T-FUZZY SUBHYPERNEAR-RINGS OF HYPERNEAR-RINGS

EUN HWAN ROH*, B. DAVVAZ AND KYUNG HO KIM

Received October 16, 2004

ABSTRACT. Using a t-norm T, the notion of T-fuzzy subhypernear-rings (for short TFS-rings) of hypernear-rings is introduced and some of their properties are investigated. Also we study the structure of TFS-rings under direct product.

1. INTRODUCTION

The theory of hyperstructures has been introduced by Matry in 1934 during the 8th congress of the Scandinavian Mathematicians [10]. Marty introduced the notion of a hypergroup and then many researchers have been worked on this new field of modern algebra and developed it. A comprehensive review of the theory of hyperstructures appear in [2] and [14]. The notion of the hyperfield and hyperring was studied by Krasner [9]. In [3], Dasic has introduced the notion of hypernear-rings generalizing the concept of near-ring [11]. In [7], Gontineac defined the zero-symmetric part and the constant part of a hypernear-ring and introduced a structure theorem and other properties of hypernear-rings. Davvaz in [5] introduced the notion of an H_v -near ring generalizing the notion of hypernear-ring.

The concept of fuzzy sets was introduced by Zadeh [15]. It was first applied to the theory of groups by Rosenfeld [12]. Rosenfeld has introduced fuzzy subgroups of a group and many researchers are engaged in extending the concept. In [1], Anthony and sherwood redefined a fuzzy subgroup of a group using the concept of a triangular norm, also see [6]. This notion was introduced by Schweizer and Sklar [13], in order to generalize the ordinary triangle inequality in a metric space to the more general probabilistic metric spaces.

In [4], Davvaz has introduced the concept of fuzzy subhypernear-rings and fuzzy hyperideals of a hypernear-ring which are a generalization of the concept of a fuzzy subnear-rings and fuzzy ideals in a near-ring. Now, in this paper, using a t-norm T, the notion of T-fuzzy subhypernear-rings (for short TFS-rings) of hypernear-rings is introduced and some of their properties are investigated. Also we study the structure of TFS-rings under direct product.

2. Preliminaries

We now review some basic definitions for the sake of completeness. These definitions are taken primarily from [3,4,7,13].

Definition 2.1. Let H be a non-empty set. A hyperoperation * on H is a mapping of $H \times H$ into the family of non-empty subsets of H.

Definition 2.2. A hypernear-ring is an algebraic structure $(R, +, \cdot)$ which satisfies the following axioms:

²⁰⁰⁰ Mathematics Subject Classification: 03F55, 06F05, 20M12, 03B52, 16Y99.

Key words and phrases: hypernear-ring, t-norm, (imaginable) T-fuzzy subhypernear-ring, T-product.

^{*} Corresponding author: Tel.: +82 55 740 1232; fax: +82 55 740 1230

^{*} Supported by the research fund of Chinju National University of Education, 2004.

1) (R, +) is a quasi canonical hypergroup (not necessarily commutative), i.e., in (R, +) the following hold:

- a) x + (y + z) = (x + y) + z for all $x, y, z \in R$;
- b) There is $0 \in R$ such that x + 0 = 0 + x = x for all $x \in R$;
- c) For every $x \in R$ there exists one and only one $x' \in R$ such that $0 \in x + x'$, (we shall write -x for x' and we call it the opposite of x);
- d) $z \in x + y$ implies $y \in -x + z$ and $x \in z y$.

2) With respect to the multiplication, (R, \cdot) is a semigroup having absorbing element 0 i.e., $x \cdot 0 = 0$ for all $x \in R$.

3) The multiplication is distributive with respect to the hyperoperation + on the left side i.e., $x \cdot (y+z) = x \cdot y + x \cdot z$ for all $x, y, z \in R$.

If $x \in R$ and A, B are subsets of R, then by A + B, A + x and x + B we mean

$$A + B = \bigcup_{\substack{a \in A \\ b \in B}} a + b, \ A + x = A + \{x\}, \ x + B = \{x\} + B$$

Note that for all $x, y \in R$, we have -(-x) = x, 0 = -0, -(x + y) = -y - x and x(-y) = -xy.

Definition 2.3. Let $(R, +, \cdot)$ be a hypernear-ring. A non-empty subset H of R is called a subhypernear-ring if

- (1) (H, +) is a subhypergroup of (R, +), i.e., $a, b \in H$ implies $a + b \subseteq H$, and $a \in H$ implies $-a \in H$,
- (2) $ab \in H$, for all $a, b \in H$.

Now we give examples of hypernear-rings and of subhypernear-rings in hypernear-rings as follows.

Example 2.4. Let $R = \{0, a, b\}$ be a set with a hyperoperation "+" and a binary operation " \cdot " as follows:

+	0 a	b	•	0 a b
0	$\{0\}\ \{a\}$	$\{b\}$	0	0 0 0
a	$\{a\} \ \{0, a, b\}$	$\{a,b\}$	a	$0 \ a \ b$
b	$\{b\} \ \{a,b\}$	$\{0, a, b\}$	b	$0 \ a \ b$

Then $(R, +, \cdot)$ is a hypernear-ring and $\{0\}$ and R are subhypernear-rings of R.

