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Abstract. The notion of fuzzy subalgebras with respect to a s-norm is introduced,
and some related results are investigated. A kind of product, called S-product, and the
direct product of fuzzy subalgebras of BCK-algebras via a s-norm S are also defined,
and some properties of the S-product and the direct product of fuzzy subalgebras of
BCK-algebras with respect to a s-norm are discussed.

1. Introduction

A BCK-algebra is an important class of logical algebras introduced by K. Iséki and was
extensively investigated by several researchers. L. A. Zadeh [7] introduced the notion of
fuzzy sets. At present this concept has been applied to many mathematical branches, such
as group, functional analysis, probability theory, topology, and so on. In 1991, O. G. Xi
[5] applied this concept to BCK-algebras, and he introduced the notion of fuzzy subalge-
bras(ideals) of BCK-algebras with respect to minimum, and since then Y. B. Jun et al.
studied fuzzy subalgebras and fuzzy ideals (see [1, 2, 3, 4]). In the present paper, we will
redefine the fuzzy subalgebra of BCK-algebras with respect to a s-norm S, and obtain some
related results. We will define a kind of product, called S-product, and the direct product
of fuzzy subalgebras of BCK-algebras via a s-norm S. We will investigate some properties
of the S-product and the direct product of fuzzy subalgebras of BCK-algebras with respect
to a s-norm.

2. Preliminaries

An algebra (X ; ∗, 0) of type (2, 0) is said to be a BCK-algebra if it satisfies:
(I) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
(II) (x ∗ (x ∗ y)) ∗ y = 0,
(III) x ∗ x = 0,
(IV) 0 ∗ x = 0,
(V) x ∗ y = 0 and y ∗ x = 0 imply x = y,

for all x, y, z ∈ X . Define a binary relation “≤” on X by letting x ≤ y if and only if
x ∗ y = 0. Then (X ;≤) is a partially ordered set with the least element 0. A subset S of
a BCK-algebra X is called a subalgebra of X if x ∗ y ∈ S whenever x, y ∈ S. A mapping
θ : X → X ′ of BCK-algebras is called a homomorphism if θ(x ∗ y) = θ(x) ∗ θ(y) for all
x, y ∈ X . In what follows, let X denote a BCK-algebra unless otherwise specified. A fuzzy
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set in X is a function µ : X → [0, 1]. Let µ be a fuzzy set in X . For α ∈ [0, 1], the set

L(µ; α) = {x ∈ X | µ(x) ≤ α}
is called a lower level set of µ.

A fuzzy set µ in X is called a fuzzy subalgebra of X if it satisfies:

(∀x, y ∈ X) (µ(x ∗ y) ≥ min{µ(x), µ(y)}),
and is called an anti fuzzy subalgebra of X if it satisfies:

(∀x, y ∈ X) (µ(x ∗ y) ≤ max{µ(x), µ(y)}).
3. Sensible fuzzy subalgebras with respect to a s-norm

Definition 3.1. ([6]) A binary operation S on [0, 1] is called a s-norm if
(S1) S(α, 0) = α,
(S2) S(α, β) ≤ S(α, γ) whenever β ≤ γ,
(S3) S(α, β) = S(β, α),
(S4) S(α, S(β, γ)) = S(S(α, β), γ),

for all α, β, γ ∈ [0, 1].

For a s-norm S, note that max(α, β) ≤ S(α, β) for all α, β ∈ [0, 1].

Definition 3.2. Let S be a s-norm. A fuzzy set µ in X is said to be sensible if Im(µ) ⊆ ΩS ,
where ΩS := {α ∈ [0, 1] | S(α,α) = α}.
Definition 3.3. Let S be a s-norm. A function µ : X → [0, 1] is called a fuzzy subalgebra
of X with respect to S if µ(x ∗ y) ≤ S(µ(x), µ(y)) for all x, y ∈ X . If a fuzzy subalgebra
µ of X with respect to S is sensible, we say that µ is a sensible fuzzy subalgebra of X with
respect to S.

