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UNCOUNTABLE LEVEL SETS OF LIPSCHITZ FUNCTIONS AND

ANALYTIC SETS

EMMA D'ANIELLO
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Abstract. We show that a subset of the interval [0; 1] is an analytic set with Lebesgue

measure zero if and only if it coincides with the set of values of uncountable order of

some Lipschitz function from [0; 1] into [0; 1].

1. Introduction

Let f : [0; 1] ! R. A value y of the function f is said to be of uncountable order if the

set f�1(fyg) is uncountable.

The characterization of the set of points where level sets of continuous functions are un-

countable is a very old result of S. Mazurkiewicz and W. Sierpinski ([5], [4]). Their charac-

terization is as follows.

Theorem 1.1. A subset of the interval [0; 1] is analytic if and only if it coincides with the

set of values of uncountable order of some continuous function from [0; 1] into [0; 1].

Recently, in a joint paper with U. B. Darji, we have characterized the set of points where

level sets of C1 functions are uncountable [3]. Our result is as follows.

Theorem 1.2. A subset of the interval [0; 1] coincides with the set of values of uncountable

order of some C1
function f : [0; 1]! [0; 1] if and only if it is analytic and its closure has

Lebesgue measure zero.

In this paper we characterize such sets for Lipschitz functions. Our characterization is

as follows.

Theorem 1.3. Let M be a subset of [0; 1]. Then M is equal to fy : f�1(fyg) is

uncountableg for some Lipschitz function f : [0; 1]! [0; 1] if and only if M is an analytic

set with Lebesgue measure zero.

2. Uncountable Level Sets

We proceed towards the goal of this paper.

We �rst need few de�nitions and terminology. Throughout, � denotes the Lebesgue measure,

and �1 and �2 denote coordinate projections.

De�nition 2.1. Let f be a Lipschitz function on a closed interval I. By Uf , Df and ~Z(f;1)
we denote the sets

fy : f�1(fyg) is uncountableg;
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fx : f is di�erentiable at xg

and

fx 2 Df : f (1)(x) = 0g;

respectively.

Theorem 2.2. ([2]: Lemma 1) If f is a continuous function of bounded variation on [0; 1],

there exists a homeomorphism h of [0; 1] onto itself such that f Æ h is a Lipschitz function.

De�nition 2.3. A box is a set of the form I � J where I; J are compact intervals.

De�nition 2.4. Let I be a closed interval. Then, we use IL; IM ; IR to denote the left third,

middle third and the right third intervals of I, respectively. If B = I � J is a box, then

BL = IL � J , BM = IM � J , and BR = IR � J . We call BL; BM ; BR the vertical splitting

of B.

De�nition 2.5. Let B be a box. A continuous function f is diagonal to B if the restriction

of f to B is a linear function which passes through the diagonal corners of B.

De�nition 2.6. A continuous function f is said to be jagged inside box B if f is diagonal

to each of BL; BM ; BR.

Henceforth, we shall denote by CBV continuous functions of bounded variation, and,

given a CBV function f , we shall denote by V (f) its variation.

Lemma 2.7. Let I = [a; b], J = [c; d], B = I � J and � > 0. Let fCigi2N be a sequence

of closed subsets of J , let A be a subset of J with �(A) = 0 and A \ Ci 6= ;, for every i.

Then, there is a CBV function f from I onto J and there is a sequence fGigi2N of countable

collections of boxes contained in B such that

1. the variation of f on I is less than �(J) + �,

2. f�1(fyg) is countable for all y 2 J ,

3. f(a) = c, f(b) = d,

4. f is linearly jagged in each B0 2 [1i=1Gi,

5. if i 6= j, then Gi \ Gj = ; and [1i=1Gi is a pairwise disjoint collection,

6. A \ Ci � �2([Gi) and �2(B
0) \ A \ Ci 6= ; for all B0 2 Gi, and

7. diam(B0) < � for all B0 2 Gi.

Proof. We will construct a sequence ffkgk2N of CBV functions whose uniform limit is the

desired function.

