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T-FUZZY SUBHYPERNEAR-RINGS OF HYPERNEAR-RINGS
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ABSTRACT. Using a t-norm 7', the notion of T-fuzzy subhypernear-rings (for short T F'S-
rings) of hypernear-rings is introduced and some of their properties are investigated. Also
we study the structure of T'F'S-rings under direct product.

1. INTRODUCTION

The theory of hyperstructures has been introduced by Matry in 1934 during the 8"
congress of the Scandinavian Mathematicians [10]. Marty introduced the notion of a hyper-
group and then many researchers have been worked on this new field of modern algebra and
developed it. A comprehensive review of the theory of hyperstructures appear in [2] and
[14]. The notion of the hyperfield and hyperring was studied by Krasner [9]. In [3], Dasic
has introduced the notion of hypernear-rings generalizing the concept of near-ring [11]. In
[7], Gontineac defined the zero-symmetric part and the constant part of a hypernear-ring
and introduced a structure theorem and other properties of hypernear-rings. Davvaz in [5]
introduced the notion of an H,-near ring generalizing the notion of hypernear-ring.

The concept of fuzzy sets was introduced by Zadeh [15]. It was first applied to the theory
of groups by Rosenfeld [12]. Rosenfeld has introduced fuzzy subgroups of a group and many
researchers are engaged in extending the concept. In [1], Anthony and sherwood redefined a
fuzzy subgroup of a group using the concept of a triangular norm, also see [6]. This notion
was introduced by Schweizer and Sklar [13], in order to generalize the ordinary triangle
inequality in a metric space to the more general probabilistic metric spaces.

In [4], Davvaz has introduced the concept of fuzzy subhypernear-rings and fuzzy hyper-
ideals of a hypernear-ring which are a generalization of the concept of a fuzzy subnear-rings
and fuzzy ideals in a near-ring. Now, in this paper, using a t-norm 7', the notion of T-fuzzy
subhypernear-rings (for short T'F' S-rings) of hypernear-rings is introduced and some of their
properties are investigated. Also we study the structure of T'F S-rings under direct product.

2. PRELIMINARIES

We now review some basic definitions for the sake of completeness. These definitions are
taken primarily from [3,4,7,13].

Definition 2.1. Let H be a non-empty set. A hyperoperation * on H is a mapping of
H x H into the family of non-empty subsets of H.

Definition 2.2. A hypernear-ring is an algebraic structure (R, +, -) which satisfies the fol-
lowing axioms:
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1) (R,+) is a quasi canonical hypergroup (not necessarily commutative), i.e., in (R, +) the
following hold:

a) t+ (y+z2)=(x+y)+zforalzy z€R;

b) There is 0 € R such that £ +0 =0+ x = z for all x € R;

c¢) For every x € R there exists one and only one 2’ € R such that 0 € x + 2/, (we shall

write —z for 2’ and we call it the opposite of x);

d) z€x+yimpliesy € —x +zand z € z — y.
2) With respect to the multiplication, (R, -) is a semigroup having absorbing element 0 i.e.,
z-0=0 for all x € R.
3) The multiplication is distributive with respect to the hyperoperation + on the left side
e, x-(y+z)=x-y+x-zforalzxyz€R.

If x € R and A, B are subsets of R, then by A+ B, A+ z and = + B we mean
A+B= |J a+b A+a=A+{a}, 2+ B={2}+B.

a€c A
beB

Note that for all z,y € R, we have —(—z) = 2,0 = —0,—(x +y) = —y — = and
r(—y) = —zy.
Definition 2.3. Let (R, +,-) be a hypernear-ring. A non-empty subset H of R is called a
subhypernear-ring if
(1) (H,+) is a subhypergroup of (R,+), i.e., a,b € H implies a+b C H, and a € H
implies —a € H,
(2) ab € H, for all a,b € H.

Now we give examples of hypernear-rings and of subhypernear-rings in hypernear-rings
as follows.

