * x \in N$.
Proof. Let $x * y \in N$. By Proposition 1.5 (b), $y * x=0 *(x * y)$. Since $0 \in N$ and $x * y \in N$, we see that $0 *(x * y) \in N$. Consequently, $y * x \in N$.

In [5], J. Neggers and H. S. Kim introduced the notion of a normal subset of a $B$-algebra. A nonempty subset $N$ of $A$ is said to be normal (or a normal subalgebra) of $\mathbf{A}$ if

$$
(x * a) *(y * b) \in N \text { for any } x * y, a * b \in N
$$

In [5], it is proved that any normal subset of a $B$-algebra $\mathbf{A}$ is a subalgebra of $\mathbf{A}$. Obviously, $\{0\}$ and $A$ are normal subalgebras of $\mathbf{A}$.

Let $\operatorname{Sub}(\mathbf{A})$ and $\mathrm{N}(\mathbf{A})$ be the sets of all subalgebras and normal subalgebras of $\mathbf{A}$, respectively.

Theorem 2.2. Let $N \in \operatorname{Sub}(\mathbf{A})$. Then the following statements are equivalent:
(a) $N$ is a normal subalgebra;
(b) If $x \in A$ and $y \in N$, then $x *(x * y) \in N$.

Proof. (a) $\Rightarrow(\mathrm{b}):$ Let $x \in A$ and $y \in N$. Then $x * x=0 \in N$ and $0 * y \in N$. Since $N$ is normal, $(x * 0) *(x * y) \in N$. Thus $x *(x * y) \in N$.
(b) $\Rightarrow$ (a): Let $x * y, a * b \in N$. By Lemma $2.1, b * a \in N$. Applying Proposition 1.5 (a) we have

$$
(0 * a) *(0 * b)=(0 * a) *[(0 * a) *(b * a)]
$$

and using (b) we get

$$
\begin{equation*}
(0 * a) *(0 * b) \in N \tag{1}
\end{equation*}
$$

Applying (A3) twice we obtain

$$
\begin{aligned}
x *(x *[(0 * a) *(0 * b)]) & =x *[(x * b) *(0 * a)] \\
& =(x * a) *(x * b) .
\end{aligned}
$$

From this, combining (b) with (1) we deduce that $(x * a) *(x * b) \in N$. We have

$$
\begin{equation*}
[(x * a) *(x * b)] *(y * x) \in N \tag{2}
\end{equation*}
$$

because $N$ is a subalgebra. Using (A3) and Proposition 1.5 we get

$$
\begin{aligned}
{[(x * a) *(x * b)] *(y * x) } & =(x * a) *[(y * x) *(0 *(x * b))] \\
& =(x * a) *[(y * x) *(b * x)] \\
& =(x * a) *(y * b) .
\end{aligned}
$$

Therefore $(x * a) *(y * b) \in N$ by (2), and consequently, $N$ is normal.
From Proposition 1.7 and Theorem 2.2 we obtain
Corollary 2.3. In 0 -commutative $B$-algebras the concepts of subalgebras and normal subalgebras coincide.

Proposition 2.4. Let $\mathbf{G}=\left(G ; \cdot{ }^{-1}, e\right)$ be a group and let $N \subseteq G$. Then $N$ is a normal subgroup of $\mathbf{G}$ if and only if $N$ is a normal subalgebra of the group-derived B-algebra $A(\mathbf{G})$.
Proof. Let $N$ be a normal subgroup of $\mathbf{G}$ and let $x, y \in N$. Then $x * y=x \cdot y^{-1} \in N$, and therefore $N$ is a subalgebra of $A(\mathbf{G})$. If $x \in G$ and $y \in N$, then

$$
x *(x * y)=x \cdot\left(x \cdot y^{-1}\right)^{-1}=x \cdot y \cdot x^{-1} \in N
$$

By Theorem 2.2, $N$ is a normal subalgebra of $A(\mathbf{G})$.
Since $x \cdot y^{-1}=x * y$ and $x \cdot y \cdot x^{-1}=x *(x * y)$, the converse is obvious.
Definition 2.5. ([1]) The set

$$
\mathrm{Z}(\mathbf{A})=\{y \in A: y *(0 * x)=x *(0 * y) \text { for all } x \in A\}
$$

is called the center of a $B$-algebra $\mathbf{A}$.

In [1], P. J. Allen, J. Neggers, and H. S. Kim asked the following questions:
Is the center $\mathrm{Z}(\mathbf{A})$ a normal subalgebra of $\mathbf{A}$ ?
Is the notion of a normal subalgebra equivalent to the normal subgroup of the derived group?