Let f0 : I ! J be a linear function which satis�es Condition 3 of the Lemma. Let

J11 ; J
1
2 ; : : : ; J

1
n; : : : be a sequence of non-overlapping closed intervals contained in J with

the following properties:

a. A \ C1 � [1i=1J
1
i , A \ C1 \ J1i 6= ;,

b.
P

1

i=1 �(J
1
i ) <

�
5�2

and �(f�10 (J1i )) <
�
2
.

Let I1i = f�10 (J1i ). In each of I1i , replace f0 by an appropriate continuous function which

is jagged in (I1i � J1i )L, diagonal to (I1i � J1i )M and diagonal to (I1i � J1i )R. Let f1 be the

resulting continuous piecewise linear function and let G1 = f(I1i � J1i )L : i 2 Ng. Then, at

the end of stage 1, the following properties are satis�ed:

(i) f1 is a continuous function linearly jagged inside each B0 2 G1 with f1(a) = c and

f1(b) = d,

(ii) jf�11 (fyg)j � 5 for all y 2 J ,
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(iii) f1 is a CBV function and

V (f1) � V (f0) + 5 �

1X

i=1

�(J1i )

< V (f0) + 5 �
�

5 � 2

= �(J) +
�

2
:

(iv) A \ C1 � �2([G1) and �2(B
0) \A \ C1 6= ; for all B0 2 G1,

(v) kf1 � f0k0 �
P

1

i=1 �(J
1
i ) <

�
5�2

:

Let us now construct f2. Let J21 ; J
2
2 ; : : : ; J

2
n; : : : be a sequence of non-overlapping closed

intervals contained in J such that

a. either there is i0 such that J2i � J1i0 or J
2
i does not overlap with any J1s , s 2 N,

b. A \ C2 � [1i=1J
2
i , A \ C2 \ J2i 6= ;,

c.
P

1

i=1 �(J
2
i ) <

�
5�22

and �(f�11 (J2i )) <
�
2
.

Now, if there is i0 such that J2i � J1i0 , we let I2i = f�11 (J2i ) \ (I1i0 )R, otherwise we let

I2i = f�11 (J2i ). Let f2 be the modi�cation of f1 on [iI
2
i �J

2
i as earlier and G2 = f(I2i �J

2
i )L :

i 2 Ng. Then, at the end of stage 2, the following properties are satis�ed:

(i) f2 is a continuous function linearly jagged inside each B0 2 G2, with f2(a) = c and

f2(b) = d,

(ii) jf�12 (fyg)j � 5 + (2� 1) � 4 for all y 2 J ,

(iii) f2 is a CBV function and

V (f2) � V (f1) + 5 �

1X

i=1

�(J2i )

< V (f1) + 5 �
�

5 � 22
;

= V (f1) +
�

22
:

(iv) A \ C2 � �2([G2) and �2(B
0) \A \ C2 6= ; for all B0 2 G2,

(v) kf2 � f1k0 �
P

i �(J
2
i ) <

�
5�22

.

Now let us assume that we are at stage k > 1, fk and Gk have been constructed so that the

following properties are satis�ed:

(i) fk is a continuous function linearly jagged inside each B0 2 Gk, with f1(a) = c and

f1(b) = d, ,

(ii) jf�1k (fyg)j � 5 + (k � 1) � 4 for all y 2 J ,

(iii) fk is a CBV function and

V (fk) < V (fk�1) +
�

2k
;

(iv) A \ Ck � �2([Gk) and �2(B
0) \A \ Ck 6= ; for all B0 2 Gk,

(v) kfk � fk�1k0 �
P

i �(J
k
i ) <

�
5�2k

:

Let us now construct fk+1. Let J
k+1
1 ; Jk+12 ; : : : ; Jk+1n ; : : : be a sequence of non-overlapping

closed intervals contained in J such that

a. either there is i0 such that Jk+1i � Jki0 or J
k+1
i does not overlap with any Jks , s 2 N,

b. A \ Ck+1 � [1i=1J
k+1
i , A \ Ck+1 \ Jk+1i 6= ;,

c.
P

1

i=1 �(J
k+1
i )) < �

5�2k+1
and �(f�1k (Jk+1i )) < �

2
.
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Now, if there is i0 such that Jk+1i � Jki0, we let Ik+1i = f�1k (Jk+1i ) \ (Iki0)R, otherwise we

let Ik+1i = f�1k (Jk+1i ). Let fk+1 be the modi�cation of fk on [iI
k+1
i � Jk+1i as earlier and

Gk+1 = f(Ik+1i � Jk+1i )L : i 2 Ng.