Example 2.4. Let R = {0, a, b} be a set with a hyperoperation “+” and a binary operation

“.7 as follows:
+] 0 a b | 0ab
0| {0} {a} {b} 0 000
a | {a} {0,a,b} {a,b} a| 0abd
b | {b} {a,b} {0,a,b} b| 0ad

Then (R, +,-) is a hypernear-ring and {0} and R are subhypernear-rings of R.
Example 2.5. [8]. Let R = {0, a,b,c} be a set with a hyperoperation “+” and a binary

operation “-” as follows:
+ | 0 a b c . | 0abdec
0| {0} {a} {0} {c} 0] 0abdc
a | {a} {0,a} {0} {c} a| 0abdec
b | {b} {b} {0,a,c} {b,c} b| 0abdc
c {c} {c¢} {b,¢} {0,a,b} c| 0abec

Then (R,+,-) is a hypernear-ring and {0}, {0,a} and R are subhypernear-rings of R.

Definition 2.6. Let R and S be hypernear-rings, the map f : R — S is called a homomor-
phism hypernear-rings if for all z,y € R, the following relations hold:

fx+y) = flz)+ fy), f(0)=0 and f(zy) = f(x)f(y).
(From the above definition we get f(—x) = —f(z) for all z € R.
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A fuzzy set p in a nonempty set X is a function g : X — [0,1] and Im(u) denote the
image set of p. Let p be a fuzzy set in a set X. For ¢ € [0, 1], the set

X = {z e X|u(x) >t}
is called a level subset of .

In [4], Davvaz introduced the concept of a fuzzy subhypernear-ring of a hypernear-ring
which is a generalization of the concept of a fuzzy subnear-ring in a near-ring as follows.

Definition 2.7. Let (R,+,-) be a hypernear-ring. A fuzzy set pu in R is called a fuzzy
subhypernear-ring of R if it satisfies

(F1) min{p(x), p(y)} < inf p(a),

(F2) (x) < p(—),

(F3) min{u(z), p(y)} < p(zy)

for all z,y € R.

Definition 2.8. By a t-norm T, we mean a function T : [0,1] x [0, 1] — [0, 1] satisfying the
following conditions:

(T1) T(z,1) ==,

(T2) T(z,y) < T(z,2) if y < 2,
(T3) T(x,y) = T(y, ),

(T4) T(z,T(y, 2)) = T(T(x,y), 2)
for all z,y € R.

Here are some examples of t-norms:
z ify=1,

1) To(z,y) =4 y ifz=1,
0 otherwize,

2) Ti(z,y) = max{0,z +y — 1},
3) Ta(z,y) = s=mr—y
4) Ts(x,y) = xy,
X
6) T5(x,y) = min{x, y}.

Every t-norm T has a useful property:

T(w, 8) < min{a, 8} for all o, 8 € [0, 1].

3. T-FUZZY SUBHYPERNEAR-RINGS

In what follows, let R denote a hypernear-ring unless otherwise specified. We first con-
sider the T-fuzzification of subhypernear-rings in hypernear-rings as follows.

Definition 3.1. Let T be a t-norm. A fuzzy set pin R is called a T-fuzzy subhypernear-ring
(for short, TFS-ring) of R if it satisfies

(TFL) T(u(2), nly)) < Ik p(e),
(TF2) p(x) < p(—=),
(TF3) T(u(x), u(y)) < plxy)

for all z,y € R.

Example 3.2. Consider the hypernear-ring R in Example 2.4, we define a fuzzy set pu :
R — [0,1] by p(a) = u(b) =1/2 and p(0) = 1. Then we have:
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Gy 00 0a]00 @) [@a][@) [6.0][6Ga] 00
Mfeoypu(z) | 1 | 1/2 | 1/2 | 12 | 1/2 | 1/2 | 1/2 | 1/2 | 12