Example 2.5. [8]. Let $R = \{0, a, b, c\}$ be a set with a hyperoperation "+" and a binary operation " \cdot " as follows:

+	0	a	b	с	•	$0 \ a \ b \ c$
0	{0}	$\{a\}$	$\{b\}$	$\{c\}$	0	$0 \ a \ b \ c$
a	$\{a\}$	$\{0,a\}$	$\{b\}$	$\{c\}$	a	$0 \ a \ b \ c$
b	$\{b\}$	$\{b\}$	$\{0, a, c\}$	$\{b, c\}$	b	$0 \ a \ b \ c$
c	$\{c\}$	$\{c\}$	$\{b,c\}$	$\{0, a, b\}$	c	0 a b c

Then $(R, +, \cdot)$ is a hypernear-ring and $\{0\}, \{0, a\}$ and R are subhypernear-rings of R.

Definition 2.6. Let R and S be hypernear-rings, the map $f : R \to S$ is called a *homomorphism* hypernear-rings if for all $x, y \in R$, the following relations hold:

$$f(x+y) = f(x) + f(y), \quad f(0) = 0 \text{ and } f(xy) = f(x)f(y)$$

From the above definition we get f(-x) = -f(x) for all $x \in R$.

A fuzzy set μ in a nonempty set X is a function $\mu : X \to [0, 1]$ and $\text{Im}(\mu)$ denote the image set of μ . Let μ be a fuzzy set in a set X. For $t \in [0, 1]$, the set

$$X^t_{\mu} := \{ x \in X | \mu(x) \ge t \}$$

is called a *level subset* of μ .

In [4], Davvaz introduced the concept of a fuzzy subhypernear-ring of a hypernear-ring which is a generalization of the concept of a fuzzy subnear-ring in a near-ring as follows.

Definition 2.7. Let $(R, +, \cdot)$ be a hypernear-ring. A fuzzy set μ in R is called a *fuzzy* subhypernear-ring of R if it satisfies

 $\begin{array}{ll} (\mathrm{F1}) & \min\{\mu(x), \mu(y)\} \leq \inf_{\alpha \in x+y} \mu(\alpha), \\ (\mathrm{F2}) & \mu(x) \leq \mu(-x), \\ (\mathrm{F3}) & \min\{\mu(x), \mu(y)\} \leq \mu(xy) \\ \mathrm{for \ all} \ x, y \in R. \end{array}$

Definition 2.8. By a *t*-norm T, we mean a function $T : [0, 1] \times [0, 1] \rightarrow [0, 1]$ satisfying the following conditions:

$$\begin{array}{ll} ({\rm T1}) \ T(x,1) = x, \\ ({\rm T2}) \ T(x,y) \leq T(x,z) \ {\rm if} \ y \leq z, \\ ({\rm T3}) \ T(x,y) = T(y,x), \\ ({\rm T4}) \ T(x,T(y,z)) = T(T(x,y),z) \\ {\rm for \ all} \ x,y \in R. \end{array}$$

Here are some examples of t-norms:

$$\begin{array}{l} 1) \ \ T_0(x,y) = \begin{cases} x \ \ \ {\rm if} \ y = 1, \\ y \ \ {\rm if} \ x = 1, \\ 0 \ \ {\rm otherwise}, \end{cases} \\ 2) \ \ T_1(x,y) = \max\{0,x+y-1\}, \\ 3) \ \ T_2(x,y) = \frac{xy}{2-(x+y-xy)}, \\ 4) \ \ T_3(x,y) = xy, \\ 5) \ \ T_4(x,y) = \frac{xy}{x+y-xy}, \\ 6) \ \ T_5(x,y) = \min\{x,y\}. \end{array}$$

Every t-norm T has a useful property:

 $T(\alpha, \beta) \leq \min\{\alpha, \beta\}$ for all $\alpha, \beta \in [0, 1]$.

3. T-FUZZY SUBHYPERNEAR-RINGS

In what follows, let R denote a hypernear-ring unless otherwise specified. We first consider the T-fuzzification of subhypernear-rings in hypernear-rings as follows.

Definition 3.1. Let T be a t-norm. A fuzzy set μ in R is called a T-fuzzy subhypernear-ring (for short, TFS-ring) of R if it satisfies

$$\begin{array}{ll} (\mathrm{TF1}) \ T(\mu(x),\mu(y)) \leq \inf_{\alpha \in x+y} \mu(\alpha), \\ (\mathrm{TF2}) \ \mu(x) \leq \mu(-x), \\ (\mathrm{TF3}) \ T(\mu(x),\mu(y)) \leq \mu(xy) \\ \text{for all } x, y \in R. \end{array}$$

Example 3.2. Consider the hypernear-ring R in Example 2.4, we define a fuzzy set μ : $R \longrightarrow [0,1]$ by $\mu(a) = \mu(b) = 1/2$ and $\mu(0) = 1$. Then we have:

(x,y)	(0, 0)	(0,a)	(0,b)	(a, 0)	(a,a)	(a,b)	(b, 0)	(b,a)	(b,b)
$\inf_{z \in x+y} \mu(z)$	1	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2
$\mu(xy)$	1	1	1	1	1/2	1/2	1	1/2	1/2
$T_0(\mu(x),\mu(y))$	1	1/2	1/2	1/2	0	0	1/2	0	0
$T_1(\mu(x),\mu(y))$	0	1/2	1/2	1/2	0	0	1/2	0	0
$T_2(\mu(x),\mu(y))$	1	1/2	1/2	1/2	1/5	1/5	1/2	1/5	1/5
$T_3(\mu(x),\mu(y))$	1	1/2	1/2	1/2	1/4	1/4	1/2	1/4	1/4
$T_4(\mu(x),\mu(y))$	1	1/2	1/2	1/2	1/3	1/3	1/2	1/3	1/3
$T_5(\mu(x),\mu(y))$	1	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2

The above table show that μ is a T_0FS -ring, T_1FS -ring, T_2FS -ring, T_3FS -ring, T_4FS -ring and T_5FS -ring. If we consider a fuzzy set $\lambda : R \longrightarrow [0,1]$ by $\lambda(a) < \lambda(b) < \lambda(0)$, then λ is not a T_5FS -ring of R, because $\inf_{x \in b+b} \{\lambda(x)\} = \lambda(a)$ and $\min\{\lambda(b), \lambda(b)\} = \lambda(b)$.

