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SIMPLE LEFT SYMMETRIC ALGEBRAS OVER A REDUCTIVE LIE
ALGEBRA
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ABSTRACT. In [Ba], [Bu] and [M], we studied the structures of a left symmetric algebra
over a real reductive Lie algebra.

In this paper, we shall give some examples of simple left symmetric algebras over
a reductive Lie algebra.

I. Preliminaries.

[A] Let g be a Lie algebra over K of dimension n and E™ be an affine space over K of
dimension n, where K denotes the field R of all real numbers or the field C' of all complex
numbers.

Let p = (¢, 7) be an affine representation of g in E, where ¢(a) (resp. 7(a)) denotes the
linear (resp. translation) part of p(a) (a € @). p is called admissible affine representation
of @ mm E if w is a linear isomorphism of g onto E. For a given linear representation ¢ of g
in E. if there exists a point P of E such that 7(z) = ¢(x)P (z € @) is a linear isomorphism
of g onto E, ¢ is called an admissible affine representation of g in E at the point P.

Let A be a left symmetric algebra over g. Denote by L(a) (resp. R(a)) the left (resp.
right) multiplication of A by an element a. Then the mapping L of g into the Lie algebra
aff(A) of all infinitesimal affine transformations on A defined by

is an admissible affine representation of g in A, which is called the left affine representation
of a left symmetric algebra A over g.

Let p = (¢, 7) be an admissible affine representation of g in E. Define a binomial
product in g by the formula

ab =77 (pla)n(b)) (a.b € g).

Then the algebra A = (g, p) with the above multiplication is a left symmetric algebra over
g ([S], [M]).

[B] For an element a = (a;j,a;) of aff(E), denote by @ a vector field on an affine space
E(x1,29,... ,v,) with a system (z1,22,... ,2,) of affine coordinates defined by

S]]

0
= —Z(aijxj + al)a_TZ
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For an affine representation p = (¢, 7) of g in E, denote by F,(z) (resp. F,(z)) a
polynomial on F defined by

Fp(z)wg = plar) A plaz) A=+ A plan) (resp. Fo(x)wo = ¢lar) ANglaz) A+ A 7p(an)) ,

where {a;} is a base of g and wg denotes the tensor field defined by

o= (o) (5) o (55)

The polynomial F,(x) (resp. F,(x)) is uniquely determined by (g, p) (resp. (g, %)), up to
a constant multiple. Denote this polynomial by F, = |p(@)| (resp. F, = |¢(g)|) and call it
the polynomaial for (@, p) (resp. (g.¢)).

For an affine representation p = (¢, 7) of ¢ in E and an infinitesimal character y of g,
a polynomial F(z) on E is called a relative invariant of (g, p) (resp. (g,¢)) corresponding
to x if the following equality holds:

L——F=x(a)F (resp. L——F= X(a)F) ,

w(a)

ola)

where L+ denotes the Lie differentiation with respect to a vector field X.
We can prove the following ([M]).

Lemma 1. Let p = (p,7) be an affine representation of § in E, and F, (resp. F,) the
polynomial for (@,p) (resp. (@,%)). Then F, (resp. F,) is a relative invariant of (g, p)
(resp. (@,9)) corresponding to an infinitesimal character x defined by

x(a) = Trada — Tre(a) (a € @).

For a left symmetric algebra A over ¢, we have
L{a) — R(a) =ada (a€g).
Thus we have the following.

L(g)
Then it is a relative mvariant of (g,i) corresponding to x(a) = —TrR(a) (a € @).

Corollary. Let F =

be the polynomaal for a left symmetric algebra A over g.

Lemma 2.  Let F and G be relative invariants of an affine representation (g,p) in E
corresponding to the same infinitesimal character x. If (@, p) is admissible, then G coincides
with F up to a constant multiple.

In fact, we have LW(G/F) =0 (a € g). Thus, if (g,p) is admissible, then G/F is a
constant. 4 O
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[C] Let A be a left symmetric algebra over a Lie algebra @, and A a symmetric bilinear form
on A. his called of Hessian type ([S]) if, for x,y,z € A, the following equality holds:

hay. 2) + h(y,a2) = hlyz,2) + h(a,y2).
Put
h(z,y) = TrR(zy) (x,y € A).

h is a symmetric bilinear form on A of Hessian type. It is called the canonical 2-form on A.
A is called non degenerate if the canonical 2-form is non degenerate.