1(zy) 1 1 1 1|12 |12 1 |12 | 12
To(u(z), u(y)) 1 1/2 | 1/2 | 1/2 0 0 1/2 0 0
Ty (u(x),u(y)) | O 1/2 | 1/2 | 1/2 0 0 1/2 0 0
To(p(x),uy) | 1 | 12 | 12 | 12 | 1/5 | 15 | 172 | 1/5 | 1/5
Ts(u(z), u(y)) | 1 /2 | 1/2 | 1/2 | 1/4 | 1/4 | 1/2 | 1/4 | 1/4
Ta(p(a),p) | 1 | 172 | 1/2 | 1/2 | 1/3 | 1/3 | 1/2 | 1/3 | 1/3
To(p(a),pw) | 1 | 172 | 172 | 172 | 172 | 1/2 | 172 | 1/2 | 1/2

The above table show that p is a ToF S-ring, T} F S-ring, T F S-ring, T3 F S-ring, Ty F' S-
ring and T5F S-ring. If we consider a fuzzy set A : R — [0,1] by A(a) < A(b) < A(0), then
A is not a T5 F'S-ring of R, because inf,cprp{A(z)} = A(a) and min{A(b), A(b)} = A(b).
Example 3.3. Consider the hypernear-ring R in Example 2.5, we define a fuzzy set y in
R by

1(0) = 0.7, u(a) = 0.5 and p(b) = u(c) = 0.3.
Routine calculations give that p is a T3 F'S-ring of R. If we consider a fuzzy set p in R by
1(0) = 0.4, pu(a) = 0.8 and p(b) = pu(c) = 0.3.

Routine calculations give that p is a T3 FS-ring of R, but p is not a T1 F'S-ring of R since
inf p(a) =0.4 % 0.6 =max{0.8+0.8—1,0}.

aca+ta
Theorem 3.4. Let I C R. Then I is a subhypernear-ring of R if and only if x; is a
TFS-ring of R.

Proof. Assume that I is a subhypernear-ring of R. Let z,y € R. If x,y € [ then v +y C I
and zy € I. Thus we have

Lt xi(a) =1=T(xr(x),xs(y)) and xs(zy) =1 =T (x1(x), x1(y))-

Otherwise, we have

aggy xr(a) >0 =T(xr(x),xs(y)) and xz(zy) > 0 =T (xr(x), x1(y))-

Let z € R. If x € I then —z € I and so we have xi(z) = xs(—=z). If z € I then
x1(z) =0 < xr(—x). Therefore xr is a TFS-ring of R.

Conversely, assume that xj is a TFS-ring of R. Let z,y € I. Then x;(z) = 1 and
x1(y) = 1. Thus for any z € z + y, we have

xr(z) > aégljry xr(a) > T(xr(x),xr(y)) =1, and xr(zy) > T'(xr(z), x1(y)) = 1.

Hence we get z € I, ie., z+y C I,and zy € I. Let € I. Then x;(x) = 1. Thus by (TF2)
we have 1 = xr(x) < xs(—z). Hence —z € I. Therefore I is a subhypernear-ring of R O

Proposition 3.5. If {u;|i € A} is a family of TFS-rings of R, then so is ﬂ#i-
€A
Proof. Let {p;|i € A} is a family of TFS-rings of R and z,y € R. Then we have

. | e e N el he o
ol (0 p)le) = nf {infpa(e)} = Inf{ inf ui(e)} = AT (i), wa(y))}

> T(inf pi(2), inf i(y)) = T({QAui(w% QA 1i(y))-



T-FUZZY SUBHYPERNEAR-RINGS OF HYPERNEAR-RINGS 23

For all z € R, since p;(x) < pi(—z) for i € A, we have () pi(z) < () pi(—x). For every
ieA i€A
z,y € R, we have
(QA pa)(wy) = inf pi(ey) > f{T(ui(2), piy))} = T(inf pi(z), inf 1 (y)).
Hence ﬂﬂi is a TFS-ring of R. O
1EA

Proposition 3.6. Let T be a t-norm and p be a fuzzy set of R. IfRL is a subhypernear-ring
of R for allt € Im(u), then p is a TFS-ring of R.