Now, it is easy to verify that fk+1 satis�es all induction hypotheses of stage k + 1 except

(iii). In order to prove (iii) we notice that

V (fk+1) � V (fk) + 5 �
X

i

�(Jki )

� V (fk) + 5 �
�

5 � 2k+1

= V (fk) +
�

2k+1
:

By (v), we have that ffkg converges uniformly to some continuous function f . By (iii) we

have that

V (f) � �(J) + �:

Hence, f is of bounded variation. Clearly, f satis�es the required conditions.

De�nition 2.8. We will use �; � etc. to denote an element of N
<N

(= �nite sequences of

elements of N) or N
N
. We use j�j to denote the length of � and, if j�j > k, then �jk to

denote the restriction of � to the �rst k coordinates, and �(k) to denote the k�th coordinate

of �. If � is a �nite string and k is a positive integer, then �k denotes the concatenation

of � followed by k.

Proposition 2.9. Let A � [0; 1] be an analytic set with �(A) = 0. Then, there is a CBV

function f : [0; 1]! [0; 1] such that

(i) f�1(fyg) is uncountable for all y 2 A, and

(ii) f�1(fyg) is countable for all y =2 A.

Proof. As A is an analytic subset of [0; 1], we may obtain a Suslin scheme [1] fC�g�2N<N

such that

(a) each of C� is a closed subset of [0; 1],

(b) for each � 2 NN , C�jk+1 � C�jk, and diam(C�jk) <
1

2k
,

(c) A = [�2NN \1k=1 C�jk.

We will construct the desired f as the uniform limit of a sequence of continuous functions

ffkgk2N . Let f0 : [0; 1]! [0; 1] be the identity map and let G0 = f[0; 1]� [0; 1]g. Applying

Lemma 2.7 to B = [0; 1]� [0; 1], fC�j1g�2NN , A and � = 1
2
, we obtain a function f1 and a

sequence of countable collections of boxes fHigi2N which satisfy the conclusion of Lemma

2.7. Let G1 = fB0

L; B
0

R : B0 2 Hi for some ig. For each B0 2 Hi, de�ne �1(B
0

L) = �1(B
0

R) =

i. Note that �1 is well-de�ned as Hi \ Hj = ; for i 6= j. Then, f1, �1 and G1 satisfy the

following conditions:

1. f1 is a CBV function with V (f1) < 1 + 1
2
,

2. f1 = f0 outside �1([G1),

3. f�11 (fyg) is countable for all y,

4. G1 is a pairwise disjoint collection,

5. f1 is diagonal to each B0 2 G1,

6. for each � 2 N1, ��11 (f�g) is a countable collection of boxes andA\C� � �2([�
�1
1 (f�g)),

and if B0 2 ��11 (f�g), then �2(B
0) \A \ C� 6= ;, and

7. for each B0 2 G1, diam(B0) < 1
2
.
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Now, suppose that we are at stage k > 1 and a function fk, a countable collection of boxes

Gk contained in the unit square and a function �k : Gk ! N
k have been constructed such

that:

1. fk is a CBV function with V (fk) < 1 +
Pk

i=1
1
2i
,

2. f�1k (fyg) is countable for all y,

3. fk = fk�1 outside �1([Gk),

4. Gk is a pairwise disjoint collection,

5. fk is diagonal to each B0 2 Gk,

6. for each � 2 Nk , ��1k (f�g) is a countable collection of boxes andA\C� � �2([�
�1
k (f�g)),

and if B0 2 ��1k (f�g), then �2(B
0) \A \ C� 6= ;,

7. for each � 2 Nk , [��1k (f�g) � [��1k�1(f�j(k � 1)g),

8. for each B0 2 Gk, diam(B0) < 1

2k
, and

9. for each B0 2 Gk�1 with � = �k�1(B
0) and for positive integer m, we have that if

�2(B
0) \ C�m 6= ;, then for each y 2 A \ C�m \ �2(B

0), there are two disjoint boxes

B1; B2 2 Gk with B1[B2 � B0 such that y 2 �2(B1)\�2(B2) and �k(B1) = �k(B2) =

�m.