Example 3.4. Let S0 be a s-norm defined by S0(α, 0) = α = S0(0, α) and S0(α, β) = 1 if
α �= 0 �= β for all α, β ∈ [0, 1]. Let X = {0, a, b, c} be a BCK-algebra with the following
Cayley table:

∗ 0 a b c

0 0 0 0 0
a a 0 0 a
b b a 0 b
c c c c 0

Define a fuzzy set µ : X → [0, 1] by µ(0) = α0, µ(a) = µ(b) = α1 and µ(c) = α2, where
α0, α1, α2 ∈ [0, 1] with α0 < α1 < α2. Routine calculations give that µ is a fuzzy subalgebra
of X with respect to S0, which is not sensible.

Example 3.5. Let X = {0, a, b, c, d} be a BCK-algebra with Cayley table as follows:

∗ 0 a b c d

0 0 0 0 0 0
a a 0 a 0 a
b b b 0 b 0
c c c c 0 c
d d d d d 0

Let Sm be a s-norm defined by Sm(α, β) = min(α+β, 1) for all α, β ∈ [0, 1]. Define a fuzzy
set µ in X by

µ(x) :=
{

0 if x ∈ {0, a, b},
1 otherwise,
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By routine calculations we know that µ(x∗ y) ≤ Sm(µ(x), µ(y)) for all x ∈ X , and Im(µ) ⊆
ΩSm . Hence µ is a sensible fuzzy subalgebra of X with respect to Sm.

Proposition 3.6. Let Sm be the s-norm in Example 3.5 and let A be a subalgebra of X.
Then a fuzzy set µ in X defined by

µ(x) :=
{

0 if x ∈ A,
1 otherwise

is a sensible fuzzy subalgebra of X with respect to Sm.

Proof. Let x, y ∈ X . If x /∈ A or y /∈ A, then µ(x) = 1 or µ(y) = 1 and so Sm(µ(x), µ(y)) =
1 ≥ µ(x ∗ y). Assume that x ∈ A and y ∈ A. Then x ∗ y ∈ A and thus µ(x ∗ y) = 0 ≤
Sm(µ(x), µ(y)). Obviously Im(µ) ⊆ ΩSm , ending the proof.

Proposition 3.7. Let S be a s-norm. If µ is a sensible fuzzy subalgebra of X with respect
to S, then µ(0) ≤ µ(x) for all x ∈ X.

Proof. Since x ∗ x = 0 for all x ∈ X , it follows that

µ(0) = µ(x ∗ x) ≤ S(µ(x), µ(x)) = µ(x)

for all x ∈ X .

Proposition 3.8. Let S be a s-norm. Every sensible fuzzy subalgebra of X with respect to
S is an anti fuzzy subalgebra of X.

Proof. Let µ be a sensible fuzzy subalgebra of X with respect to S. Then

µ(x ∗ y) ≤ S(µ(x), µ(y)) for all x, y ∈ X .

Since µ is sensible, we have

max(µ(x), µ(y)) = S(max(µ(x), µ(y)),max(µ(x), µ(y))
≥ S(µ(x), µ(y)) ≥ max(µ(x), µ(y))

by using (S2) and (S3). It follows that µ(x ∗ y) ≤ S(µ(x), µ(y)) = max(µ(x), µ(y)) so that
µ is an anti fuzzy subalgebra of X.

Theorem 3.9. Let µ be a fuzzy subalgebra of X with respect to a s-norm S and let α ∈ [0, 1].
Then

(i) if α = 0 then the lower level set L(µ; α) of µ is either empty or a subalgebra of X.
(ii) if S = max then the lower level set L(µ; α) of µ is either empty or a subalgebra of

X, and moreover µ(0) ≤ µ(x) for all x ∈ X.

