SMARANDACHE DISJOINT IN BCK/D-ALGEBRAS

P. J. Allen, H. S. Kim and J. Neggers

Received September 24, 2004

Abstract. In this paper we include several new families of Smarandache-type P-algebras and we study some of their properties in relation to the properties of previously defined Smarandache-types.

Let $(X, *)$ be a binary system/algebra. Then $(X, *)$ is a Smarandache-type P-algebra if it contains a subalgebra $(Y, *)$, where Y is non-trivial, i.e., $|Y| \geq 2$, or Y contains at least two distinct elements, and $(Y, *)$ is itself of type P. Thus, we have Smarandache-type semigroups (the type P-algebra is a semigroup), Smarandache-type groups (the type P-algebra is a group), Smarandache-type abelian groups (the type P-algebra is an abelian group). Smarandache semigroup in the sense of Kandasamy is in fact a Smarandache-type group (see [2]). Smarandache-type groups are of course a larger class than Kandasamy’s Smarandache semigroups since they may include non-associative algebras as well.

In this paper we include several new families of Smarandache-type P-algebras and we study some of their properties in relation to the properties of previously defined Smarandache-types.

A d-algebra ([4]) $(X, *, 0)$ is an algebra satisfying the following axioms: (i) $x * x = 0$ for all $x \in X$; (ii) $0 * x = 0$ for all $x \in X$; (iii) $x * y = y * x = 0$ if and only if $x = y$.

If $X = [0, \infty) = \{x \in R | x \geq 0\}$, where R is the collection of real numbers, and if $x * y = \max\{0, x - y\}$, then $(X, *, 0)$ is a d-algebra. d-algebras are quite common and occur in many situations as the example above indicates.

Instead of asking whether a d-algebra can be a semigroup using the same operation, we can instead ask the much wider question: Can a d-algebra be a Smarandache-type semigroup?

Theorem 1. If $(X, *, 0)$ is a d-algebra, then it cannot be a Smarandache-type semigroup.

Proof. Suppose that it is in fact a Smarandache-type semigroup. Let $|Y| \geq 2$, where $(Y, *)$ is a subalgebra of $(X, *)$, which is also a semigroup. Thus, if $y \in Y$, then $y * y = 0 \in Y$ as well. Therefore $(y * y) * y = 0 * y = 0 = y * (y * y) = y * 0$. But $y * 0 = 0 * y = 0$ by condition (iii) for d-algebras implies $y = 0$, so that in fact $Y = \{0\}$ and $|Y| = 1$, a contradiction.

Corollary 2. If $(X, *, 0)$ is a d-algebra, then it cannot be a Smarandache-type group.

We can say the following however:

Theorem 3. If $(X, *)$ is a semigroup, then it cannot be a Smarandache-type d-algebra.

2000 Mathematics Subject Classification. 06F35.

Key words and phrases. BCK/d-algebras, Smarandache-type, Smarandache disjoint.
Proof. Suppose that \((Y, *, 0)\) is a non-trivial sub-\(d\)-algebra of \((X, *)\). Then if \(y \in Y\), we have \(y \ast y = 0\) and \(0 \in Y\) and \((y \ast y) \ast y = 0 \ast y = 0 = y \ast (y \ast y) = y \ast 0 = 0\), so that \(y = 0\) and \(|Y| = 1\), \(Y = \{0\}\). Hence, the condition \(|Y| \geq 2\) is impossible, i.e., \((X, \ast)\) is not a Smarandache-type \(d\)-algebra.