Let us now de�ne fk+1. Enumerate Gk as B1; B2; : : : . Let l � 1 and � = �k(Bl). If

there is no i so that �2(Bl) \ A \ C�i 6= ;, then we let gl = fk on �1(Bl). Otherwise,

we apply Lemma 2.7 to Bl, �2(Bl) \ C�i, i = 1; 2; : : : (listing only the non-empty ones),

A\ �2(Bl) and � = 1

2k+1+l
, and obtain a function gl and a sequence of countable collections

of boxes fHl
igi2N which satisfy the conclusion of Lemma 2.7. For each B0 2 Hl

i, de�ne

�lk+1(B
0

L) = �lk+1(B
0

R) = �i. We do this for each l and let fk+1 = fk outside [1l=1�1(Bl)

and fk+1 = gl on �1(Bl). We let Gk+1 = fB0

L; B
0

R : B0 2 Hl
i for some i; lg and let �k+1 be

the union of all the partial �lk+1. These fk+1;Gk+1; �k+1 satisfy the induction hypotheses.

As fk+1 is continuous and modi�ed only inside boxes of stage k and these boxes have

diameters less than 1
2k
, we have that ffkgk2N converges uniformly to some continuous

function f . By induction hypothesis 1, we have that f also is a CBV function.

Let us now show that f�1(fyg) is uncountable for y 2 A and countable otherwise. We shall

prove that y 2 A if and only if f�1(fyg) is uncountable.

()) Let y 2 A. Let � 2 NN be such that y 2 \
1

k=1C�jk. Applying induction hypothesis

9 at stage k = 1 with B = [0; 1] � [0; 1], we may obtain two disjoint boxes B
y
0 and B

y
1 in

G1 such that y 2 �2(B
y
0 ) \ �2(B

y
1 ) and that �1(B

y
0 ) = �1(B

y
1 ) = �j1. Now suppose that

k � 1 and we have 2k many pairwise disjoint boxes By
�, � 2 f0; 1g

k with each By
� 2 Gk,y 2

\�2f0;1gk�2(B
y
�) and �k(B

y
�) = �jk for all �. Applying induction hypothesis 9 at stage k+1

to each By
�, for � 2 f0; 1g

k andm = �(k+1), we obtain an analogous appropriate collection

of boxes at stage k+1. Now, it is easy to verify that the Cantor set [�2f0;1gN \
1

k=1�1(B
y

�jk
)

maps to y under f .

(() Let f�1(fyg) be uncountable. As f = f1 outside �1([G1) and f
�1
1 (fyg) is countable,

we have that there is B1 2 G1 such that B1 contains uncountably many points of the graph

of f whose second coordinate is y. Let l1 = �1(B1). By a similar argument, there has

to be B2 2 G2 such that B2 contains uncountably many points of the graph of f whose

second coordinate is y and B2 � B1. By induction hypotheses 4 and 7, we have that

�2(B2) = (l1; l2) for some l2. Continuing in this fashion, we obtain a sequence of boxes

fBkgk2N and a sequence of integers flkgk2N such that y 2 �2(Bk), Bk 2 Gk, Bk+1 � Bk and

�k(Bk) = �jk where � = (l1; l2; : : : ). From Condition 6 we have that �2(Bk)\A\C�jk 6= ;,

and from Condition 8 that diam(Bk) ! 0 as k ! 1. Hence, y 2 \1k=1C�jk. Therefore,

y 2 A.
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Proposition 2.10. Let A be an analytic subset of [0; 1] with �(A) = 0. Then, there is a

Lipschitz function f : [0; 1]! [0; 1] such that

(i) f�1(fyg) is uncountable for all y 2 A, and

(ii) f�1(fyg) is countable for all y =2 A.

