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T-FUZZY SUBHYPERNEAR-RINGS OF HYPERNEAR-RINGS
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Abstract. Using a t-norm T , the notion of T -fuzzy subhypernear-rings (for short TFS-
rings) of hypernear-rings is introduced and some of their properties are investigated. Also
we study the structure of TFS-rings under direct product.

1. Introduction

The theory of hyperstructures has been introduced by Matry in 1934 during the 8th

congress of the Scandinavian Mathematicians [10]. Marty introduced the notion of a hyper-
group and then many researchers have been worked on this new field of modern algebra and
developed it. A comprehensive review of the theory of hyperstructures appear in [2] and
[14]. The notion of the hyperfield and hyperring was studied by Krasner [9]. In [3], Dasic
has introduced the notion of hypernear-rings generalizing the concept of near-ring [11]. In
[7], Gontineac defined the zero-symmetric part and the constant part of a hypernear-ring
and introduced a structure theorem and other properties of hypernear-rings. Davvaz in [5]
introduced the notion of an Hv-near ring generalizing the notion of hypernear-ring.

The concept of fuzzy sets was introduced by Zadeh [15]. It was first applied to the theory
of groups by Rosenfeld [12]. Rosenfeld has introduced fuzzy subgroups of a group and many
researchers are engaged in extending the concept. In [1], Anthony and sherwood redefined a
fuzzy subgroup of a group using the concept of a triangular norm, also see [6]. This notion
was introduced by Schweizer and Sklar [13], in order to generalize the ordinary triangle
inequality in a metric space to the more general probabilistic metric spaces.

In [4], Davvaz has introduced the concept of fuzzy subhypernear-rings and fuzzy hyper-
ideals of a hypernear-ring which are a generalization of the concept of a fuzzy subnear-rings
and fuzzy ideals in a near-ring. Now, in this paper, using a t-norm T , the notion of T -fuzzy
subhypernear-rings (for short TFS-rings) of hypernear-rings is introduced and some of their
properties are investigated. Also we study the structure of TFS-rings under direct product.

2. Preliminaries

We now review some basic definitions for the sake of completeness. These definitions are
taken primarily from [3,4,7,13].

Definition 2.1. Let H be a non-empty set. A hyperoperation ∗ on H is a mapping of
H × H into the family of non-empty subsets of H .

Definition 2.2. A hypernear-ring is an algebraic structure (R,+, ·) which satisfies the fol-
lowing axioms:
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1) (R,+) is a quasi canonical hypergroup (not necessarily commutative), i.e., in (R,+) the
following hold:

a) x + (y + z) = (x + y) + z for all x, y, z ∈ R;
b) There is 0 ∈ R such that x + 0 = 0 + x = x for all x ∈ R;
c) For every x ∈ R there exists one and only one x′ ∈ R such that 0 ∈ x + x′, (we shall

write −x for x′ and we call it the opposite of x);
d) z ∈ x + y implies y ∈ −x + z and x ∈ z − y.

2) With respect to the multiplication, (R, ·) is a semigroup having absorbing element 0 i.e.,
x · 0 = 0 for all x ∈ R.
3) The multiplication is distributive with respect to the hyperoperation + on the left side
i.e., x · (y + z) = x · y + x · z for all x, y, z ∈ R.

If x ∈ R and A,B are subsets of R, then by A + B, A + x and x + B we mean

A + B =
⋃

a ∈ A
b ∈ B

a + b, A + x = A + {x}, x + B = {x} + B.

Note that for all x, y ∈ R, we have −(−x) = x, 0 = −0,−(x + y) = −y − x and
x(−y) = −xy.

Definition 2.3. Let (R,+, ·) be a hypernear-ring. A non-empty subset H of R is called a
subhypernear-ring if

(1) (H,+) is a subhypergroup of (R,+), i.e., a, b ∈ H implies a + b ⊆ H , and a ∈ H
implies −a ∈ H ,

(2) ab ∈ H , for all a, b ∈ H.

Now we give examples of hypernear-rings and of subhypernear-rings in hypernear-rings
as follows.

Example 2.4. Let R = {0, a, b} be a set with a hyperoperation “+” and a binary operation
“ · ” as follows:

+ 0 a b

0 {0} {a} {b}
a {a} {0, a, b} {a, b}
b {b} {a, b} {0, a, b}

· 0 a b

0 0 0 0
a 0 a b
b 0 a b

Then (R,+, ·) is a hypernear-ring and {0} and R are subhypernear-rings of R.