Proof. (i) Let x, y ∈ L(µ; α). Then µ(x) ≤ α = 0 and µ(y) ≤ α = 0. It follows from
Definitions 3.1 and 3.3 that

µ(x ∗ y) ≤ S(µ(x), µ(y)) ≤ S(0, 0) = 0

so that x ∗ y ∈ L(µ; α). Hence L(µ; α) is a subalgebra of X whenever α = 0.
(ii) Assume that S = max and let x, y ∈ L(µ; α). Then

µ(x ∗ y) ≤ S(µ(x), µ(y)) = max(µ(x), µ(y)) ≤ max(α, α) = α

for all α ∈ [0, 1], which implies that x ∗ y ∈ L(µ; α). Thus L(µ; α) is a subalgebra of X .
Moreover, since x ∗ x = 0 for all x ∈ X , we have

µ(0) = µ(x ∗ x) ≤ S(µ(x), µ(x)) = max(µ(x), µ(x)) = µ(x).

This completes the proof.
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Theorem 3.10. Let S be a s-norm and let µ be a fuzzy set in X. If the non-empty lower
level set L(µ; α) of µ is a subalgebra of X, then µ is a fuzzy subalgebra of X with respect to
S.

Proof. Assume that there exist x0, y0 ∈ X such that µ(x0 ∗ y0) > S(µ(x0), µ(y0)). Taking
α0 := 1

2 (µ(x0 ∗ y0) + S(µ(x0), µ(y0))), then

max(µ(x0), µ(y0)) ≤ S(µ(x0), µ(y0)) < α0 < µ(x0 ∗ y0).

It follows that x0, y0 ∈ L(µ; α0) and x0 ∗ y0 /∈ L(µ; α0). This is a contradiction and hence
µ satisfies the inequality µ(x ∗ y) ≤ S(µ(x), µ(y)) for all x, y ∈ X .

Theorem 3.11. Let S be a s-norm satisfying S(α,α) = α for all α ∈ [0, 1]. If a fuzzy
set µ in X is a fuzzy subalgebra of X with respect to S, then the non-empty lower level set
L(µ; α) of µ is a subalgebra of X for every α ∈ [0, 1].

Proof. Let x, y ∈ L(µ; α) for α ∈ [0, 1]. Using (S2) and (S3), we have

µ(x ∗ y) ≤ S(µ(x), µ(y)) ≤ S(µ(x), α) = S(α, µ(x)) ≤ S(α,α) = α,

which means that x ∗ y ∈ L(µ; α). Hence L(µ; α) is a subalgebra of X .

Theorem 3.12. Let S be a s-norm and let µ be a fuzzy subalgebra of X with respect to S.
If there is a sequence {xn} in X such that

lim
n→∞ S(µ(xn), µ(xn)) = 0,

then µ(0) = 0.

Proof. For any x ∈ X , we get µ(0) = µ(x ∗ x) ≤ S(µ(x), µ(x)). Therefore µ(0) ≤
S(µ(xn), µ(xn)) for each n ∈ N, and so 0 ≤ µ(0) ≤ lim

n→∞S(µ(xn), µ(xn)) = 0. It follows

that µ(0) = 0.

If µ is a fuzzy set in X and θ is a mapping from X into itself, we define a mapping
µ[θ] : X → [0, 1] by µ[θ](x) = µ(θ(x)) for all x ∈ X .

Proposition 3.13. Let S be a s-norm. If µ is a fuzzy subalgebra of X with respect to S
and θ is an endomorphism of X, then µ[θ] is a fuzzy subalgebra of X with respect to S.

Proof. For any x, y ∈ X , we have

µ[θ](x ∗ y) = µ(θ(x ∗ y)) = µ(θ(x) ∗ θ(y))
≤ S(µ(θ(x)), µ(θ(y))) = S(µ[θ](x), µ[θ](y)).

Hence µ[θ] is a fuzzy subalgebra of X with respect to S.