Lemma 3.  Let A be a left symmetric algebra over a Lie algebra g satisfying the following
conditions:

(1) A has an identity e,

(2) 9=10,81{c}.

Then non trivial symmetric bilinear forms hy and hy on A of Hessian type are conformal.

In fact, for x,y € A, there exist z € [, g] and o € K such that zy = z + ae. Moreover,
for any symmetric bilinear form h of Hessian type, the following equalities hold:

h([z,y],e) =0 and h(z,y) =hle,zy) (z,y € A).

Therefore, we have

O

Lemma 4.  Let B be an ideal of a left symmetric algebra A with a symmetric bilinear
form h of Hessian type. Denote by B+ the orthogonal complement of B in A with respect
to h. Then Bt is a subalgebra of A.

In fact, for 2,y € B+ and b € B,

h(b,zy) = h(bz,y) + h(x,by) — h{zb,y) = 0.

O

Let A be a left symmetric algebra over g corresponding to an admissible affine repre-
sentation p = (¢, 7) in E, and F,, the polynomial for (g, ), where there exists a point P
of E such that 7(a) = p(a)P (a € g).

Denote by g a tensor field of type (0,2) on a domain @ = {z € E ; F,(z) # 0} defined
by

B

2

0
gij = M(loﬂpﬂ)-

Denote by h a symmetric bilinear form on A = (g, p) defined by

h(a,b) =g (m,m)‘ Y (a,b € A).
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h is called a symmetric bilinear form defined by F,.
We obtain the following ([M]).

Lemma 5. A symmetric bilinear form h on A defined by the polynomial F = ‘i(g)‘ for

a left symmetric algebra A coincides with the canonical 2-form on A.

For admissible affine representations (@, p) and (g, p’) in E, (@, p’) is called F-equivalent
to (@, p), if the polynomial F,s for (g,¢’) coincides with the polynomial F, for (g,¢), up
to a constant multiple.

By the definition of a symmetric bilinear form defined by Fi,, we obtain the following.

Lemma 6.  For two admissible affine representations (@, p) and (g, p’) in E, if they are
F-equivalent, then the rank of the symmetric bilinear form on A’ = (@, p") defined by F
coincides with that of the symmetric bilinear form on A = (@, p) defined by F,.

[D] Let G be a connected Lie group of dimension n over K, g its Lie algebra, and E an
affine space over K of dimension n.

Denote by & a linear representation of G in E, and y a character of G. A polynomial
F(z) on E is called a relative invariant for (G, ®) corresponding to x if

F(®(g)x) = x(9)F(z) (€ E, g€q).

Denote by ¢ (resp. the same letter x) the induced linear representation (resp. the
induced infinitesimal character) of g. Then F' is a relative invariant of (g, ¢) corresponding
to x.

Let ¥ be a mapping of a domain 2 = {z € E ; F(z) # 0} into an affine space E*(y,ya, . ..

of dimension n defined by

(o) (5 sz

Then it can be easily proved that

U (®(g)x) = ¥ (9)¥(z) (v €9, g€q),
where ®* denotes the contragradient representation of G in E*.

Lemma7. Let (@,¢) be an admissible affine representation of ¢ in E at a point P, (g, ¢*)
the induced contragradient representation of § in E*, and A = (@, p) a left symmetric algebra
over § corresponding to (§,¢) at P. Then the following conditions are mutually equivalent.

(1) (g,9%) s admissible at Q@ = ¥(P),
(2) the Hessian of the mapping ¥ does not vanish at P,

(3) A is non degenerate.

Proof. Denote by H(z) the Hessian matrix of the mapping ¥. The mapping ¥ is a
diffeomorphism in a neighbourhood of P if and only if (g, ¢*) is admissible at the point
Q) = ¥(P). Moreover, since we have H(z);; = ¢;; (1 <14,5 <n), by Lemmas 5 and 6, we
obtain the equivalence of (2) and (3). O

v Yn)
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[E]
Lemma 8. Let A be a left symmetric algebra over a Lie algebra §. Let B be a minimal
commautative ideal of A.