Example 2.5. [8]. Let R = {0, a, b, c} be a set with a hyperoperation “ + ” and a binary
operation “ · ” as follows:

+ 0 a b c

0 {0} {a} {b} {c}
a {a} {0, a} {b} {c}
b {b} {b} {0, a, c} {b, c}
c {c} {c} {b, c} {0, a, b}

· 0 a b c

0 0 a b c
a 0 a b c
b 0 a b c
c 0 a b c

Then (R,+, ·) is a hypernear-ring and {0}, {0, a} and R are subhypernear-rings of R.

Definition 2.6. Let R and S be hypernear-rings, the map f : R → S is called a homomor-
phism hypernear-rings if for all x, y ∈ R, the following relations hold:

f(x + y) = f(x) + f(y), f(0) = 0 and f(xy) = f(x)f(y).

¿From the above definition we get f(−x) = −f (x) for all x ∈ R.
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A fuzzy set µ in a nonempty set X is a function µ : X → [0, 1] and Im(µ) denote the
image set of µ. Let µ be a fuzzy set in a set X . For t ∈ [0, 1], the set

Xt
µ := {x ∈ X |µ(x) ≥ t}

is called a level subset of µ.

In [4], Davvaz introduced the concept of a fuzzy subhypernear-ring of a hypernear-ring
which is a generalization of the concept of a fuzzy subnear-ring in a near-ring as follows.

Definition 2.7. Let (R,+, ·) be a hypernear-ring. A fuzzy set µ in R is called a fuzzy
subhypernear-ring of R if it satisfies
(F1) min{µ(x), µ(y)} ≤ inf

α∈x+y
µ(α),

(F2) µ(x) ≤ µ(−x),
(F3) min{µ(x), µ(y)} ≤ µ(xy)
for all x, y ∈ R.

Definition 2.8. By a t-norm T , we mean a function T : [0, 1]× [0, 1] → [0, 1] satisfying the
following conditions:
(T1) T (x, 1) = x,
(T2) T (x, y) ≤ T (x, z) if y ≤ z,
(T3) T (x, y) = T (y, x),
(T4) T (x, T (y, z)) = T (T (x, y), z)
for all x, y ∈ R.

Here are some examples of t-norms:

1) T0(x, y) =

⎧⎨
⎩

x if y = 1,
y if x = 1,
0 otherwize,

2) T1(x, y) = max{0, x + y − 1},
3) T2(x, y) = xy

2−(x+y−xy) ,
4) T3(x, y) = xy,
5) T4(x, y) = xy

x+y−xy ,
6) T5(x, y) = min{x, y}.
Every t-norm T has a useful property:

T (α, β) ≤ min{α, β} for all α, β ∈ [0, 1].

3. T-fuzzy subhypernear-rings

In what follows, let R denote a hypernear-ring unless otherwise specified. We first con-
sider the T -fuzzification of subhypernear-rings in hypernear-rings as follows.

Definition 3.1. Let T be a t-norm. A fuzzy set µ in R is called a T-fuzzy subhypernear-ring
(for short, TFS-ring) of R if it satisfies

(TF1) T (µ(x), µ(y)) ≤ inf
α∈x+y

µ(α),

(TF2) µ(x) ≤ µ(−x),
(TF3) T (µ(x), µ(y)) ≤ µ(xy)

for all x, y ∈ R.

Example 3.2. Consider the hypernear-ring R in Example 2.4, we define a fuzzy set µ :
R −→ [0, 1] by µ(a) = µ(b) = 1/2 and µ(0) = 1. Then we have:
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(x, y) (0, 0) (0, a) (0, b) (a, 0) (a, a) (a, b) (b, 0) (b, a) (b, b)
infz∈x+y µ(z) 1 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

µ(xy) 1 1 1 1 1/2 1/2 1 1/2 1/2
T0(µ(x), µ(y)) 1 1/2 1/2 1/2 0 0 1/2 0 0
T1(µ(x), µ(y)) 0 1/2 1/2 1/2 0 0 1/2 0 0
T2(µ(x), µ(y)) 1 1/2 1/2 1/2 1/5 1/5 1/2 1/5 1/5
T3(µ(x), µ(y)) 1 1/2 1/2 1/2 1/4 1/4 1/2 1/4 1/4
T4(µ(x), µ(y)) 1 1/2 1/2 1/2 1/3 1/3 1/2 1/3 1/3
T5(µ(x), µ(y)) 1 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

The above table show that µ is a T0FS-ring, T1FS-ring, T2FS-ring, T3FS-ring, T4FS-
ring and T5FS-ring. If we consider a fuzzy set λ : R −→ [0, 1] by λ(a) < λ(b) < λ(0), then
λ is not a T5FS-ring of R, because infx∈b+b{λ(x)} = λ(a) and min{λ(b), λ(b)} = λ(b).