Let f be a mapping defined on X . If ν is a fuzzy set in f(X) then the fuzzy set f−1(ν)
in X defined by [f−1(ν)](x) = ν(f(x)) for all x ∈ X is called the preimage of ν under f .

Theorem 3.14. Let S be a s-norm. An onto homomorphic preimage of a fuzzy subalgebra
with respect to S is a fuzzy subalgebra with respect to S.

Proof. Let f : X → X ′ be an onto homomorphism of BCK-algebras and let ν be a fuzzy
subalgebra of X ′ with respect to S. Then

[f−1(ν)](x ∗ y) = ν(f(x ∗ y)) = ν(f(x) ∗ f(y))
≤ S(ν(f(x)), ν(f(y))) = S([f−1(ν)](x), [f−1(ν)](y))

for all x, y ∈ X . Hence f−1(ν) is a fuzzy subalgebra of X with respect to S.

If µ is a fuzzy set in X and f is a mapping defined on X . The fuzzy set µf in f(X)
defined by µf (y) = inf

x∈f−1(y)
µ(x) for all y ∈ f(X) is called the anti image of µ under f .
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Definition 3.15. Definition 3.15 A s-norm S on [0, 1] is said to be continuous if S is a
continuous function from [0, 1] × [0, 1] to [0, 1] with respect to the usual topology.

Theorem 3.16. Let S be a continuous s-norm and let f be a homomorphism on X. If µ
is a fuzzy subalgebra of X with respect to S, then the anti image of µ under f is a fuzzy
subalgebra of f(X) with respect to S.

Proof. Let A1 = f−1(y1), A2 = f−1(y2) and A12 = f−1(y1 ∗ y2), where y1, y2 ∈ f(X).
Consider the set

A1 ∗ A2 := {x ∈ X | x = a1 ∗ a2 for some a1 ∈ A1 and a2 ∈ A2}.
If x ∈ A1 ∗ A2, then x = x1 ∗ x2 for some x1 ∈ A1 and x2 ∈ A2 and so

f(x) = f(x1 ∗ x2) = f(x1) ∗ f(x2) = y1 ∗ y2,

i.e., x ∈ f−1(y1 ∗ y2) = A12. Thus A1 ∗ A2 ⊆ A12. It follows that

µf (y1 ∗ y2) = inf
x∈f−1(y1∗y2)

µ(x) = inf
x∈A12

µ(x) ≤ inf
x∈A1∗A2

µ(x)

≤ inf
x1∈A1,x2∈A2

µ(x1 ∗ x2) ≤ inf
x1∈A1,x2∈A2

S(µ(x1), µ(x2)).

Now S is continuous, and therefore if ε is any positive number, then there exists a number
δ > 0 such that

S(x∗
1, x

∗
2) ≤ S( inf

x1∈A1
µ(x1), inf

x2∈A2
µ(x2)) + ε

whenever x∗
1 ≤ inf

x1∈A1
µ(x1)+ δ and x∗

2 ≤ inf
x2∈A2

µ(x2)+ δ. Choose a1 ∈ A1 and a2 ∈ A2 such

that µ(a1) ≤ inf
x1∈A1

µ(x1) + δ and µ(a2) ≤ inf
x2∈A2

µ(x2) + δ. Then

S(µ(a1), µ(a2)) ≤ S( inf
x1∈A1

µ(x1), inf
x2∈A2

µ(x2)) + ε.

Consequently

µf (y1 ∗ y2) ≤ inf
x1∈A1,x2∈A2

S(µ(x1), µ(x2))

≤ S( inf
x1∈A1

µ(x1), inf
x2∈A2

µ(x2)) = S(µf (y1), µf (y2)),

and so µf is a fuzzy subalgebra of f(X) with respect to S.

Lemma 3.17. Let S be a s-norm. Then

S(S(α, β), S(γ, δ)) = S(S(α, γ), S(β, δ))

for all α, β, γ, δ ∈ [0, 1].