Example 3.3. Consider the hypernear-ring R in Example 2.5, we define a fuzzy set μ in R by

$$\mu(0) = 0.7, \mu(a) = 0.5$$
 and $\mu(b) = \mu(c) = 0.3$

Routine calculations give that μ is a T_1FS -ring of R. If we consider a fuzzy set μ in R by

$$\mu(0) = 0.4, \mu(a) = 0.8$$
 and $\mu(b) = \mu(c) = 0.3$

Routine calculations give that μ is a T_3FS -ring of R, but μ is not a T_1FS -ring of R since $\inf_{\alpha \in a+a} \mu(\alpha) = 0.4 \geq 0.6 = \max\{0.8 + 0.8 - 1, 0\}.$

Theorem 3.4. Let $I \subseteq R$. Then I is a subhypernear-ring of R if and only if χ_I is a TFS-ring of R.

Proof. Assume that I is a subhypernear-ring of R. Let $x, y \in R$. If $x, y \in I$ then $x + y \subseteq I$ and $xy \in I$. Thus we have

$$\inf_{\alpha \in x+y} \chi_I(\alpha) = 1 = T(\chi_I(x), \chi_I(y)) \text{ and } \chi_I(xy) = 1 = T(\chi_I(x), \chi_I(y)).$$

Otherwise, we have

$$\inf_{\alpha \in x+y} \chi_I(\alpha) \ge 0 = T(\chi_I(x), \chi_I(y)) \text{ and } \chi_I(xy) \ge 0 = T(\chi_I(x), \chi_I(y)).$$

Let $x \in R$. If $x \in I$ then $-x \in I$ and so we have $\chi_I(x) = \chi_I(-x)$. If $x \notin I$ then $\chi_I(x) = 0 \leq \chi_I(-x)$. Therefore χ_I is a *TFS*-ring of *R*.

Conversely, assume that χ_I is a *TFS*-ring of *R*. Let $x, y \in I$. Then $\chi_I(x) = 1$ and $\chi_I(y) = 1$. Thus for any $z \in x + y$, we have

$$\chi_I(z) \ge \inf_{\alpha \in x+y} \chi_I(\alpha) \ge T(\chi_I(x), \chi_I(y)) = 1, \text{ and } \chi_I(xy) \ge T(\chi_I(x), \chi_I(y)) = 1.$$

Hence we get $z \in I$, i.e., $x + y \subseteq I$, and $xy \in I$. Let $x \in I$. Then $\chi_I(x) = 1$. Thus by (TF2) we have $1 = \chi_I(x) \leq \chi_I(-x)$. Hence $-x \in I$. Therefore I is a subhypernear-ring of R

Proposition 3.5. If $\{\mu_i | i \in \Lambda\}$ is a family of TFS-rings of R, then so is $\bigcap_{i \in \Lambda} \mu_i$.

Proof. Let $\{\mu_i | i \in \Lambda\}$ is a family of *TFS*-rings of *R* and $x, y \in R$. Then we have

$$\inf_{\alpha \in x+y} (\bigcap_{i \in \Lambda} \mu_i)(\alpha) = \inf_{\alpha \in x+y} \{\inf_{i \in \Lambda} \mu_i(\alpha)\} = \inf_{i \in \Lambda} \{\inf_{\alpha \in x+y} \mu_i(\alpha)\} \ge \inf_{i \in \Lambda} \{T(\mu_i(x), \mu_i(y))\} \\
\ge T(\inf_{i \in \Lambda} \mu_i(x), \inf_{i \in \Lambda} \mu_i(y)) \ge T(\bigcap_{i \in \Lambda} \mu_i(x), \bigcap_{i \in \Lambda} \mu_i(y)).$$

23

For all $x \in R$, since $\mu_i(x) \leq \mu_i(-x)$ for $i \in \Lambda$, we have $\bigcap_{i \in \Lambda} \mu_i(x) \leq \bigcap_{i \in \Lambda} \mu_i(-x)$. For every $x, y \in R$, we have

$$(\bigcap_{i\in\Lambda}\mu_i)(xy) = \inf_{i\in\Lambda}\mu_i(xy) \ge \inf_{i\in\Lambda}\{T(\mu_i(x),\mu_i(y))\} \ge T(\inf_{i\in\Lambda}\mu_i(x),\inf_{i\in\Lambda}\mu_i(y)).$$

Hence $\bigcap_{i \in \Lambda} \mu_i$ is a *TFS*-ring of *R*.

Proposition 3.6. Let T be a t-norm and μ be a fuzzy set of R. If R^t_{μ} is a subhypernear-ring of R for all $t \in Im(\mu)$, then μ is a TFS-ring of R.