Proof. Let x,y € R be such that u(xz) =t and u(y) = s for some s,t € Im(p). Without
loss of generality we may assume that s > ¢. Then u(y) = s > ¢, and so z,y € RZ. Since
R}, is a subhypernear-ring, we get x +y C R}, and zy € R},. Thus we have

onf p(a) 2 ¢ =minds, t} = min{p(x), p(y)} = T(u(@), #(y))

and p(zy) > T(pu(z), p(y))- X
Now let z € R be such that p(x) > p(—x). Putting zo = 5{u(r) + u(—x)}, then
p(=r) <z < p(r), and so x € Rj° but —x ¢ Rj°. This leads to a contradiction.
Therefore 1 is a TFS-ring of R. (]

Proposition 3.7. Let T be a t-norm and H be a subhypernear-ring of R. Then there exists
a TFS-ring u of R such that RZ = H for some t € (0,1].

Proof. Let p be a fuzzy set in R defined by

() t ifxeH,
) =
K 0 otherwise,

where ¢ is a fixed number in (0,1]. Let x,y € R. If x € R\H or y € R\H, then pu(z) =0 or
w#(y) = 0 and so we have

ouf pla) 2 0=min{u(z), p(y)} 2 T(u(z), ny))

and p(xy) > T(u(x), u(y)). If 2,y € H, then we have

oof pla) >t =min{u(z), p(y)} 2 T(u(z), u(y))

and p(xzy) 2 T(u(x), p(y))-

Let z € R. If x € R\H, then pu(xz) =0 and so we have u(—z) > 0 = p(z). If x € H then
we have pu(—x) >t = u(x).

Therefore p is a TFS-ring of R. It is clear that RIZ =H. O

Theorem 3.8. Let T be a t-norm and p be a fuzzy set of R with Im(u) = {t1,t2, - ,tn},
where t; < t; whenever ¢ > j. Suppose that there exists a chain of subhypernear-rings of R:
HycH,C---CH,=R
such that p(H}) = ty, where Hf = Hy\Hp—1,H_1 = 0 for k =0,1,--- ,n. Then p is a

TFS-ring of R.

Proof. Let z,y € R. If x and y belong to the same Hj, then we have u(z) = p(y) =
ty,x +y C Hy and xy € Hi. Thus we get

olnf p(a) 2 tp = min{p(x), p(y)} = T(n(z), n(y))
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and p(zy) > T(u(z),p(y)). f x € H and y € Hj for every i # j. Without loss of
generality, we may assume that ¢ > j. Then we have p(z) =t; <t; = p(y),z +y C H; and
xy € H;. It follows that

b pla) >t = min{u(@), uy)} = T(n(z), n(y))

and p(zy) = T(u(x), p(y))-
Let z € R. Then there exists Hy, such that « € H} for some k € {0,1,--- ,n}. Thus we

have p(z) =t = p(—=x).
Therefore p is a TFS-ring of R. O

For a t-norm T on [0, 1], denote by Ar the set of element « € [0, 1] such that T(«, ) = «,
ie, Ap:={a€[0,1]|T(a, ) = a}.
A fuzzy set p in a set X is said to satisfy imaginable property if Im(u) C Arp.

Definition 3.9. A TFS-ring is said to be imaginable if it satisfies the imaginable property.

Proposition 3.10. For a subhypernear-ring H of R, let u be a fuzzy set in R given by

() = {s ifxe H,

t  otherwise

for all s,t € [0,1] with s > t. Then p is a T1F'S-ring of R. In particular, if s=1 andt =0
then p is imaginable.

Proof. Let x,y € R. If z,y € H then we get t +y C H and xy € H since H is a
subhypernear-ring of R, and so

Ti(n(@), ply)) = max{s + s~ 1,0} < 5= _inf pla)

and Ty (pu(x),pu(y) < plry). Itz € Hand y ¢ H (or, x ¢ H and y € H). Then
wx) =s>t=pu(y) (or, u(z) =t < s = p(y)). It follows that

Ti(p(w), ply)) = max{s +t - 1,0} <t < inf p(a)

and Ty (p(x), u(y)) < play). fx ¢ H and y ¢ H. Then p(x) =t = u(y) and so we have
Ti(u(z), ply)) = maz{t +¢ - 1,0} <t < inf u(a)
aEx+y

and T (u(2), p(y)) < p(zy).
Let x € R. If x € H then —x € H and so we have pu(x) = s < p(—=x). If z ¢ H then we

get u(z) =t < p(-xz).
Therefore p is a T1 F'S-ring of R. Obviously p is imaginable when s=1and ¢t =0. O

Proposition 3.11. Let T' be a t-norm and p be an imaginable TFS-ring of R. Then
1(0) > u(zx) for all x € R.