Example 3.3. Consider the hypernear-ring R in Example 2.5, we define a fuzzy set µ in
R by

µ(0) = 0.7, µ(a) = 0.5 and µ(b) = µ(c) = 0.3.

Routine calculations give that µ is a T1FS-ring of R. If we consider a fuzzy set µ in R by

µ(0) = 0.4, µ(a) = 0.8 and µ(b) = µ(c) = 0.3.

Routine calculations give that µ is a T3FS-ring of R, but µ is not a T1FS-ring of R since
inf

α∈a+a
µ(α) = 0.4 � 0.6 = max{0.8 + 0.8 − 1, 0}.

Theorem 3.4. Let I ⊆ R. Then I is a subhypernear-ring of R if and only if χI is a
TFS-ring of R.

Proof. Assume that I is a subhypernear-ring of R. Let x, y ∈ R. If x, y ∈ I then x + y ⊆ I
and xy ∈ I. Thus we have

inf
α∈x+y

χI(α) = 1 = T (χI(x), χI(y)) and χI(xy) = 1 = T (χI(x), χI(y)).

Otherwise, we have

inf
α∈x+y

χI(α) ≥ 0 = T (χI(x), χI(y)) and χI(xy) ≥ 0 = T (χI(x), χI(y)).

Let x ∈ R. If x ∈ I then −x ∈ I and so we have χI(x) = χI(−x). If x �∈ I then
χI(x) = 0 ≤ χI(−x). Therefore χI is a TFS-ring of R.

Conversely, assume that χI is a TFS-ring of R. Let x, y ∈ I. Then χI(x) = 1 and
χI(y) = 1. Thus for any z ∈ x + y, we have

χI(z) ≥ inf
α∈x+y

χI(α) ≥ T (χI(x), χI(y)) = 1, and χI(xy) ≥ T (χI(x), χI(y)) = 1.

Hence we get z ∈ I, i.e., x+ y ⊆ I, and xy ∈ I. Let x ∈ I. Then χI(x) = 1. Thus by (TF2)
we have 1 = χI(x) ≤ χI(−x). Hence −x ∈ I. Therefore I is a subhypernear-ring of R

Proposition 3.5. If {µi|i ∈ Λ} is a family of TFS-rings of R, then so is
⋂
i∈Λ

µi.

Proof. Let {µi|i ∈ Λ} is a family of TFS-rings of R and x, y ∈ R. Then we have

inf
α∈x+y

(
⋂

i∈Λ

µi)(α) = inf
α∈x+y

{inf
i∈Λ

µi(α)} = inf
i∈Λ

{ inf
α∈x+y

µi(α)} ≥ inf
i∈Λ

{T (µi(x), µi(y))}
≥ T (inf

i∈Λ
µi(x), inf

i∈Λ
µi(y)) ≥ T (

⋂
i∈Λ

µi(x),
⋂

i∈Λ

µi(y)).
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For all x ∈ R, since µi(x) ≤ µi(−x) for i ∈ Λ, we have
⋂

i∈Λ

µi(x) ≤ ⋂
i∈Λ

µi(−x). For every

x, y ∈ R, we have

(
⋂
i∈Λ

µi)(xy) = inf
i∈Λ

µi(xy) ≥ inf
i∈Λ

{T (µi(x), µi(y))} ≥ T (inf
i∈Λ

µi(x), inf
i∈Λ

µi(y)).

Hence
⋂
i∈Λ

µi is a TFS-ring of R.

Proposition 3.6. Let T be a t-norm and µ be a fuzzy set of R. If Rt
µ is a subhypernear-ring

of R for all t ∈ Im(µ), then µ is a TFS-ring of R.

Proof. Let x, y ∈ R be such that µ(x) = t and µ(y) = s for some s, t ∈ Im(µ). Without
loss of generality we may assume that s ≥ t. Then µ(y) = s ≥ t, and so x, y ∈ Rt

µ. Since
Rt

µ is a subhypernear-ring, we get x + y ⊆ Rt
µ and xy ∈ Rt

µ. Thus we have

inf
α∈x+y

µ(α) ≥ t = min{s, t} = min{µ(x), µ(y)} ≥ T (µ(x), µ(y))

and µ(xy) ≥ T (µ(x), µ(y)).
Now let x ∈ R be such that µ(x) > µ(−x). Putting x0 = 1

2{µ(x) + µ(−x)}, then
µ(−x) < x0 < µ(x), and so x ∈ Rx0

µ but −x �∈ Rx0
µ . This leads to a contradiction.