Proof. Let $x, y \in R$ be such that $\mu(x) = t$ and $\mu(y) = s$ for some $s, t \in Im(\mu)$. Without loss of generality we may assume that $s \ge t$. Then $\mu(y) = s \ge t$, and so $x, y \in R^t_{\mu}$. Since R^t_{μ} is a subhypernear-ring, we get $x + y \subseteq R^t_{\mu}$ and $xy \in R^t_{\mu}$. Thus we have

$$\inf_{x \neq y} \mu(\alpha) \ge t = \min\{s, t\} = \min\{\mu(x), \mu(y)\} \ge T(\mu(x), \mu(y))$$

and $\mu(xy) \ge T(\mu(x), \mu(y)).$

Now let $x \in R$ be such that $\mu(x) > \mu(-x)$. Putting $x_0 = \frac{1}{2} \{\mu(x) + \mu(-x)\}$, then $\mu(-x) < x_0 < \mu(x)$, and so $x \in R^{x_0}_{\mu}$ but $-x \notin R^{x_0}_{\mu}$. This leads to a contradiction. Therefore μ is a *TFS*-ring of *R*.

Proposition 3.7. Let T be a t-norm and H be a subhypernear-ring of R. Then there exists a TFS-ring μ of R such that $R_{\mu}^t = H$ for some $t \in (0, 1]$.

Proof. Let μ be a fuzzy set in R defined by

$$\mu(x) := \begin{cases} t & \text{if } x \in H, \\ 0 & \text{otherwise,} \end{cases}$$

where t is a fixed number in (0,1]. Let $x, y \in R$. If $x \in R \setminus H$ or $y \in R \setminus H$, then $\mu(x) = 0$ or $\mu(y) = 0$ and so we have

$$\inf_{\alpha\in x+y}\mu(\alpha)\geq 0=\min\{\mu(x),\mu(y)\}\geq T(\mu(x),\mu(y))$$

and $\mu(xy) \ge T(\mu(x), \mu(y))$. If $x, y \in H$, then we have

$$\inf_{\alpha \in x+y} \mu(\alpha) \ge t = \min\{\mu(x), \mu(y)\} \ge T(\mu(x), \mu(y))$$

and $\mu(xy) \ge T(\mu(x), \mu(y)).$

Let $x \in R$. If $x \in R \setminus H$, then $\mu(x) = 0$ and so we have $\mu(-x) \ge 0 = \mu(x)$. If $x \in H$ then we have $\mu(-x) \ge t = \mu(x)$.

Therefore μ is a *TFS*-ring of *R*. It is clear that $R^t_{\mu} = H$.

Theorem 3.8. Let T be a t-norm and μ be a fuzzy set of R with $Im(\mu) = \{t_1, t_2, \dots, t_n\}$, where $t_i < t_j$ whenever i > j. Suppose that there exists a chain of subhypernear-rings of R:

$$H_0 \subseteq H_1 \subseteq \dots \subseteq H_n = R$$

such that $\mu(H_k^*) = t_k$, where $H_k^* = H_k \setminus H_{k-1}, H_{-1} = \emptyset$ for $k = 0, 1, \dots, n$. Then μ is a TFS-ring of R.

Proof. Let $x, y \in R$. If x and y belong to the same H_k^* , then we have $\mu(x) = \mu(y) = t_k, x + y \subseteq H_k$ and $xy \in H_k$. Thus we get

$$\inf_{\alpha \in x+y} \mu(\alpha) \ge t_k = \min\{\mu(x), \mu(y)\} \ge T(\mu(x), \mu(y))$$

and $\mu(xy) \geq T(\mu(x), \mu(y))$. If $x \in H_i^*$ and $y \in H_j^*$ for every $i \neq j$. Without loss of generality, we may assume that $i \geq j$. Then we have $\mu(x) = t_i < t_j = \mu(y), x + y \subseteq H_i$ and $xy \in H_i$. It follows that

$$\inf_{\alpha \in x+y} \mu(\alpha) \ge t_i = \min\{\mu(x), \mu(y)\} \ge T(\mu(x), \mu(y))$$

and $\mu(xy) \ge T(\mu(x), \mu(y)).$

Let $x \in R$. Then there exists H_k such that $x \in H_k^*$ for some $k \in \{0, 1, \dots, n\}$. Thus we have $\mu(x) = t_k = \mu(-x)$.

Therefore μ is a *TFS*-ring of *R*.

For a t-norm T on [0, 1], denote by Δ_T the set of element $\alpha \in [0, 1]$ such that $T(\alpha, \alpha) = \alpha$, i.e., $\Delta_T := \{\alpha \in [0, 1] | T(\alpha, \alpha) = \alpha\}.$

A fuzzy set μ in a set X is said to satisfy *imaginable property* if $Im(\mu) \subseteq \Delta_T$.

Definition 3.9. A *TFS*-ring is said to be *imaginable* if it satisfies the imaginable property.

Proposition 3.10. For a subhypernear-ring H of R, let μ be a fuzzy set in R given by

$$\mu(x) := \begin{cases} s & \text{if } x \in H, \\ t & \text{otherwise} \end{cases}$$

for all $s,t \in [0,1]$ with s > t. Then μ is a T_1FS -ring of R. In particular, if s = 1 and t = 0 then μ is imaginable.

Proof. Let $x, y \in R$. If $x, y \in H$ then we get $x + y \subseteq H$ and $xy \in H$ since H is a subhypernear-ring of R, and so

$$T_1(\mu(x), \mu(y)) = \max\{s+s-1, 0\} \le s = \inf_{\alpha \in x+y} \mu(\alpha)$$

and $T_1(\mu(x), \mu(y)) \leq \mu(xy)$. If $x \in H$ and $y \notin H$ (or, $x \notin H$ and $y \in H$). Then $\mu(x) = s > t = \mu(y)$ (or, $\mu(x) = t < s = \mu(y)$). It follows that

$$T_1(\mu(x),\mu(y)) = \max\{s+t-1,0\} \le t \le \inf_{\alpha \in x+y} \mu(\alpha)$$

and $T_1(\mu(x), \mu(y)) \leq \mu(xy)$. If $x \notin H$ and $y \notin H$. Then $\mu(x) = t = \mu(y)$ and so we have

$$T_1(\mu(x), \mu(y)) = max\{t + t - 1, 0\} \le t \le \inf_{\alpha \in x + u} \mu(\alpha)$$

and $T_1(\mu(x), \mu(y)) \le \mu(xy)$.