Proof. For every x € R we have 0 € v — x and so

p(0) = inf p(z) = T(p(e), p(-x)) = T(p(z), u(x)) = p(@).

z€Ex—x

O

Theorem 3.12. Let T be a t-norm. Then every imaginable TFS-ring of R is a fuzzy
subhypernear-ring of R.
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Proof. Let p be an imaginable T F'S-ring of R. Since p satisfies the imaginable property,
we have

[=}

{p(), p(y)}, min{p(z), p(y)})
(1), (y)) < min{p(z), u(y)}
(

W

for all z,y € R. Tt follows that éngr pla) > T(p(x), n(y)) = min{u(x), u(y)} and p(zy) >
acz+y

min{p(z), u(y)} for all z,y € R. Therefore p is a fuzzy subhypernear-ring of R. O

min{u(z), p(y)} = T'(mi
<T

Theorem 3.13. Let p be a TFS-ring of R and let t € [0,1]. Then
(i) ift =1 then RZ is either empry or a subhypernear-ring of R,
(i) of T = min, then RZ is either empry or a subhypernear-ring of R.

Proof. (i) Assume that t =1 and let x,y € R!,. Then we have

b () 2 T(u(e) u(y)) =T(1,1) =1=¢,

and p(zy) > t. Thus o € R}, and so we get = +y C R}, and xy € R},

Let x € Rj,. Then since p is a TFS-ring of R, we have u(—x) > p(z) > t. Thus we get
—x € Ry,

Therefore RZ is a subhypernear-ring of R whence t = 1.

(ii) Similar to the proof of (i). O

Theorem 3.14. Let T be a t-norm and let p be an tmaginable fuzzy set in R. If each non-
empty level subset Ri of u is a subhypernear-ring of R, then p is an imaginable TFS-ring
of R.

Proof. For t € [0, 1], suppose that RZ is a non-empty set and a a subhypernear-ring of R.
Then we have énf+ (o) > min{u(x), u(y)} for all z,y € R. Indeed, if not then there exist
acx+y

2o, Yo € R such that einfr p(a) < min{p(zo), u(yo)}. Taking
acroTYo

s 1= %{aeiﬂiyo p(a) + min{g(zo), 1(yo)}}

then we get einfr m(a) < so < min{u(zo), 1(yo)} and thus zo,yo € R and zo+yo € R
acroTYo
This is a contradiction. Hence we have

oinf p(a) = min{u(z), u(y)} = T{u(@), n(y)}

for all z,y € R.
Now if (TF2) is not true, then p(xoyo) < min{u(zo), u(yo)} for some zg, yo € R. Taking
1 .
so 1= 5 {p(zoyo) +min{u(zo), p(yo)}},

then we get u(xoyo) < so < min{u(zo), u(yo)} and thus zg,yo € R}? and zoyo € R;?. This
is a contradiction. Hence we have

p(zy) > min{p(x), u(y)} > T(p(x), w(y))

for all z,y € R.
Finally, if (TF3) is not true, then u(xzg) > u(—xzg) for some xzg € R. Taking

so 1= 5 lao) + (o)}

then we get p(wo) > so > p(—xo) and thus z¢ € R;° and —zo ¢ R;°. It is a contradiction.
Therefore p is an imaginable T'F'S-ring of R. O
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Let f : R — S be a mapping of hypernear-rings. For a fuzzy set p in S, the inverse
image of p under f, denoted by f~!(u), is defined by f~1(u)(z) := u(f(z)) for all x € R.