Therefore µ is a TFS-ring of R.

Proposition 3.7. Let T be a t-norm and H be a subhypernear-ring of R. Then there exists
a TFS-ring µ of R such that Rt

µ = H for some t ∈ (0, 1].

Proof. Let µ be a fuzzy set in R defined by

µ(x) :=

{
t if x ∈ H ,
0 otherwise,

where t is a fixed number in (0, 1]. Let x, y ∈ R. If x ∈ R\H or y ∈ R\H , then µ(x) = 0 or
µ(y) = 0 and so we have

inf
α∈x+y

µ(α) ≥ 0 = min{µ(x), µ(y)} ≥ T (µ(x), µ(y))

and µ(xy) ≥ T (µ(x), µ(y)). If x, y ∈ H , then we have

inf
α∈x+y

µ(α) ≥ t = min{µ(x), µ(y)} ≥ T (µ(x), µ(y))

and µ(xy) ≥ T (µ(x), µ(y)).
Let x ∈ R. If x ∈ R\H , then µ(x) = 0 and so we have µ(−x) ≥ 0 = µ(x). If x ∈ H then

we have µ(−x) ≥ t = µ(x).
Therefore µ is a TFS-ring of R. It is clear that Rt

µ = H .

Theorem 3.8. Let T be a t-norm and µ be a fuzzy set of R with Im(µ) = {t1, t2, · · · , tn},
where ti < tj whenever i > j. Suppose that there exists a chain of subhypernear-rings of R:

H0 ⊆ H1 ⊆ · · · ⊆ Hn = R

such that µ(H∗
k ) = tk, where H∗

k = Hk\Hk−1, H−1 = ∅ for k = 0, 1, · · · , n. Then µ is a
TFS-ring of R.

Proof. Let x, y ∈ R. If x and y belong to the same H∗
k , then we have µ(x) = µ(y) =

tk, x + y ⊆ Hk and xy ∈ Hk. Thus we get

inf
α∈x+y

µ(α) ≥ tk = min{µ(x), µ(y)} ≥ T (µ(x), µ(y))



24 E. H. ROH, B. DAVVAZ AND K. H. KIM

and µ(xy) ≥ T (µ(x), µ(y)). If x ∈ H∗
i and y ∈ H∗

j for every i �= j. Without loss of
generality, we may assume that i ≥ j. Then we have µ(x) = ti < tj = µ(y), x + y ⊆ Hi and
xy ∈ Hi. It follows that

inf
α∈x+y

µ(α) ≥ ti = min{µ(x), µ(y)} ≥ T (µ(x), µ(y))

and µ(xy) ≥ T (µ(x), µ(y)).
Let x ∈ R. Then there exists Hk such that x ∈ H∗

k for some k ∈ {0, 1, · · · , n}. Thus we
have µ(x) = tk = µ(−x).

Therefore µ is a TFS-ring of R.

For a t-norm T on [0, 1], denote by ∆T the set of element α ∈ [0, 1] such that T (α,α) = α,
i.e., ∆T := {α ∈ [0, 1]|T (α,α) = α}.

A fuzzy set µ in a set X is said to satisfy imaginable property if Im(µ) ⊆ ∆T .

Definition 3.9. A TFS-ring is said to be imaginable if it satisfies the imaginable property.

Proposition 3.10. For a subhypernear-ring H of R, let µ be a fuzzy set in R given by

µ(x) :=

{
s if x ∈ H,
t otherwise

for all s, t ∈ [0, 1] with s > t. Then µ is a T1FS-ring of R. In particular, if s = 1 and t = 0
then µ is imaginable.