Let $x \in R$. If $x \in H$ then $-x \in H$ and so we have $\mu(x) = s \leq \mu(-x)$. If $x \notin H$ then we get $\mu(x) = t \leq \mu(-x)$.

Therefore μ is a T_1FS -ring of R. Obviously μ is imaginable when s = 1 and t = 0.

Proposition 3.11. Let T be a t-norm and μ be an imaginable TFS-ring of R. Then $\mu(0) \ge \mu(x)$ for all $x \in R$.

Proof. For every $x \in R$ we have $0 \in x - x$ and so

$$\mu(0) \ge \inf_{z \in x-x} \mu(z) \ge T(\mu(x), \mu(-x)) = T(\mu(x), \mu(x)) = \mu(x).$$

Theorem 3.12. Let T be a t-norm. Then every imaginable TFS-ring of R is a fuzzy subhypernear-ring of R.

Proof. Let μ be an imaginable *TFS*-ring of *R*. Since μ satisfies the imaginable property, we have

$$\min\{\mu(x), \mu(y)\} = T(\min\{\mu(x), \mu(y)\}, \min\{\mu(x), \mu(y)\})$$

$$\leq T(\mu(x), \mu(y)) \leq \min\{\mu(x), \mu(y)\}$$

for all $x, y \in R$. It follows that $\inf_{\alpha \in x+y} \mu(\alpha) \ge T(\mu(x), \mu(y)) = \min\{\mu(x), \mu(y)\}$ and $\mu(xy) \ge \min\{\mu(x), \mu(y)\}$ for all $x, y \in R$. Therefore μ is a fuzzy subhypernear-ring of R.

Theorem 3.13. Let μ be a TFS-ring of R and let $t \in [0, 1]$. Then

- (i) if t = 1 then R^t_{μ} is either empty or a subhypernear-ring of R,
- (ii) if T = min, then R^t_{μ} is either empty or a subhypernear-ring of R.

Proof. (i) Assume that t = 1 and let $x, y \in R^t_{\mu}$. Then we have

$$\inf_{\alpha \in x+y} \mu(\alpha) \ge T(\mu(x), \mu(y)) = T(1, 1) = 1 = t,$$

and $\mu(xy) \ge t$. Thus $\alpha \in R^t_{\mu}$ and so we get $x + y \subseteq R^t_{\mu}$, and $xy \in R^t_{\mu}$.

Let $x \in R^t_{\mu}$. Then since μ is a *TFS*-ring of *R*, we have $\mu(-x) \ge \mu(x) \ge t$. Thus we get $-x \in R^t_{\mu}$.

Therefore R^t_{μ} is a subhypernear-ring of R whence t = 1.

(ii) Similar to the proof of (i).

Theorem 3.14. Let T be a t-norm and let μ be an imaginable fuzzy set in R. If each nonempty level subset R^t_{μ} of μ is a subhypernear-ring of R, then μ is an imaginable TFS-ring of R.

Proof. For $t \in [0, 1]$, suppose that R^t_{μ} is a non-empty set and a subhypernear-ring of R. Then we have $\inf_{\alpha \in x+y} \mu(\alpha) \ge \min\{\mu(x), \mu(y)\}$ for all $x, y \in R$. Indeed, if not then there exist $x_0, y_0 \in R$ such that $\inf_{a \in x_0+y_0} \mu(a) < \min\{\mu(x_0), \mu(y_0)\}$. Taking

$$s_0 := \frac{1}{2} \{ \inf_{a \in x_0 + y_0} \mu(a) + \min\{\mu(x_0), \mu(y_0)\} \},\$$

then we get $\inf_{a \in x_0+y_0} \mu(a) < s_0 < \min\{\mu(x_0), \mu(y_0)\}$ and thus $x_0, y_0 \in R^{s_0}_{\mu}$ and $x_0+y_0 \nsubseteq R^{s_0}_{\mu}$. This is a contradiction. Hence we have

$$\inf_{\alpha \in x+y} \mu(\alpha) \ge \min\{\mu(x), \mu(y)\} \ge T\{\mu(x), \mu(y)\}$$

for all $x, y \in R$.

Now if (TF2) is not true, then $\mu(x_0y_0) < \min\{\mu(x_0), \mu(y_0)\}\$ for some $x_0, y_0 \in R$. Taking

$$s_0 := \frac{1}{2} \{ \mu(x_0 y_0) + \min\{\mu(x_0), \mu(y_0)\} \},\$$

then we get $\mu(x_0y_0) < s_0 < \min\{\mu(x_0), \mu(y_0)\}\$ and thus $x_0, y_0 \in R^{s_0}_{\mu}$ and $x_0y_0 \in R^{s_0}_{\mu}$. This is a contradiction. Hence we have

$$\mu(xy) \ge \min\{\mu(x), \mu(y)\} \ge T(\mu(x), \mu(y))$$

for all $x, y \in R$.