Proposition 3.15. LetT be a t-norm and let f : R — S be a homomorphism of hypernear-
rings. If p is a TFS-ring of S, then f~1(u) is a TFS-ring of R.

Proof. Assume that p is a TFS-ring of S. Let x,y € R. Then we get
inf f~(p)(a) inf u(f (@) = T(p(f(x), n(f(y)))

aCaty  fa)ef(@)+f(y)

=T~ (w (@), (W),

and
7 ) (ay) = p(f (@) () = T(u(f (@), 1(f©) = T ) (@), f~H () (w)-
Also, we have £~ (4)(z) = u(f(2)) < p(~f(x)) = p(f(~x)) = f~*(1)(~x) for all = € R.
Therefore f~1(u) is a TFS-ring of R. O
4. DIRECT PRODUCT OF TFS-RINGS

Definition 4.1. Let T be a t-norm and let x4 and v be fuzzy sets in R. Then the T-product
of pr and v, written [u - V], is defined by [ - v]r(z) := T(u(z),v(z)) for all z € R.

Proposition 4.2. Let T be a t-norm and let p and v be TES-rings in R. If T* is a t-norm
which dominates, i.e., T*(T(«, ), T(v,9)) > T(T*(a,), T*(5,9)) for all a,B,7,0 € [0,1],
then T -product of p and v, [p - v} is a TFS-ring of R.

Proof. Let x,y € R. Then we have

Jof lp-vip(e) = inf T*(u(a),v(e) 2T"( if ple), inf v(a))
> T(T(u(x), w(y)), T(v(x),v(y)))
> T(T* (), v(2)), T (1(y), v(y)) = T([p - VI3 (2), [ - VI3 (y)),
and
(- vp(ry) =T (w(zy), v(zy)) > T*(T(u(=), u(y)), T(v(x),v(y)))
> T(T*(p(x), v(x)), T* (1(y) w v (@), [ vIE(y)

[
Also, we get [ - v (z) = T*(p(x), v(z)) < T*(p(—x),v(—z)) = [u- V5 (—z) for all x € R.
Therefore [p - V)% is a TFS-ring of R. O

Let f: R — S be a homomorphism of hypernear-rings, and let T and T* be t-norms
such that T* dominates T. If x4 and v are TFS-rings in S, then [u - v]} is a TFS-ring
of S. By 3.15, the inverse images f~!(u), f~1(v) and f~1([u - v]}) are TFS-rings of R.
The next theorem provides that the relation between f~1([u - v]%) and the T*-product
1) £ ) of £ () and £ (w).

Theorem 4.3. Let f : R — S be a homomorphism of hypernear-rings, and let T and T*
be t-norms such that T* dominates T. Let p and v be TFS-rings in S. If [p- v|5 is T*-
product of pn and v, and [f~(u) - f~1(v)]% is the T*-product of f~Y(u) and f=(v) then
fH e = 1w - 1))

Proof. Let x € R. Then we have

FH - vlp) (@) = [p- V3 (f (@) = T (u(f (@), v(f(2)))
=T*(fH(w)(), f~H ) (@) = [f () -
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Let Ry and Ry be two hypernear-rings, then for all (z1,y1) and (z2,y2) in Ry X Rs we
define

(w1,y1) + (22,92) = {(z,y) | ¥ € 21 + 22, Yy €Y1 +y2}
(ff1,y1) ’ (ffz,y2) = ($1$27 y1y2)~

Clearly Ry x Rg is a hypernear-ring and we call this hypernear-ring the direct product of
Ry and R».

Definition 4.4. Let T be a t-norm and let p; and us be fuzzy sets on hypernear-rings Ry
and Ry respectively. Then p defined on Ry X Rs by the formula

p(@,y) =T (), p2(y))
is a fuzzy set on R; x Ro which is defined by pq x po.

Theorem 4.5. Let T be a t-norm and let R = Ry X Rg be the direct product of hypernear-
rings Ry and Ro. If u1 and pe are TFS-rings of Ry and Ra respectively, then = pg X po
is a TFS-ring of R.