Proof. Let x, y ∈ R. If x, y ∈ H then we get x + y ⊆ H and xy ∈ H since H is a
subhypernear-ring of R, and so

T1(µ(x), µ(y)) = max{s + s − 1, 0} ≤ s = inf
α∈x+y

µ(α)

and T1(µ(x), µ(y)) ≤ µ(xy). If x ∈ H and y �∈ H (or, x �∈ H and y ∈ H). Then
µ(x) = s > t = µ(y) (or, µ(x) = t < s = µ(y)). It follows that

T1(µ(x), µ(y)) = max{s + t − 1, 0} ≤ t ≤ inf
α∈x+y

µ(α)

and T1(µ(x), µ(y)) ≤ µ(xy). If x �∈ H and y �∈ H . Then µ(x) = t = µ(y) and so we have

T1(µ(x), µ(y)) = max{t + t − 1, 0} ≤ t ≤ inf
α∈x+y

µ(α)

and T1(µ(x), µ(y)) ≤ µ(xy).
Let x ∈ R. If x ∈ H then −x ∈ H and so we have µ(x) = s ≤ µ(−x). If x �∈ H then we

get µ(x) = t ≤ µ(−x).
Therefore µ is a T1FS-ring of R. Obviously µ is imaginable when s = 1 and t = 0.

Proposition 3.11. Let T be a t-norm and µ be an imaginable TFS-ring of R. Then
µ(0) ≥ µ(x) for all x ∈ R.

Proof. For every x ∈ R we have 0 ∈ x − x and so

µ(0) ≥ inf
z∈x−x

µ(z) ≥ T (µ(x), µ(−x)) = T (µ(x), µ(x)) = µ(x).

Theorem 3.12. Let T be a t-norm. Then every imaginable TFS-ring of R is a fuzzy
subhypernear-ring of R.
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Proof. Let µ be an imaginable TFS-ring of R. Since µ satisfies the imaginable property,
we have

min{µ(x), µ(y)} = T (min{µ(x), µ(y)}, min{µ(x), µ(y)})
≤ T (µ(x), µ(y)) ≤ min{µ(x), µ(y)}

for all x, y ∈ R. It follows that inf
α∈x+y

µ(α) ≥ T (µ(x), µ(y)) = min{µ(x), µ(y)} and µ(xy) ≥
min{µ(x), µ(y)} for all x, y ∈ R. Therefore µ is a fuzzy subhypernear-ring of R.

Theorem 3.13. Let µ be a TFS-ring of R and let t ∈ [0, 1]. Then
(i) if t = 1 then Rt

µ is either empry or a subhypernear-ring of R,
(ii) if T = min, then Rt

µ is either empry or a subhypernear-ring of R.

Proof. (i) Assume that t = 1 and let x, y ∈ Rt
µ. Then we have

inf
α∈x+y

µ(α) ≥ T (µ(x), µ(y)) = T (1, 1) = 1 = t,

and µ(xy) ≥ t. Thus α ∈ Rt
µ and so we get x + y ⊆ Rt

µ, and xy ∈ Rt
µ.

Let x ∈ Rt
µ. Then since µ is a TFS-ring of R, we have µ(−x) ≥ µ(x) ≥ t. Thus we get

−x ∈ Rt
µ.

Therefore Rt
µ is a subhypernear-ring of R whence t = 1.

(ii) Similar to the proof of (i).

Theorem 3.14. Let T be a t-norm and let µ be an imaginable fuzzy set in R. If each non-
empty level subset Rt

µ of µ is a subhypernear-ring of R, then µ is an imaginable TFS-ring
of R.

Proof. For t ∈ [0, 1], suppose that Rt
µ is a non-empty set and a a subhypernear-ring of R.

Then we have inf
α∈x+y

µ(α) ≥ min{µ(x), µ(y)} for all x, y ∈ R. Indeed, if not then there exist

x0, y0 ∈ R such that inf
a∈x0+y0

µ(a) < min{µ(x0), µ(y0)}. Taking

s0 :=
1
2
{ inf

a∈x0+y0
µ(a) + min{µ(x0), µ(y0)}},

then we get inf
a∈x0+y0

µ(a) < s0 < min{µ(x0), µ(y0)} and thus x0, y0 ∈ Rs0
µ and x0+y0 � Rs0

µ .

This is a contradiction. Hence we have

inf
α∈x+y

µ(α) ≥ min{µ(x), µ(y)} ≥ T {µ(x), µ(y)}
for all x, y ∈ R.