By Theorem 4.7 of $[1], \mathrm{Z}(\mathbf{A})$ is a subalgebra of $\mathbf{A}$. Observe that $\mathrm{Z}(\mathbf{A})$ is normal. Indeed, let $x \in A$ and $y \in \mathbf{Z}(\mathbf{A})$. It follows that

$$
\begin{aligned}
x *(x * y) & =[x *(0 * y)] * x & & \text { [use Lemma 1.3] } \\
& =[y *(0 * x)] * x & & {[\text { since } y \in \mathrm{Z}(\mathbf{A})] } \\
& =y *(x * x) & & \text { [use Lemma } 1.3] \\
& =y & & {[\text { by (A1) and (A2)]. }}
\end{aligned}
$$

Thus $x *(x * y)=y \in \mathrm{Z}(\mathbf{A})$. By Theorem $2.2, \mathrm{Z}(\mathbf{A})$ is a normal subalgebra of $\mathbf{A}$, that is, the first one of the preceding two questions has a positive answer. Moreover, the next theorem shows that the answer to the second one is also positive.

Theorem 2.6. Let $\mathbf{A}=(A ; *, 0)$ be a B-algebra and let $N \subseteq A$. Then $N \in \mathrm{~N}(\mathbf{A})$ if and only if $N$ is a normal subgroup of the group $G(\mathbf{A})$.

Proof. By Proposition 1.2, $G(\mathbf{A})=(A ;+,-, 0)$ is a group, where $x+y=x *(0 * y)$ and $-x=0 * x$ for all $x, y \in A$. Applying Proposition 1.5 (b) we have

$$
x-y=x *[0 *(0 * y)]=x *(y * 0)=x * y
$$

and

$$
x+(y-x)=x *[0 *(y * x)]=x *(x * y)
$$

Now, the proof is straightforward.
Remark 2.7. It is easy to see that the center $\mathrm{Z}(\mathbf{A})$ of a $B$-algebra $\mathbf{A}$ is the center of the group $G(\mathbf{A})$. Therefore, from Theorem 2.6 it follows that $\mathrm{Z}(\mathbf{A})$ is a normal subalgebra of A.

Let $\operatorname{Con}(\mathbf{A})$ be the set of all congruences on $\mathbf{A}$. With respect to set inclusion, $\operatorname{Con}(\mathbf{A})$ forms a lattice, which we denote by $\operatorname{Con}(\mathbf{A})=(\operatorname{Con}(\mathbf{A}) ; \subseteq)$. Similarly, $\operatorname{Sub}(\mathbf{A})=(\operatorname{Sub}(\mathbf{A}) ; \subseteq)$ and $\mathbf{N}(\mathbf{A})=(\mathrm{N}(\mathbf{A}) ; \subseteq)$ are lattices. The theory of groups and Theorem 2.6 yield

Theorem 2.8. Let $\mathbf{A}$ be a B-algebra. Then $\operatorname{Con}(\mathbf{A})$ and $\mathbf{N}(\mathbf{A})$ are isomorphic modular lattices. Moreover, the lattice $\mathbf{S u b}(\mathbf{A})$ is modular, if $\mathbf{A}$ is 0 -commutative.

## Acknowledgements

The author thanks the referee for his remarks which were incorporated into this revised version.

## References

[1] P. J. Allen, J. Neggers, and H. S. Kim, B-algebras and groups, Sci. Math. Japonicae 59 (2004), 23-29.
[2] J. R. Cho and H. S. Kim, On B-algebras and quasigroups, Quasigroups and related systems 7 (2001), 1-6.
[3] Y. B. Jun, E. H. Roh, and H. S. Kim, On BH-algebras, Sci. Math. 1 (1998), 347-354.
[4] J. Neggers and H. S. Kim, On B-algebras, Mate. Vesnik 54 (2002), 21-29.
[5] J. Neggers and H. S. Kim, A fundamental theorem of B-homomorphism for B-algebras, Intern. Math. J. 2 (2002), 207-214.
[6] J. Neggers and H. S. Kim, On $\beta$-algebras, Math. Slovaca 52 (2002), 517-530.

Andrzej Walendziak
Institute of Mathematics and Physics
University of Podlasie
08-110 Siedlce, POLAND
walent@interia.pl


[^0]:    2000 Mathematics Subject Classification. 06F35.
    Key words and phrases. B-algebra, subalgebra, normal subalgebra, congruence lattice, modular lattice, commutative, center.