Assume that the Lie algebra b of B is contained in the center € of g. Then

(1) B is simple, or

(2) B is nilpotent.

Proof. Assume that the semi simple part S of an associative algebra B is non trivial.
Then S is decomposed into a direct sum @5 .S; of simple algebras S; (1 <1 <r).
i=1
First we shall prove that » = 1. In fact, denote by e; (1 < i < r) the identity element
of S;. Put B; = Be; (1 <1 < 7). Then, for z € A and b € B, since b is contained in the
center, we have

z(be;) = z(e;b) = (we; )b = (e;2)b = e;(xd) € By.

Thus B; is an ideal of A. This implies that r = 1 and S is simple.
Next denote by e the identity element of S. Put

No={ne€N; ne=0}.

Similarly as above, we can easily prove that Ny is an ideal of A. Thus we obtain that
No = {0} and e is the identity of B. Now, for n € N and x € A, we have

zn = z(en) = (ze)n € N,

that is, N is an ideal of A. Thus, again by the minimality of B, we have N = {0} and
B=2S.
|

[F] In this section, let g = & & € be a reductive Lie algebra over K of dimension n, where
G (resp. €) denotes the semi simple ideal (# {0}) (resp. the center) of g.

Let p = (¢, 7) be an admissible affine representation of g in E", and A = (g,p) a left
symmetric algebra over g corresponding to p.

Assume that

deg (cp G) =dimg. ()

Lemma 9.  Under the assumption (x), let B be a non commutative minimal ideal of A,
then there exists a subalgebra B of A such that

(1) A= B® B, semi direct sum with BB = 0,

(2) B (resp. B) has a right identity.

For the proof, see [M].

Lemma 10.  Under the assumption (), let B be a non degenerate minimal commutative

ideal of A, then there exists an ideal B of A such that A= B @ B (direct sum).



38 Akira MIZUHARA

Proof. Let b be the Lie algebra of B. Then, since b is contained in the center and B is
non degenerate, B is simple, by Lemma 8. Denote by BL the orthogonal complement of
B with respect to the canonical 2-form h of A. Then, since B is non degenerate, B is a
subalgebra of A satisfying A = B @& B*.

Moreover, by the assumption (%), A has a right identity. Thus, by the Lemma below, we
have BB+ = 0. This implies that B+ is an ideal of A. O

Lemma.  Let A be a left symmetric algebra, B an ideal of A, and B a subalgebra of A
satisfying A = B @© B (sems direct sum). -
If the following conditions (1) and (2) are satisfied, then BB = 0.

(1) B L B with respect to the canonical 2-form h of A,
(2) A (resp. B) has a right identity e (resp. e1).
Proof. For b € B, we have b(e — ¢;) = 0. Thus, by (1), e2 = ¢ — ¢; is an element of B.

Moreover, for ¢ € B, we have cey = ¢ and ce; = 0. This implies that, for b € B and ¢ € B,
we have

be = (be)ey = b(cer) + (eb)ey — e(bey) = 0.

O

[GlLet E =V, & Vo @ --- DV, be an affine space over K of dimension n?, where V; =
K™(%i1,2i2,.-. ,%) denotes an affine space over K with a system x; = (21, iz, ... , Tin)
of affine coordinates.

Denote by F(z) the polynomial defined by

F(z) = det(xy,22,... ,2p).
Lemma 11. Let X be an infinitesimal linear transformation on E defined by X = E, ®c,
(¢ = (c¢ij) € gl(n, K)). Then we have

L<F=—(TtX)F.

In fact, it can be easily proved that

e [0 e=ey ((#))
LXF{ —F, c¢=¢y,

where ¢;; denotes the matrix unit in gl(n, K). O

Let B/ =W, & Wa & - ® W,11 be an affine space over K of dimension n(n + 1), where
W; = K™(x41,%i2,... ,%i,) denotes an affine space over K of dimension n with a system
z; = (i1, Tizy .. . , Tin) of affine coordinates.

