INTUITIONISTIC FUZZY K-IDEALS OF IS-ALGEBRAS

Zhan Jianming & Tan Zhisong

Received June 7, 2002

Abstract. In this paper, we introduce the notion of intuitionistic fuzzy K-ideals of IS-algebras and investigate some of their properties.

1. Introduction and Preliminaries

In 1966, Iseki [1] introduced the notion of BCI-algebras. For the general development of BCK/BCI-algebras, the ideal theory plays an important role. In 1993, Jun et al. [2] introduced a new class of algebras related to BCI-algebras and semigroups, called a BCI-semigroup. In 1998, for the convenience of study, Jun et al. [3] renamed the BCI-semigroups as the IS-algebra and studied further properties. In [4], we introduced the concept of K-ideals of BCI-algebras. In this paper, we consider the fuzzification of K-ideals of IS-algebras and study their properties.

By a BCI-algebra we mean algebra $(X; *, 0)$ of type $(2, 0)$ satisfying the following conditions:

(I) $(x * y) * (x * z) = (z * y) * (z * x)$

(II) $(x * (x * y)) * y = 0$

(III) $x * x = 0$

(IV) $x * y = 0$ and $y * x = 0$ imply $x = y$.

In any BCI-algebra X one can define a partial order \leq by putting $x \leq y$ if and only if $x * y = 0$.

A nonempty subset I of a BCI-algebra X is called an ideal of X if it satisfies (i) $0 \in I$, (ii) $x * y \in I$ and $y \in I$ imply $x \in I$ for all $x, y \in I$.

By an IS-algebra we mean a nonempty set X with two binary operation \cdot and \ast and constant 0 satisfying the axioms:

(I) $I(X) = (X; *, 0)$ is a BCI-algebra.

(II) $S(X) = (X; \cdot)$ is a semigroup.

(III) The operation \ast is distribute over the operation \cdot, i.e., $x \cdot (y \ast z) = (x \cdot y) \ast (x \cdot z)$ and $(x \cdot y) \cdot z = (x \cdot z) \ast (y \cdot z)$ for all $x, y, z \in X$.

A nonempty subset A of a semigroup $S(X) = (X; \cdot)$ is said to be stable if $xa \in A$ whenever $x \in S(X)$ and $a \in A$.

We now review some fuzzy logic concepts. A fuzzy set in a set X is a function $\mu : X \rightarrow [0, 1]$ and the complement of μ, denoted by $\overline{\mu}$, is the fuzzy set in X given by $\overline{\mu}(x) = 1 - \mu(x)$. For $t \in [0, 1]$, the set $U(\mu; t) = \{x \in X | \mu(x) \geq t\}$ is called an upper t-level cut of and the

2000 Mathematics Subject Classification. 06F35, 03G25.

Key words and phrases. Intuitionistic Fuzzy K-ideals, K-ideals, homomorphism, IS-algebras.
set \(I(\mu; t) = \{ x \in X \mid \mu(x) \leq t \} \) is called a lower t-level cut of \(\mu \). We shall write \(a \wedge b \) for
\(\min \{ a, b \} \) and \(a \vee b \) for \(\max \{ a, b \} \), where \(a \) and \(b \) are any real numbers.

An intuitionistic fuzzy set (briefly, IFS) \(A \) in a nonempty set \(X \) is an object having the form
\[
A = \{ (x, a_A(x), \beta_A(x)) \mid x \in X \}
\]
where the functions \(a_A : X \to [0, 1] \) and \(\beta_A : X \to [0, 1] \) denote the degree of membership
and the degree of non-membership respectively, and \(0 \leq a_A(x) + \beta_A(x) \leq 1, \ \forall x \in X \).

An intuitionistic fuzzy set \(A = \{ (x, a_A(x), \beta_A(x)) \mid x \in X \} \) in \(X \) can be identified to
an ordered pair \((a_A, \beta_A) \) in \(I^X \times I^X \). For the sake of simplicity, we shall use the symbol
\(A = (a_A, \beta_A) \) for the IFS \(A = \{ (x, a_A(x), \beta_A(x)) \mid x \in X \} \).

2. Intuitionistic Fuzzy K-ideals

Definition 2.1 ([4]). Let \(k \) be any positive integer. A nonempty subset \(I \) of a \(BCI \)-algebra
\(X \) is called a K-ideal of \(X \) if
(i) \(0 \in I \),
(ii) \(x \ast y^k \in I \) and \(y \in I \) imply \(x \in I \).