Now if (TF2) is not true, then µ(x0y0) < min{µ(x0), µ(y0)} for some x0, y0 ∈ R. Taking

s0 :=
1
2
{µ(x0y0) + min{µ(x0), µ(y0)}},

then we get µ(x0y0) < s0 < min{µ(x0), µ(y0)} and thus x0, y0 ∈ Rs0
µ and x0y0 ∈ Rs0

µ . This
is a contradiction. Hence we have

µ(xy) ≥ min{µ(x), µ(y)} ≥ T (µ(x), µ(y))

for all x, y ∈ R.
Finally, if (TF3) is not true, then µ(x0) > µ(−x0) for some x0 ∈ R. Taking

s0 :=
1
2
{µ(x0) + µ(−x0)},

then we get µ(x0) > s0 > µ(−x0) and thus x0 ∈ Rs0
µ and −x0 �∈ Rs0

µ . It is a contradiction.
Therefore µ is an imaginable TFS-ring of R.
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Let f : R → S be a mapping of hypernear-rings. For a fuzzy set µ in S, the inverse
image of µ under f , denoted by f−1(µ), is defined by f−1(µ)(x) := µ(f(x)) for all x ∈ R.

Proposition 3.15. Let T be a t-norm and let f : R → S be a homomorphism of hypernear-
rings. If µ is a TFS-ring of S, then f−1(µ) is a TFS-ring of R.

Proof. Assume that µ is a TFS-ring of S. Let x, y ∈ R. Then we get

inf
α∈x+y

f−1(µ)(α) = inf
f(α)∈f(x)+f(y)

µ(f(α)) ≥ T (µ(f(x)), µ(f(y)))

= T (f−1(µ)(x), f−1(µ)(y)),

and

f−1(µ)(xy) = µ(f(x)f(y)) ≥ T (µ(f(x)), µ(f(y))) = T (f−1(µ)(x), f−1(µ)(y)).

Also, we have f−1(µ)(x) = µ(f(x)) ≤ µ(−f(x)) = µ(f(−x)) = f−1(µ)(−x) for all x ∈ R.
Therefore f−1(µ) is a TFS-ring of R.

4. Direct product of TFS-rings

Definition 4.1. Let T be a t-norm and let µ and ν be fuzzy sets in R. Then the T-product
of µ and ν, written [µ · ν]T , is defined by [µ · ν]T (x) := T (µ(x), ν(x)) for all x ∈ R.

Proposition 4.2. Let T be a t-norm and let µ and ν be TFS-rings in R. If T ∗ is a t-norm
which dominates, i.e., T ∗(T (α, β), T (γ, δ)) ≥ T (T ∗(α, γ), T ∗(β, δ)) for all α, β, γ, δ ∈ [0, 1],
then T ∗-product of µ and ν, [µ · ν]∗T is a TFS-ring of R.

Proof. Let x, y ∈ R. Then we have

inf
α∈x+y

[µ · ν]∗T (α) = inf
α∈x+y

T ∗(µ(α), ν(α)) ≥ T ∗( inf
α∈x+y

µ(α), inf
α∈x+y

ν(α))

≥ T ∗(T (µ(x), µ(y)), T (ν(x), ν(y)))
≥ T (T ∗(µ(x), ν(x)), T ∗(µ(y), ν(y)) = T ([µ · ν]∗T (x), [µ · ν]∗T (y)),

and

[µ · ν]∗T (xy) = T ∗(µ(xy), ν(xy)) ≥ T ∗(T (µ(x), µ(y)), T (ν(x), ν(y)))
≥ T (T ∗(µ(x), ν(x)), T ∗(µ(y), ν(y)) = T ([µ · ν]∗T (x), [µ · ν]∗T (y)).

Also, we get [µ · ν]∗T (x) = T ∗(µ(x), ν(x)) ≤ T ∗(µ(−x), ν(−x)) = [µ · ν]∗T (−x) for all x ∈ R.
Therefore [µ · ν]∗T is a TFS-ring of R.

Let f : R → S be a homomorphism of hypernear-rings, and let T and T ∗ be t-norms
such that T ∗ dominates T . If µ and ν are TFS-rings in S, then [µ · ν]∗T is a TFS-ring
of S. By 3.15, the inverse images f−1(µ), f−1(ν) and f−1([µ · ν]∗T ) are TFS-rings of R.
The next theorem provides that the relation between f−1([µ · ν]∗T ) and the T ∗-product
[f−1(µ) · f−1(ν)]∗T of f−1(µ) and f−1(ν).

Theorem 4.3. Let f : R → S be a homomorphism of hypernear-rings, and let T and T ∗

be t-norms such that T ∗ dominates T . Let µ and ν be TFS-rings in S. If [µ · ν]∗T is T ∗-
product of µ and ν, and [f−1(µ) · f−1(ν)]∗T is the T ∗-product of f−1(µ) and f−1(ν) then
f−1([µ · ν]∗T ) = [f−1(µ) · f−1(ν)]∗T .