Finally, if (TF3) is not true, then $\mu(x_0) > \mu(-x_0)$ for some $x_0 \in R$. Taking

$$s_0 := \frac{1}{2} \{ \mu(x_0) + \mu(-x_0) \},\$$

then we get $\mu(x_0) > s_0 > \mu(-x_0)$ and thus $x_0 \in R^{s_0}_{\mu}$ and $-x_0 \notin R^{s_0}_{\mu}$. It is a contradiction. Therefore μ is an imaginable *TFS*-ring of *R*.

Let $f : R \to S$ be a mapping of hypernear-rings. For a fuzzy set μ in S, the *inverse image* of μ under f, denoted by $f^{-1}(\mu)$, is defined by $f^{-1}(\mu)(x) := \mu(f(x))$ for all $x \in R$.

Proposition 3.15. Let T be a t-norm and let $f : R \to S$ be a homomorphism of hypernearrings. If μ is a TFS-ring of S, then $f^{-1}(\mu)$ is a TFS-ring of R.

Proof. Assume that μ is a *TFS*-ring of *S*. Let $x, y \in R$. Then we get

$$\inf_{\alpha \in x+y} f^{-1}(\mu)(\alpha) = \inf_{\substack{f(\alpha) \in f(x)+f(y) \\ = T(f^{-1}(\mu)(x), f^{-1}(\mu)(y))}} \mu(f(x)), \mu(f(y)))$$

and

$$f^{-1}(\mu)(xy) = \mu(f(x)f(y)) \ge T(\mu(f(x)), \mu(f(y))) = T(f^{-1}(\mu)(x), f^{-1}(\mu)(y)).$$

Also, we have $f^{-1}(\mu)(x) = \mu(f(x)) \le \mu(-f(x)) = \mu(f(-x)) = f^{-1}(\mu)(-x)$ for all $x \in R$. Therefore $f^{-1}(\mu)$ is a *TFS*-ring of *R*.

4. Direct product of TFS-rings

Definition 4.1. Let T be a t-norm and let μ and ν be fuzzy sets in R. Then the T-product of μ and ν , written $[\mu \cdot \nu]_T$, is defined by $[\mu \cdot \nu]_T(x) := T(\mu(x), \nu(x))$ for all $x \in R$.

Proposition 4.2. Let T be a t-norm and let μ and ν be TFS-rings in R. If T^* is a t-norm which dominates, i.e., $T^*(T(\alpha, \beta), T(\gamma, \delta)) \ge T(T^*(\alpha, \gamma), T^*(\beta, \delta))$ for all $\alpha, \beta, \gamma, \delta \in [0, 1]$, then T^* -product of μ and ν , $[\mu \cdot \nu]_T^*$ is a TFS-ring of R.

Proof. Let $x, y \in R$. Then we have

$$\inf_{\alpha \in x+y} [\mu \cdot \nu]_T^*(\alpha) = \inf_{\alpha \in x+y} T^*(\mu(\alpha), \nu(\alpha)) \ge T^*(\inf_{\alpha \in x+y} \mu(\alpha), \inf_{\alpha \in x+y} \nu(\alpha)) \\
\ge T^*(T(\mu(x), \mu(y)), T(\nu(x), \nu(y))) \\
\ge T(T^*(\mu(x), \nu(x)), T^*(\mu(y), \nu(y)) = T([\mu \cdot \nu]_T^*(x), [\mu \cdot \nu]_T^*(y))$$

and

$$\begin{aligned} [\mu \cdot \nu]_T^*(xy) &= T^*(\mu(xy), \nu(xy)) \ge T^*(T(\mu(x), \mu(y)), T(\nu(x), \nu(y))) \\ &\ge T(T^*(\mu(x), \nu(x)), T^*(\mu(y), \nu(y)) = T([\mu \cdot \nu]_T^*(x), [\mu \cdot \nu]_T^*(y)). \end{aligned}$$

Also, we get $[\mu \cdot \nu]_T^*(x) = T^*(\mu(x), \nu(x)) \leq T^*(\mu(-x), \nu(-x)) = [\mu \cdot \nu]_T^*(-x)$ for all $x \in R$. Therefore $[\mu \cdot \nu]_T^*$ is a *TFS*-ring of *R*.

Let $f: R \to S$ be a homomorphism of hypernear-rings, and let T and T^* be t-norms such that T^* dominates T. If μ and ν are TFS-rings in S, then $[\mu \cdot \nu]_T^*$ is a TFS-ring of S. By 3.15, the inverse images $f^{-1}(\mu), f^{-1}(\nu)$ and $f^{-1}([\mu \cdot \nu]_T^*)$ are TFS-rings of R. The next theorem provides that the relation between $f^{-1}([\mu \cdot \nu]_T^*)$ and the T^* -product $[f^{-1}(\mu) \cdot f^{-1}(\nu)]_T^*$ of $f^{-1}(\mu)$ and $f^{-1}(\nu)$.

Theorem 4.3. Let $f: R \to S$ be a homomorphism of hypernear-rings, and let T and T^* be t-norms such that T^* dominates T. Let μ and ν be TFS-rings in S. If $[\mu \cdot \nu]_T^*$ is T^* -product of μ and ν , and $[f^{-1}(\mu) \cdot f^{-1}(\nu)]_T^*$ is the T^* -product of $f^{-1}(\mu)$ and $f^{-1}(\nu)$ then $f^{-1}([\mu \cdot \nu]_T^*) = [f^{-1}(\mu) \cdot f^{-1}(\nu)]_T^*$.