Definition 2.2. A nonempty subset \(I \) of an \(IS \)-algebra \(X \) is called a K-ideal of \(X \) if
(i) \(xa \in I \) for any \(x \in S(X) \) and \(a \in I \)
(ii) \(x \ast y^k \in I \) and \(y \in I \) imply \(x \in I \)

Definition 2.3. A fuzzy set \(\mu \) in an \(IS \)-algebra \(X \) is called a fuzzy K-ideal (briefly, FK-ideal)
of \(X \) if
(i) \(\mu(x \cdot y) \geq \mu(y) \),
(ii) \(\mu(x) \geq \mu(x \ast y^k) \wedge \mu(y) \)
for all \(x, y \in X \).

Definition 2.4. An IFS \(\mu = (a_A, \beta_A) \) in an \(IS \)-algebra \(X \) is called an intuitionistic fuzzy
K-ideals (briefly, IFK-ideal) of \(X \) if
(i) \(a_A(x \cdot y) \geq a_A(y) \),
(ii) \(\beta_A(x \cdot y) \leq \beta_A(y) \),
(iii) \(a_A(x) \geq a_A(x \ast y^k) \wedge a_A(y) \),
(iv) \(\beta_A(x) \leq \beta_A(x \ast y^k) \vee \beta_A(y) \)
for all \(x, y \in X \).

Example 2.5. Consider an \(IS \)-algebra \(X = \{0, a, b, c\} \) with Cayley tables as follows:

\[
\begin{array}{cccc}
 \ast & 0 & a & b & c \\
 0 & 0 & a & b & c \\
a & a & 0 & c & b \\
b & b & c & 0 & a \\
c & c & b & a & 0 \\
\end{array}
\]

\[
\begin{array}{cccc}
 \cdot & 0 & a & b & c \\
 0 & 0 & 0 & 0 & 0 \\
a & 0 & a & b & c \\
b & 0 & a & b & c \\
c & 0 & 0 & 0 & 0 \\
\end{array}
\]
Define an $IFSA = (\alpha_A, \beta_A)$ in X as follows:

$\alpha_A(0) = \alpha_A(a) = 1$ and $\alpha_A(b) = \alpha_A(c) = t$

$\alpha_A(0) = \beta_A(a) = 0$ and $\beta_A(b) = \beta_A(c) = s$

where $t, s \in [0, 1]$ and $t + s \leq 1$.

Hence $A = (\alpha_A, \beta_A)$ is an IFK-ideal of X.

Lemma 2.6. An $IFSA = (\alpha_A, \beta_A)$ is an IFK-ideal of IS-algebra X if and only if the fuzzy sets α_A and β_A are a FK-ideal of X.

Proof. Let $IFSA = (\alpha_A, \beta_A)$ be an IFK-ideal of X. Clearly α_A is a FK-ideal of X. For any $x, y \in X$, we have $\beta_A(x \cdot y) \geq 1 - \beta_A(x \cdot y) = 1 - \beta_A(y) = \overline{\beta_A}(y)$ and $\overline{\beta_A}(x) \geq 1 - \overline{\beta_A}(x \cdot y) \lor \overline{\beta_A}(y) = (1 - \overline{\beta_A}(x \cdot y)) \land (1 - \overline{\beta_A}(y)) = \overline{\beta_A}(x \cdot y) \lor \overline{\beta_A}(y)$. Hence $\overline{\beta_A}$ is a FK-ideal of X.

Conversely, assume that α_A and β_A are FK-ideal of X. For any $x, y \in X$, we get $\overline{\beta_A}(x \cdot y) \geq \overline{\beta_A}(y)$ and that $\beta_A(x \cdot y) \leq \beta_A(y)$. Moreover, $\overline{\beta_A}(x) \geq \overline{\beta_A}(x \cdot y) \land \overline{\beta_A}(y)$ and that $1 - \beta_A(x) \geq (1 - \beta_A(x \cdot y)) \land (1 - \beta_A(y)) = 1 - \beta_A(x \cdot y) \lor \beta_A(y)$, that is, $\beta_A(x) \leq \beta_A(x \cdot y) \lor \beta_A(y)$. Hence $IFSA = (\alpha_A, \beta_A)$ is an IFK-ideal of X.