Proof. Let x ∈ R. Then we have

f−1([µ · ν]∗T )(x) = [µ · ν]∗T (f(x)) = T ∗(µ(f(x)), ν(f(x)))
= T ∗(f−1(µ)(x), f−1(ν)(x)) = [f−1(µ) · f−1(ν)]∗T .
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Let R1 and R2 be two hypernear-rings, then for all (x1, y1) and (x2, y2) in R1 × R2 we
define

(x1, y1) + (x2, y2) = {(x, y) | x ∈ x1 + x2, y ∈ y1 + y2}
(x1, y1) · (x2, y2) = (x1x2, y1y2).

Clearly R1 × R2 is a hypernear-ring and we call this hypernear-ring the direct product of
R1 and R2.

Definition 4.4. Let T be a t-norm and let µ1 and µ2 be fuzzy sets on hypernear-rings R1

and R2 respectively. Then µ defined on R1 × R2 by the formula

µ(x, y) = T (µ1(x), µ2(y))

is a fuzzy set on R1 × R2 which is defined by µ1 × µ2.

Theorem 4.5. Let T be a t-norm and let R = R1 ×R2 be the direct product of hypernear-
rings R1 and R2. If µ1 and µ2 are TFS-rings of R1 and R2 respectively, then µ = µ1 × µ2

is a TFS-ring of R.

Proof. Let (x1, y1) and (x2, y2) be two arbitrary elements of R1 × R2. For every (x, y) ∈
(x1, y1) + (x2, y2) we have

(µ1 × µ2)(x, y) = T (µ1(x), µ2(y))
≥ T (T (µ1(x1), µ1(x2)), T (µ2(y1), µ2(y2)))
= T (T (T (µ1(x1), µ1(x2)), µ2(y1)), µ2(y2))
= T (T (µ2(y1), T (µ1(x1), µ1(x2)), µ2(y2))
= T (T (T (µ2(y1), µ1(x1)), µ1(x2)), µ2(y2))
= T (µ2(y2), T (µ1(x2), T (µ2(y1), µ1(x1))))
= T (T (µ1(x1), µ2(y1)), T (µ1(x2), µ2(y2)))
= T ((µ1 × µ2)(x1, y1), (µ1 × µ2)(x2, y2)).

Hence inf
(x,y)∈(x1,y1)+(x2,y2)

(µ1 ×µ2)(x, y) ≥ T ((µ1 ×µ2)(x1, y1), (µ1 ×µ2)(x2, y2)). Similarly

we obtain
(µ1 × µ2)((x1, y1) · (x2, y2)) = (µ1 × µ2)(x1x2, y1y2)

= T (µ1(x1x2), µ2(y1y2))
≥ T (T (µ1(x1), µ1(x2)), T (µ2(y1), µ2(y2)))
...
= T ((µ1 × µ2)(x1, y1), (µ1 × µ2)(x2, y2)).

Also, we have

(µ1 × µ2)(x, y) = T (µ1(x), µ2(y)) ≤ T (µ1(−x), µ2(−y)) = (µ1 × µ2)(−x,−y).

Therefore µ1 × µ2 is a TFS-ring of R1 × R2.

Theorem 4.6. Let T be a t-norm and let µ1 and µ2 be fuzzy sets of the hypernear-rings
R1 and R2 respectively. If µ1 ×µ2 is an imaginable TFS-ring of R1 ×R2, then at least one
of the following two statements must hold:

(1) µ2(0) ≥ µ1(x) for all x ∈ R1,
(2) µ1(0) ≥ µ2(y) for all y ∈ R2.

Proof. Suppose that µ1 × µ2 is an imaginable TFS-ring of R1 × R2. By contraposition,
suppose that none of the statements (1) and (2) holds. Then there exist x0 ∈ R1 and
y0 ∈ R2 such that

µ1(x0) > µ2(0) and µ2(y0) > µ1(0).
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Now, we have

(µ1 × µ2)(x0, y0) = T (µ1(x0), µ2(y0)) > T (µ2(0), µ1(0))
= T (µ1(0), µ2(0)) = (µ1 × µ2)(0, 0).

But, by Proposition 3.11, always we have (µ1 × µ2)(0, 0) ≥ (µ1 × µ2)(x0, y0).

Theorem 4.7. Let T be a t-norm. Let µ1, µ2 and µ1 × µ2 be fuzzy sets of the hypernear-
rings R1, R2 and R1 × R2 respectively, such that satisfy imaginable property. If µ1 × µ2 is
a TFS-ring of R1 × R2, then µ1 is a TFS-ring of R1 or µ2 is a TFSring of R2.