Proof. By Proposition 2.9 there exists a CBV function g : [0; 1]! [0; 1] such that g�1(fyg)

is uncountable for all y 2 A and countable otherwise. Applying Theorem 2.2 we obtain

a homeomorphism h from [0; 1] onto [0; 1] such that g Æ h is a Lipschitz function. Now,

f = g Æ h is the desired function.

Proposition 2.11. Suppose that f : [0; 1] ! R is a Lipschitz function. Then, the set of

points where level sets are uncountable is an analytic set with Lebesgue measure zero.

Proof. By a very old result of S. Mazurkiewicz and W. Sierpinski [5] Uf is an analytic

set. Let Uf
1 = fy 2 Uf : 9xy 2 Df with f(xy) = yg. As f is Lipschitz, it follows that

�(Uf nUf
1) = 0. As for every y 2 Uf f�1(fyg) is uncountable, it contains a perfect set and

hence it is clear that for every y 2 Uf
1 it is xy 2 ~Z(f;1). Let Uf

2 be the set of all points

in Uf
1 which are not a local extremum of f . As Uf

1
n Uf

2 is at most countable, it has

Lebesgue measure equal to zero. Let � > 0. For every y 2 Uf
2 choose a sequence fpy;kgk2N

converging to xy such that, for every k,

(i) the image under f of the semi-open interval Jy;k containing xy and having as end-

points xy and py;k is a non-degenerate interval, and

(ii) jf(xy) � f(py;k)j < � � jxy � py;kj:

Let, for every y 2 Uf
2 and for every k, f(Jy;k) = [f(ay;k); f(by;k )]. Now, Vy = f[f(ay;k); f(by;k)]gk2N

is a family of non-degenerate intervals containing y and with diameters going to zero. Let

V = [y2Uf 2Vy. Clearly, V is a Vitali covering of Uf
2. By the Vitali covering theorem ([1]),

there exists a countable sub-collection of pair-wise disjoint intervals f[f(ayi ;ki); f(byi ;ki)]gi2N
such that �(Uf

2
n [1i=1[f(ayi ;ki); f(byi ;ki)]) = 0. The collection fIigi2N of closed intervals

having as end-points ayi ;ki and byi;ki is pair-wise disjoint since so is f[f(ayi ;ki); f(byi ;ki)]gi2N .

Moreover, we have that

jf(ayi ;ki) � f(byi ;ki)j

� jf(ayi ;ki) � f(xyi )j+ jf(xyi )� f(byi ;ki )j

< � � (jayi ;ki � xyi j+ jxyi � byi;ki j):

Therefore,

1X

i=1

jf(ayi ;ki)� f(byi ;ki)j

�

1X

i=1

(jf(ayi ;ki)� f(xyi )j + jf(xyi ) � f(byi ;ki)j

� � �

1X

i=1

(jayi ;ki � xyi j+ jxyi � byi ;ki j)

� 2 � �:

Hence, �(Uf ) = �(Uf
2) � 2 � �; for every �.
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Theorem 2.12. Let M � [0; 1]. Then the following are equivalent:

1. M is an analytic set with �(M) = 0,

2. there is a Lipschitz function f from [0; 1] into [0; 1] such that f�1(fyg) is uncountable

for every y 2M and countable otherwise.

Proof. (1)) (2) This is Proposition 2.10.

(2) ) (1) This is Proposition 2.11.

References

[1] A. M. Bruckner, J. B. Bruckner, B. S. Thomson, Real Analysis, Prentice-Hall, New Jersey, 1997.

[2] A. M. Bruckner, C. Go�man, Di�erentiability through change of variables, Proc. Amer. Math. Soc. 61

(1976), 235-241.

[3] E. D'Aniello, U. B. Darji, Cn functions, Hausdor� measures and analytic sets, to appear in Advances

in Mathematics 164 (2001), 117-143.

[4] K. Kuratowski, Topology I, Academic Press, 1966.

[5] S. Mazurkiewicz, W. Sierpinski, Sur un probl�eme concernant les fonctions continues, Fund. Math. 6

(1924), 161-169.

Dipartimento di Matematica, Seconda Universit�a degli Studi di Napoli, Via Vivaldi 43, 81100

Caserta, ITALIA

E-mail address: emma.daniello@@unina2.it