Proof. Using (S3) and (S4), it is straightforward.

Theorem 3.18. Let S be a s-norm. Let X1 and X2 be BCK-algebras and X = X1 × X2

be the direct product BCK-algebra of X1 and X2. Let µ1 be a fuzzy subalgebra of X1 with
respect to S and µ2 a fuzzy subalgebra of X2 with respect to S. Then µ = µ1 × µ2 is a fuzzy
subalgebra of X with respect to S defined by

µ(x1, x2) = (µ1 × µ2)(x1, x2) = S(µ1(x1), µ2(x2)).

Proof. Let x = (x1, x2) and y = (y1, y2) be any elements of the BCK-algebra X = X1×X2.
Then
µ(x ∗ y) = µ((x1, x2) ∗ (y1, y2)) = µ(x1 ∗ y1, x2 ∗ y2)

= S(µ1(x1 ∗ y1), µ2(x2 ∗ y2)) ≤ S(S(µ1(x1), µ1(y1)), S(µ2(x2), µ2(y2)))
= S(S(µ1(x1), µ2(x2)), S(µ1(y1), µ2(y2))) = S(µ(x1, x2), µ(y1, y2)) = S(µ(x), µ(y)).

Hence µ is a fuzzy subalgebra of X with respect to S.
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Now we will generalize the idea to the product of n fuzzy subalgebras. We first need to

generalize the domain of s-norm S to
n∏

i=1

[0, 1] as follows:

Definition 3.19. Definition 3.19 The function Sn :
n∏

i=1

[0, 1] → [0, 1] is defined by

Sn(α1, α2, · · · , αn) = S(αi, Sn−1(α1, · · · , αi−1, αi+1, · · · , αn))
for all 1 ≤ i ≤ n, where n ≥ 2, S2 = S and S1 = id (identity).

Lemma 3.20. For a s-norm S and every αi, βi ∈ [0, 1] where 1 ≤ i ≤ n and n ≥ 2, we
have

Sn(S(α1, β1), S(α2, β2), · · · , S(αn, βn)) = S(Sn(α1, α2, · · · , αn), Sn(β1, β2, · · · , βn)).

Proof. It can be checked by induction on n.

Theorem 3.21. Let S be a s-norm and let {Xi}n
i=1 be the finite collection of BCK-algebras

and X =
n∏

i=1

Xi the direct product BCK-algebra of {Xi}. Let µi be a fuzzy subalgebra of

Xi with respect to S, where 1 ≤ i ≤ n. Then µ =
n∏

i=1

µi defined by

µ(x1, x2, · · · , xn) = (
n∏

i=1

µi)(x1, x2, · · · , xn) = Sn(µ1(x1), µ2(x2), · · · , µn(xn))

is a fuzzy subalgebra of the BCK-algebra X with respect to S.

Proof. Let x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn) be any elements of X . Then

µ(x ∗ y) = µ(x1 ∗ y1, x2 ∗ y2, · · · , xn ∗ yn) = Sn(µ1(x1 ∗ y1), µ2(x2 ∗ y2), · · · , µn(xn ∗ yn))
≤ Sn(S(µ1(x1), µ1(y1)), S(µ2(x2), µ2(y2)), · · · , S(µn(xn), µn(yn)))
= S(Sn(µ1(x1), µ2(x2), · · · , µn(xn)), Sn(µ1(y1), µ2(y2), · · · , µn(yn)))
= S(µ(x1, x2, · · · , xn), µ(y1, y2, · · · , yn)) = S(µ(x), µ(y)).

Hence µ is a fuzzy subalgebra of X with respect to S.

Definition 3.22. Definition 3.22 Let S be a s-norm. Let µ and ν be fuzzy sets in X . Then
the S-product of µ and ν, written as [µ · ν]S , is defined by [µ · ν]S(x) = S(µ(x), ν(x)) for all
x ∈ X .