Proof. Let $x \in R$. Then we have

$$\begin{aligned} f^{-1}([\mu \cdot \nu]_T^*)(x) &= [\mu \cdot \nu]_T^*(f(x)) = T^*(\mu(f(x)), \nu(f(x))) \\ &= T^*(f^{-1}(\mu)(x), f^{-1}(\nu)(x)) = [f^{-1}(\mu) \cdot f^{-1}(\nu)]_T^*. \end{aligned}$$

Let R_1 and R_2 be two hypernear-rings, then for all (x_1, y_1) and (x_2, y_2) in $R_1 \times R_2$ we define

$$(x_1, y_1) + (x_2, y_2) = \{(x, y) \mid x \in x_1 + x_2, y \in y_1 + y_2\}$$

$$(x_1, y_1) \cdot (x_2, y_2) = (x_1 x_2, y_1 y_2).$$

Clearly $R_1 \times R_2$ is a hypernear-ring and we call this hypernear-ring the direct product of R_1 and R_2 .

Definition 4.4. Let T be a t-norm and let μ_1 and μ_2 be fuzzy sets on hypernear-rings R_1 and R_2 respectively. Then μ defined on $R_1 \times R_2$ by the formula

$$\mu(x,y) = T(\mu_1(x), \ \mu_2(y))$$

is a fuzzy set on $R_1 \times R_2$ which is defined by $\mu_1 \times \mu_2$.

Theorem 4.5. Let T be a t-norm and let $R = R_1 \times R_2$ be the direct product of hypernearrings R_1 and R_2 . If μ_1 and μ_2 are TFS-rings of R_1 and R_2 respectively, then $\mu = \mu_1 \times \mu_2$ is a TFS-ring of R.

Proof. Let (x_1, y_1) and (x_2, y_2) be two arbitrary elements of $R_1 \times R_2$. For every $(x, y) \in (x_1, y_1) + (x_2, y_2)$ we have

$$\begin{aligned} (\mu_1 \times \mu_2)(x,y) &= T(\mu_1(x), \mu_2(y)) \\ &\geq T(T(\mu_1(x_1), \mu_1(x_2)), \ T(\mu_2(y_1), \mu_2(y_2))) \\ &= T(T(T(\mu_1(x_1), \mu_1(x_2)), \mu_2(y_1)), \mu_2(y_2)) \\ &= T(T(\mu_2(y_1), T(\mu_1(x_1), \mu_1(x_2)), \mu_2(y_2)) \\ &= T(T(T(\mu_2(y_1), \mu_1(x_1)), \mu_1(x_2)), \mu_2(y_2)) \\ &= T(\mu_2(y_2), \ T(\mu_1(x_2), \ T(\mu_2(y_1), \mu_1(x_1)))) \\ &= T(T(\mu_1(x_1), \mu_2(y_1)), \ T(\mu_1(x_2), \mu_2(y_2))) \\ &= T((\mu_1 \times \mu_2)(x_1, y_1), \ (\mu_1 \times \mu_2)(x_2, y_2)). \end{aligned}$$

Hence $\inf_{(x,y)\in(x_1,y_1)+(x_2,y_2)}(\mu_1\times\mu_2)(x,y) \ge T((\mu_1\times\mu_2)(x_1,y_1), \ (\mu_1\times\mu_2)(x_2,y_2)).$ Similarly we obtain

$$\begin{aligned} (\mu_1 \times \mu_2)((x_1, y_1) \cdot (x_2, y_2)) &= (\mu_1 \times \mu_2)(x_1 x_2, y_1 y_2) \\ &= T(\mu_1(x_1 x_2), \ \mu_2(y_1 y_2)) \\ &\geq T(T(\mu_1(x_1), \mu_1(x_2)), \ T(\mu_2(y_1), \mu_2(y_2))) \\ &\vdots \\ &= T((\mu_1 \times \mu_2)(x_1, y_1), \ (\mu_1 \times \mu_2)(x_2, y_2)). \end{aligned}$$

Also, we have

$$(\mu_1 \times \mu_2)(x,y) = T(\mu_1(x),\mu_2(y)) \le T(\mu_1(-x),\mu_2(-y)) = (\mu_1 \times \mu_2)(-x,-y).$$

Therefore $\mu_1 \times \mu_2$ is a *TFS*-ring of $R_1 \times R_2$.

Theorem 4.6. Let T be a t-norm and let μ_1 and μ_2 be fuzzy sets of the hypernear-rings R_1 and R_2 respectively. If $\mu_1 \times \mu_2$ is an imaginable TFS-ring of $R_1 \times R_2$, then at least one of the following two statements must hold:

(1) $\mu_2(0) \ge \mu_1(x)$ for all $x \in R_1$, (2) $\mu_1(0) \ge \mu_2(y)$ for all $y \in R_2$.

Proof. Suppose that $\mu_1 \times \mu_2$ is an imaginable *TFS*-ring of $R_1 \times R_2$. By contraposition, suppose that none of the statements (1) and (2) holds. Then there exist $x_0 \in R_1$ and $y_0 \in R_2$ such that

$$\mu_1(x_0) > \mu_2(0)$$
 and $\mu_2(y_0) > \mu_1(0)$.

Now, we have

$$\begin{aligned} (\mu_1 \times \mu_2)(x_0, y_0) &= T(\mu_1(x_0), \mu_2(y_0)) > T(\mu_2(0), \mu_1(0)) \\ &= T(\mu_1(0), \mu_2(0)) = (\mu_1 \times \mu_2)(0, 0). \end{aligned}$$

But, by Proposition 3.11, always we have $(\mu_1 \times \mu_2)(0,0) \ge (\mu_1 \times \mu_2)(x_0, y_0)$.