Theorem 2.7. $IFSA = (\alpha_A, \beta_A)$ is an IFK-ideal of IS-algebra X if and only if $\Box A = (\alpha_A, \overline{\alpha}_A)$ and $\Box A = (\overline{\beta}_A, \beta_A)$ are IFK-ideals of X.

Proof. If $IFSA = (\alpha_A, \beta_A)$ is an IFK-ideal of X, then $\alpha_A = \overline{\alpha}_A A$ and β_A are FK-ideals of X from Lemma 2.6, hence $\Box A = (\alpha_A, \overline{\alpha}_A)$ and $\Box A = (\overline{\beta}_A, \beta_A)$ are IFK-ideals of X. Conversely, if $\Box A = (\alpha_A, \overline{\alpha}_A)$ and $\Box A = (\overline{\beta}_A, \beta_A)$ are IFK-ideals of X, then α_A and $\overline{\alpha}_A$ are FK-ideals of X, hence $IFSA = (\alpha_A, \beta_A)$ is an IFK-ideal of X.

Theorem 2.8. An $IFSA = (\alpha_A, \beta_A)$ is an IFK-ideal of IS-algebra X if and only if for all $s, t \in [0, 1]$, the nonempty sets $U(\alpha_A; t)$ and $L(\beta_A; s)$ are K-ideals of X.

Proof. Let $x \in S(X)$ and $y \in U(\alpha_A; t)$. If $IFSA = (\alpha_A, \beta_A)$ is an IFK-ideal of X, then $\alpha_A(y) \geq t$ and that $\alpha_A(x \cdot y) \geq \alpha_A(y) \geq t$, which implies that $x \cdot y \in U(\alpha_A; t)$. Let $x, y \in I(X)$ be such that $x \cdot y \in U(\alpha_A; t)$ and $y \in U(\alpha_A; t)$. Then $\alpha_A(x \cdot y) \geq t$ and $\alpha_A(y) \geq t$. It follows that $\alpha_A(x) \geq \alpha_A(x \cdot y) \land \alpha_A(y) \geq t$, so that $x \in U(\alpha_A; t)$. Hence $U(\alpha_A; t)$ is a K-ideal of X. Now let $x \in S(X)$ and $y \in L(\beta_A; s)$, then $\beta_A(y) \leq s$ and so $\beta_A(x \cdot y) \leq \beta_A(y) \leq s$, which implies that $x \cdot y \in L(\beta_A; s)$. Let $x, y \in I(X)$ be such that $x \cdot y \in L(\beta_A; s)$ and $y \in L(\beta_A; s)$, then $\beta_A(x \cdot y) \leq s$ and $\beta_A(y) \leq s$. It follows that $\beta_A(x) \leq \beta_A(x \cdot y) \lor \beta_A(y) \leq s$, so that $x \in L(\beta_A; s)$. Hence $L(\beta_A; s)$ is a K-ideal of X.

Conversely, assume that for each $s, t \in [0, 1]$, the nonempty sets $U(\alpha_A; t)$ and $L(\beta_A; s)$ are K-ideals of X. If there are $x_0, y_0 \in S(X)$ such that $\alpha_A(x_0 \cdot y_0) < \alpha_A(y_0)$, then taking $t_0 = (\alpha_A(x_0 \cdot y_0) + \alpha_A(y_0))/2$, we have $\alpha_A(x_0 \cdot y_0) < t_0 < \alpha_A(y_0)$. It follows that $y_0 \in U(\alpha_A; t_0)$ and $x_0 \cdot y_0 \notin U(\alpha_A; t_0)$. This is a contradiction. Therefore α_A is a fuzzy stable set in S(X). If there are $x_0, y_0 \in S(X)$ such that $\beta_A(x_0 \cdot y_0) < \beta_A(y_0)$, then taking $s_0 = (\beta_A(x_0 \cdot y_0) + \beta_A(y_0))/2$, we have $\beta_A(x_0 \cdot y_0) > s_0 > \beta_A(y_0)$, it follows that $y_0 \in L(\beta_A; s_0)$ and $x_0 \cdot y_0 \notin U(\beta_A; s_0)$. This is a contradiction. Therefore α_A is a fuzzy stable set in S(X). Suppose that $\alpha_A(x_0) < \alpha_A(x_0 \cdot y_0) \land \beta_A(y_0)$ for some $x_0, y_0 \in X$, putting $t_0 = (\alpha_A(x_0) + \alpha_A(x_0 \cdot y_0) \land \beta_A(y_0))/2$, we have $\alpha_A(x_0) < t_0 < \alpha_A(x_0 \cdot y_0) \land \beta_A(y_0)$, which shows that $x_0 \cdot y_0, y_0 \in U(\alpha_A; t_0)$ and $x_0 \notin U(\alpha_A; t_0)$. This is impossible. Finally, assume that $a, b \in X$ such that $\beta_A(a) > \beta_A(a \cdot b) \lor \beta_A(b)$. Taking $s_0 = (\beta_A(a) + \beta_A(a \cdot b) \lor \beta_A(b))/2$, then $\beta_A(a \cdot b) \lor \beta_A(b) < s_0 < \beta_A(a)$. Therefore $a \cdot b$ and $b \in L(\beta_A; s_0)$, but $a \notin L(\beta_A; s_0)$, which is a contradiction. This completes the proof.
3. On homomorphism of IS-algebras