Theorem 3.23. Let µ and ν be fuzzy subalgebras of X with respect to a s-norm S. Let S∗

be a s-norm which dominates S, i.e.,

S(S∗(α, β), S∗(γ, δ)) ≥ S∗(S(α, γ), S(β, δ))

for all α, β, γ, δ ∈ [0, 1]. Then S∗-product of µ and ν, [µ · ν]S∗ , is a fuzzy subalgebra of X
with respect to S.

Proof. For any x, y ∈ X we have

[µ · ν]S∗(x ∗ y) = S∗(µ(x ∗ y), ν(x ∗ y)) ≤ S∗(S(µ(x), µ(y)), S(ν(x), ν(y)))
≤ S(S∗(µ(x), ν(x)), S∗(µ(y), ν(y))) = S([µ · ν]S∗(x), [µ · ν]S∗(y)).

Hence [µ · ν]S∗ is a fuzzy subalgebra of X with respect to S.

Let f : X → X ′ be an onto homomorphism of BCK-algebras. If µ and ν are fuzzy
subalgebras of X ′ with respect to a s-norm S, then the S∗-product of µ and ν, [µ · ν]S∗ ,
is a fuzzy subalgebra of X ′ with respect to S whenever S∗ dominates S (see [Theorem
3.23]). Then by Theorem 3.14, the preimages f−1(µ), f−1(ν) and f−1([µ · ν]S∗) are fuzzy
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subalgebras of X with respect to S. The next theorem provides that the relation between
f−1([µ · ν]S∗) and the S∗-product [f−1(µ) · f−1(ν)]S∗ of f−1(µ) and f−1(ν).

Theorem 3.24. Let f : X → X ′ be an onto homomorphism of BCK-algebras. Let µ and ν
be fuzzy subalgebras of X ′ with respect to a s-norm S. Let S∗ be a s-norm which dominates
S. If [µ · ν]S∗ is the S∗-product of µ and ν and [f−1(µ) · f−1(ν)]S∗ is the S∗-product of
f−1(µ) and f−1(ν), then

f−1([µ · ν]S∗) = [f−1(µ) · f−1(ν)]S∗ .

Proof. For any x ∈ X we get

[f−1([µ · ν]S∗)](x) = [µ · ν]S∗(f(x)) = S∗(µ(f(x)), ν(f(x)))
= S∗([f−1(µ)](x), [f−1(ν)](x)) = [f−1(µ) · f−1(ν)]S∗(x),

ending the proof.

Let µ and ν be fuzzy subalgebras of X with respect to a continuous s-norm S. Let f be
a homomorphism on X and let S∗ be a s-norm which dominates S. Then the S∗-product
[µ · ν]S∗ of µ and ν is a fuzzy subalgebra of X with respect to S (see [Theorem 3.23]).
Using Theorem 3.16, µf , νf and ([µ · ν]S∗)f are fuzzy subalgebras of f(X) with respect to
S. It follows from Theorem 3.23 that the S∗-product [µf · νf ]S∗ of µf and νf is a fuzzy
subalgebra of f(X) with respect to S. Now for each y ∈ f(X), we have

([µ · ν]S∗)f (y) = inf
x∈f−1(y)

[µ · ν]S∗(x) = inf
x∈f−1(y)

S∗(µ(x), ν(x))

≥ S∗( inf
x∈f−1(y)

µ(x), inf
x∈f−1(y)

ν(x)) = S∗(µf (y), νf (y)) = [µf · νf ]S∗(y).

Hence we have the following theorem.

Theorem 3.25. Let µ and ν be fuzzy subalgebras of X with respect to a continuous s-norm
S and let f be a homomorphism on X. If a s-norm S∗ dominates S, then ([µ · ν]S∗)f , the
image of the S∗-product of µ and ν under f , and [µf · νf ]S∗ , the S∗-product of µf and νf

satisfy the inclusion:
[µf · νf ]S∗ ⊆ ([µ · ν]S∗)f .
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