Theorem 4.7. Let T be a t-norm. Let μ_1 , μ_2 and $\mu_1 \times \mu_2$ be fuzzy sets of the hypernearrings R_1 , R_2 and $R_1 \times R_2$ respectively, such that satisfy imaginable property. If $\mu_1 \times \mu_2$ is a TFS-ring of $R_1 \times R_2$, then μ_1 is a TFS-ring of R_1 or μ_2 is a TFS ring of R_2 .

Proof. Since $\mu_1 \times \mu_2$ is an imaginable *TFS*-ring of $R_1 \times R_2$, by Theorem 4.6, we assume that $\mu_1(x) \leq \mu_2(0)$ for all $x \in R_1$, and we show that μ_1 is a *TFS*-ring of R_1 . Let x and y be two arbitrary elements of R_1 . For every $z \in x + y$ we have

$$\begin{split} \mu_1(z) &= T(\mu_1(z), 1) \geq T(\mu_1(z), \mu_2(0)) \\ &= (\mu_1 \times \mu_2)(z, 0) \\ \geq \inf_{(z,0) \in (x,0) + (y,0)} (\mu_1 \times \mu_2)(z, 0) \\ &\geq T((\mu_1 \times \mu_2)(x, 0), \ (\mu_1 \times \mu_2)(y, 0)) \\ &= T(T(\mu_1(x), \mu_2(0)), \ T(\mu_1(y), \mu_2(0))) \\ \geq T(T(\mu_1(x), \mu_1(x)), \ T(\mu_1(y), \mu_1(x))) \\ &= T(\mu_1(x), \ T(\mu_1(y), \mu_1(x))) \\ &= T(\mu_1(x), \ T(\mu_1(x), \mu_1(y))) \\ &= T(\mu_1(x), \mu_1(x)), \mu_1(y)) \\ &= T(\mu_1(x), \mu_1(y)). \end{split}$$

Therefore $\inf_{z \in \tau + \eta} \mu_1(z) \ge T(\mu_1(x), \mu_1(y))$. Similarly, we obtain

$$\begin{aligned} \mu_1(xy) &= T(\mu_1(xy), 1) \geq T(\mu_1(xy), \mu_2(0)) \\ &= (\mu_1 \times \mu_2)(xy, 0) = (\mu_1 \times \mu_2)((x, 0) \cdot (y, 0)) \\ &\geq T((\mu_1 \times \mu_2)(x, 0), \ (\mu_1 \times \mu_2)(y, 0)) \\ &\vdots \\ &= T(\mu_1(x), \mu_1(y)). \end{aligned}$$

Also we have

$$\mu_1(-x) = T(\mu_1(-x), 1) \ge T(\mu_1(-x), \mu_2(0)) = (\mu_1 \times \mu_2)(-x, 0) = (\mu_1 \times \mu_2)(-(x, 0)) \\ \ge (\mu_1 \times \mu_2)(x, 0) = T(\mu_1(x), \mu_2(0)) \ge T(\mu_1(x), \mu_1(x)) = \mu_1(x).$$

References

- [1] J.M. Anthony and H. Shewood, Fuzzy groups redifined, 69 (1979), 124-130.
- P. Corsini and V. Leoreanu, Applications of hyperstructure theory, Advanced in Mathematics, Vol. 5, Klower Academic Publishers, 2003.
- [3] V. Dasic, Hypernear-rings, Proceedings of the Forth International Congress on A. H. A., Xanthi, Greece, World Scientific, (1990), 75-85.
- B. Davvaz, On hypernear-rings and fuzzy hyperideals, The Journal of Fuzzy Mathematics 7, No. 3 (1999), 745-753.
- [5] B. Davvaz, H_v-Near-Rings, Math. Japonica **52**, No. 2 (2000), 387-392.
- [6] B. Davvaz, T-fuzzy H_v -subrings of an H_v -ring, The Journal of Fuzzy Mathematics 11, No. 1 (2003), 215-224.
- [7] V. M. Gontineac, On hypernear-rings and H-hypergroups, Proceedings of the Forth International Congress on A. H. A. 1993, Hadronic Press, Inc., USA, (1994), 171-179.
- [8] K. H. Kim, B. Davvaz and E. H. Roh, On Hyper R-subgroups of Hypernear-rings, (submitted).
- [9] M. Krasner, A class of hyperrings and hyperfields, Int. J. Math. and Math. Sci. 2 (1983), 307-312.

- [10] F. Matry, Sur une generalization de la notion de groupe, 8^{iem} congress Math. Scandenaves, Stoockholm, (1934), 45-49.
- [11] G. Pllz, Near-rings, North-Holland Publ., Co, 1977.
- [12] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512-517.
- [13] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math., 10 (1960), 313-334.
- [14] T. Vougiouklis, Hyperstructures and their representations, Hadronic Press, Inc., 115, Palm Harber, USA, 1994.

[15] L. Zadeh, Fuzzy sets, Inform. and Contral 8, (1965), 338-353.

E. H. Roh, Department of Mathematics Education, Chinju National University of Education, Jinju 660-756, Korea

E-mail address: ehroh@cue.ac.kr

B. DAVVAZ, DEPARTMENT OF MATHEMATICS, YAZD UNIVERSITY, YAZD, IRAN *E-mail address*: davvaz@yazduni.ac.ir

K. H. KIM, DEPARTMENT OF MATHEMATICS, CHUNGJU NATIONAL UNIVERSITY, CHUNGJU 380-702, KOREA *E-mail address*: ghkim@chungju.ac.kr