Definition 3.1. ([4]) A mapping $f : X \rightarrow Y$ of IS-algebras is called a homomorphism if

(i) $f(x \ast y) = f(x) \ast f(y)$ for all $x, y \in I(X)$;
(ii) $f(x \cdot y) = f(x) \cdot f(y)$ for all $x, y \in S(X)$.

For any $IFSA = (A, \beta_A)$ in Y, we define a new $IFSA' = (A', \beta_A')$ in X by $A'_A(x) = a_A(f(x))$, $\beta_A'(x) = \beta_A(f(x))$ \quad $\forall x \in X$

Theorem 3.2. Let $f : X \rightarrow Y$ be a homomorphism of IS-algebras. If an $IFSA = (A, \beta_A)$ is an IFK-ideal of Y, then $IFSA' = (A', \beta_A')$ in X is an IFK-ideal of X.

Proof. Suppose an $IFSA = (A, \beta_A)$ is an IFK-ideal of Y, then $A_A(x \cdot y) = a_A(f(x \cdot y)) = a_A(f(x) \cdot f(y)) \geq a_A(f(y)) = A_A(y)$ and $\beta_A(x \cdot y) = \beta_A(f(x \cdot y)) = \beta_A(f(x) \cdot f(y)) \leq \beta_A(f(y)) = \beta_A(y)$. Now let $x, y, z \in X$, then $a_A(x) = a_A(f(x)) \geq a_A(f(x) \ast f(g)^k) \land a_A(f(y)) = a_A(f(x \ast y^k)) \land a_A(y)$ and $\beta_A(x) = \beta_A(f(x)) \leq \beta_A(f(x) \ast y^k) \lor \beta_A(y)$. This completes the proof.

If we strengthen the condition f, then the converse of Theorem 3.2 is obtained as follows:

Theorem 3.3. Let $f : X \rightarrow Y$ be an epimorphism of IS-algebras and let $IFSA = (A, \beta_A)$ be in Y. If $IFSA' = (A', \beta_A')$ is an IFK-ideal of X, then $IFSA = (A, \beta_A)$ is an IFK-ideal of Y.

Proof. For any $x, y \in Y$, there exist $a, b \in X$ such that $f(a) = x$ and $f(b) = y$. Then $A_A(x \ast y) = a_A(f(a) \ast f(b)) = a_A(f(a) \ast b) \geq a_A(b) = A_A(f(b)) = A_A(y)$ and $\beta_A(x \ast y) = \beta_A(f(a) \ast f(b)) = \beta_A(f(a) \ast f(b)) = \beta_A(f(b)) = \beta_A(y)$. Moreover, $a_A(x) = a_A(f(a)) = A_A(a \ast b^k) \land A_A(b) = a_A(f(a \ast b^k)) \land A_A(f(b)) = a_A(f(a) \ast f(b)^k) \land a_A(f(b)) = a_A(x \ast y^k) \land A_A(y)$ and $\beta_A(x) = \beta_A(f(a)) = \beta_A(a) \leq \beta_A(a \ast b^k) \lor \beta_A(b) = \beta_A(f(a \ast b^k)) \lor \beta_A(f(b)) = \beta_A(f(a) \ast f(b^k)) \lor \beta_A(f(b)) = \beta_A(f(a) \ast f(b^k)) \lor \beta_A(f(b)) = \beta_A(x \ast y^k) \lor \beta_A(y)$. This completes the proof.

References

Department of Mathematics, Hubei Institute for Nationalities, Enshi, Hubei Province, 450000, P.R.China.
Email: zhanjianming@hotmail.com.