Proof. Since µ1 × µ2 is an imaginable TFS-ring of R1 × R2, by Theorem 4.6, we assume
that µ1(x) ≤ µ2(0) for all x ∈ R1, and we show that µ1 is a TFS-ring of R1. Let x and y
be two arbitrary elements of R1. For every z ∈ x + y we have

µ1(z) = T (µ1(z), 1) ≥ T (µ1(z), µ2(0))
= (µ1 × µ2)(z, 0)
≥ inf

(z,0)∈(x,0)+(y,0)
(µ1 × µ2)(z, 0)

≥ T ((µ1 × µ2)(x, 0), (µ1 × µ2)(y, 0))
= T (T (µ1(x), µ2(0)), T (µ1(y), µ2(0)))
≥ T (T (µ1(x), µ1(x)), T (µ1(y), µ1(x)))
= T (µ1(x), T (µ1(y), µ1(x)))
= T (µ1(x), T (µ1(x), µ1(y)))
= T (T (µ1(x), µ1(x)), µ1(y))
= T (µ1(x), µ1(y)).

Therefore inf
z∈x+y

µ1(z) ≥ T (µ1(x), µ1(y)). Similarly, we obtain

µ1(xy) = T (µ1(xy), 1) ≥ T (µ1(xy), µ2(0))
= (µ1 × µ2)(xy, 0) = (µ1 × µ2)((x, 0) · (y, 0))
≥ T ((µ1 × µ2)(x, 0), (µ1 × µ2)(y, 0))
...
= T (µ1(x), µ1(y)).

Also we have
µ1(−x) = T (µ1(−x), 1) ≥ T (µ1(−x), µ2(0)) = (µ1 × µ2)(−x, 0) = (µ1 × µ2)(−(x, 0))

≥ (µ1 × µ2)(x, 0) = T (µ1(x), µ2(0)) ≥ T (µ1(x), µ1(x)) = µ1(x).

References

[1] J.M. Anthony and H. Shewood, Fuzzy groups redifined, 69 (1979), 124-130.
[2] P. Corsini and V. Leoreanu, Applications of hyperstructure theory, Advanced in Mathematics, Vol. 5,

Klower Academic Publishers, 2003.
[3] V. Dasic, Hypernear-rings, Proceedings of the Forth International Congress on A. H. A., Xanthi,

Greece, World Scientific, (1990), 75-85.
[4] B. Davvaz, On hypernear-rings and fuzzy hyperideals, The Journal of Fuzzy Mathematics 7, No. 3

(1999), 745-753.
[5] B. Davvaz, Hv-Near-Rings, Math. Japonica 52, No. 2 (2000), 387-392.
[6] B. Davvaz, T -fuzzy Hv-subrings of an Hv-ring, The Journal of Fuzzy Mathematics 11, No. 1 (2003),

215-224.
[7] V. M. Gontineac, On hypernear-rings and H-hypergroups, Proceedings of the Forth International Con-

gress on A. H. A. 1993, Hadronic Press, Inc., USA, (1994), 171-179.
[8] K. H. Kim, B. Davvaz and E. H. Roh, On Hyper R-subgroups of Hypernear-rings, (submitted).
[9] M. Krasner, A class of hyperrings and hyperfields, Int. J. Math. and Math. Sci. 2 (1983), 307-312.



T-FUZZY SUBHYPERNEAR-RINGS OF HYPERNEAR-RINGS 29

[10] F. Matry, Sur une generalization de la notion de groupe, 8iem congress Math. Scandenaves, Stoockholm,
(1934), 45-49.

[11] G. Pllz, Near-rings, North-Holland Publ., Co, 1977.
[12] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512-517.
[13] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math., 10 (1960), 313-334.
[14] T. Vougiouklis, Hyperstructures and their representations, Hadronic Press, Inc., 115, Palm Harber,

USA, 1994.
[15] L. Zadeh, Fuzzy sets, Inform. and Contral 8, (1965), 338-353.

E. H. Roh, Department of Mathematics Education, Chinju National University of Education,

Jinju 660-756, Korea

E-mail address: ehroh@cue.ac.kr

B. Davvaz, Department of Mathematics, Yazd University, Yazd, Iran

E-mail address: davvaz@yazduni.ac.ir

K. H. Kim, Department of Mathematics, Chungju National University, Chungju 380-702, Korea

E-mail address: ghkim@chungju.ac.kr