Proof. Let (x1,y1) and (z2,y2) be two arbitrary elements of Ry x Ry. For every (z,y) €
(x1,91) + (w2, y2) we have

(p1 % pi2)(,y) pa (), p2(y))

1

T(pa(21), pa(z2)),
p2(y1), T'(pa (1)
T(p2(y1), pa (
2(y2), T(pa(x2), T(p
(11 (1), p2(y1)), (/~L1($2)»
(1 % p2)(@1,91), (1 X p2)(w2,Y2)).

Hence inf (1 X p) (2, y) > T((p1 X p2)(21,91), (1 X p2)(22,y2)). Similarly
(z,y)e(z1,y1)+(22,y2)

we obtain
(1 x p2)((21,91) - (22,92)) = (1 X p2) (7172, y192)
=T (pu1(z122), p2(y1y2))
> T(T(pa(21), pa(z2)), T(p2(y1), p2(y2)))

vl

||
B B e B e B
5

= T((p1 X p2)(@1,91), (1 X p2)(z2,y2))-
Also, we have

(11 x p2)(z,y) = T(pa(2), p2(y)) < T(pa (=), p2(—y)) = (11 x p2)(—z, —y).
Therefore p1 X pe is a TFS-ring of Ry X Ra. O

Theorem 4.6. Let T be a t-norm and let py and po be fuzzy sets of the hypernear-rings
Ry and Rs respectively. If p1 X po is an imaginable TEFS-ring of Ry X Ra, then at least one
of the following two statements must hold:

(1) p2(0) > pi(x) for all x € Ry,
(2) p1(0) > p2(y) for all y € Ro.

Proof. Suppose that p; X po is an imaginable TFS-ring of R; X Ry. By contraposition,
suppose that none of the statements (1) and (2) holds. Then there exist zy € R; and
Yo € Rs such that

pa(zo) > p2(0) and p2(yo) > p1(0).
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Now, we have

(1 X p2)(zo,y0) = T(p1(xo), u2(yo)) > T'(12(0), 11(0))
=T (p11(0), p2(0)) = (p1 x p2)(0,0).

But, by Proposition 3.11, always we have (u1 x p2)(0,0) > (u1 X p2) (o, yo)- O

Theorem 4.7. Let T be a t-norm. Let p1, po and py X po be fuzzy sets of the hypernear-
rings R1, Ro and Ry X Rg respectively, such that satisfy imaginable property. If uy X ps is
a TFS-ring of Ry X Ra, then puy is a TES-ring of Ry or us is a TFSring of Rs.

Proof. Since p1 x po is an imaginable TFS-ring of Ry X Ro, by Theorem 4.6, we assume
that pq(x) < p2(0) for all € Ry, and we show that uq is a TFS-ring of R;. Let « and y
be two arbitrary elements of R;. For every z € x + y we have

m(z) = T(u(=), 1) > T (2), p2(0))
(1 % p2) (2,0)

vVl

(z,o)e(glg)ﬂy,o)(ul X p2)(2,0)
> T((p1 % p2)(2,0), (p1 % p2)(y,0))
=T (T (pa(2), 12(0)), T(p1(y), 12(0)))
> T(T(m(x), (), T(pa(y), p(x)))
=T (p(x), ( 1(y), m(2)))
=T (i (2), T(p(2), pr(y)))
= T(T(pr (@), i (), 1 (y)
=T (i (), ﬂ1( )
Therefore inf pq(z) > T(p1(x), p1(y)). Similarly, we obtain

zEx+y

pi(zy) =T (p(zy), 1) > T(pa(2y), p2(0))
= (1 X p2)(xy,0) = (1 x p2)((z,0) - (y,0))
> T((p1 x p2)(z,0), (11 % p2)(y,0))

Also we have

pa(—z) (1 X p2)(—,0) = (p1 x p2)(—(x,0))

2 =
T(u1(x), 12(0)) = T(pr (). 12 (&) = pua ().
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