Given a \(d\)-algebra and abelian group, we can construct an algebra which is both a Smarandache-type \(d\)-algebra and a Smarandache-type abelian group. Let \((Y, \ast, 0)\) be a \(d\)-algebra and \((Z, +)\) be the additive abelian group of natural numbers. Let \((X, \Diamond)\) be defined for \(X = Y \times Z = \{(a, m) \mid a \in Y, m \in Z\}\) as follows: \((a, m) \Diamond (b, n) := (a \ast b, m + n)\). Then \((a, 0) \Diamond (b, 0) = (a \ast b, 0)\), and thus \((Y \times \{0\}, \Diamond, (0, 0))\) is a subalgebra of \((X, \Diamond)\) which is isomorphic to the \(d\)-algebra \((Y, \ast, 0)\). On the other hand, \((\{0\} \times Z, \Diamond)\) has a product \((0, m) \Diamond (0, n) = (0 \ast 0, m + n) = (0, m + n)\) so that \((\{0\} \times Z, \Diamond)\) is an example of an algebra which is a Smarandache-type abelian group. Hence \((X, \ast)\) is both a Smarandache-type \(d\)-algebra and Smarandache-type abelian group.

Given algebra types \((X, \ast)\) (type-\(P_1\)) and \((X, \circ)\) (type-\(P_2\)), we shall consider them to be Smarandache disjoint if the following two conditions hold:

(A) If \((X, \ast)\) is a type-\(P_1\)-algebra with \(|X| > 1\) then it cannot be a Smarandache-type-\(P_2\)-algebra \((X, \circ)\);
(B) If \((X, \circ)\) is a type-\(P_2\)-algebra with \(|X| > 1\) then it cannot be a Smarandache-type-\(P_1\)-algebra \((X, \ast)\).

This condition does not exclude the existence of algebras \((X, \circ)\) which are both Smarandache-type-\(P_1\)-algebras and Smarandache-type-\(P_2\)-algebras. In fact we have already produced an example of such an algebra where \(P_1 \equiv \text{‘semigroup’}\) and \(P_2 \equiv \text{‘d-algebra’}\).

If \((X, \ast, 0)\) is a \(d\)-algebra which also satisfy the following conditions:

(iv) \((x \ast (x \ast y)) \ast y = 0\) for all \(x, y \in X\);
(v) \(((x \ast y) \ast (x \ast z)) \ast (z \ast y) = 0\) for all \(x, y, z \in X\),

then it is a BCK-algebra (see [1, 3]). Since BCK-algebras are \(d\)-algebras it follows that:

Theorem 4. Semigroups and \(d\)-algebras are Smarandache disjoint.

Corollary 5. Semigroups and BCK-algebras are Smarandache disjoint.

Corollary 6. Groups and \(d\)-algebras are Smarandache disjoint.

Of course, since groups are semigroups we have:

Corollary 7. Groups and semigroups are not Smarandache disjoint.

Consider the collection of left semigroups, i.e., semigroups \((X, \ast)\) with an associative product \(x \ast y = x\). If \((Y, \ast)\) is a subgroup of \((X, \ast)\), then \(x \ast y = x\) means that \(y\) is the multiplicative identity of \((Y, \ast)\) and since \(y \in Y\) is arbitrary, it follows that \(|Y| = 1\) as well. Hence we show that:

Theorem 8. If \((X, \ast)\) is a left semigroup, then \((X, \ast)\) cannot be a Smarandache-type group.

If \((X, \ast, e)\) is a group and if \((Y, \ast)\) is a left semigroup, then being closed, we have for \(x, y \in Y, x \ast y = x\), whence from the group structure of \((X, \ast)\) we find \(y = e\), and since \(y \in Y\)
is arbitrary, $|Y| = 1$ as well. Thus (X, \ast) cannot be a Smarandache-type left semigroup and hence we have shown that:

Theorem 9. Left semigroups and groups are Smarandache disjoint.

Corollary 10. If (X, \ast) with $x \ast y = y$ is a right semigroup, then it follows that right semigroups and groups are Smarandache disjoint.

The notion of Smarandache disjointness illustrated here appears to be novel and of interest as well.

Question. Give an example of a special class of d-algebras which is Smarandache disjoint from the class of BCK-algebras.

References

P. J. Allen and J. Neggers, Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487-0350, U. S. A.

{pallen}{jneggers}@gp.as.ua.edu

Hee Sik Kim, Department of Mathematics, Hanyang University, Seoul 133-791, Korea

heekim@hanyang.ac.kr