Denote by F(i) (1 <7 <n+1) the polynomial on E’ defined by

F(Z) = det(xl,:xz,... “”L?i,. .. ,xn+1).

Similarly as above, we can easily prove the following.
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Lemma 12. Let X be an infinitesimal linear transformation on E' defined by X =
E, @ e;j, where e;; denotes the matric unit in gl(n + 1, K). Then we have
_F(l‘7)7 Z:]#k,
LR = (=1)7F@), j=k#i,
0, otherwise.

II. Let g =& & € be a reductive Lie algebra over K, where & (resp. &) denotes the
semi simple ideal (# {0}) (resp. the center) of g.
In the following sections, we shall give some examples of simple left symmetric algebras

A =(g,¢) over g.

[A]Let E =V, @ Va@--- @DV, be an affine space over K of dimension n?, where V; =
K™(2i1,%i2,... . 2in) denotes an affine space over ' with a system x; = (231, %i2,... , Tin)
of affine coordinates.
Put © =sl(n,K) and € = {e}.
Denote by ¢ a linear representation of g in E defined by
0|6 =id® E,,
ple)=E,®a (aé€glin, K)).

Denote by F' a polynomial on E defined by
F =det(z1,22,...,2,),
and by P a point in E defined by
P=(e1,e2,...,€p),

where {e;} denotes the canonical base of K.

Theorem 1.

(1) (g,9) s admissible at some point in E if and only if Tra # 0.
(2) If (9,¢) 1s admissible, then F is the polynomial for (g.¢) and (g, ¢) is admissible at
P.

(3) Let A = (g,¢) be a left symmetric algebra corresponding to an admissible affine
representation (@, ¢) at P. Then A is simple and non degenerate.

(4) A has a right identity.

Proof. (1) It is clear that a Lie subalgebra {s @ E,, s € sl(n, K)} of the Lie algebra of
all infinitesimal linear transformations on E spans the tangent space at P of a hypersur-
face through P defined by {¢ € E; F(z) = F(P)}. Moreover E, ® a is transversal to the
hypersurface if and only if Tra # 0. Thus we obtain (1).

(2) It is clear that F' is a relative invariant corresponding to the infinitesimal character
— (Try). Therefore, if (g, ¢) is admissible, F' is the polynomial for (g, ), by Lemma 2.

(3) Simplicity is followed from the fact that dim&€ = 1. Moreover, since F' coincides
with the polynomial for a non degenerate associative algebra gl(n, K), A = (g.¢) is non
degenerate, by Lemma 7.

(4) is followed from the fact that deg p|& = dim g. O
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r

[B]Let E=Vi ® Vo @ --- @V, be an affine space over K of dimension Zn? where
i=1
Vi= @V, (1<i<r),
=1
Vij = K™ (2() .22, s2(i)jn) (1 <i<r, 1<j5<ny)
denotes an affine space over I{ with a system (i); = (¢(é)j1,2(i)j2,... ,2(i)jn,) of affine

coordinates.
Let g = © & € be a reductive Lie algebra over K, where

6= @Gi, G, =sl(n;,K) (1<i<rn >2),
=1
¢ ={e1,e2,... ¢} denotes the center of g spanned by {ei,ea,...,¢e,} over K.
Denote by P a point of E defined by P = ZP“ where P; = (e(i)1,€(i)a,-.. ,e(i)n;) €
=1
Vi (1<i<r),{e(@)1,eli)a,...,e(i)n, } denotes the canonical base of K™i.
Denote by ¢ a linear representation of g in E defined as follows:

elVi=pi (1<i<r),
@i(sj) =0ij (s; @ En;)  (s; € ©)),
@ile;) = By, @a(y,i) (1<4,5<r),

where a(j, i) = (a(J,9)k)k=1,2,...,n; denotes an element of D(n;, K) of all diagonal matrices
in gl(n;, K).
Denote by F(i) (1 <i<r) a polynomial on V; defined by

F(i) =det(z(i)1, ()2, ... ,2(1)n; ),
and put F = HF(Z)
=1
Theorem 2.
(1) (9,%) 1s admaissible at some point in E if and only if det(Tr a(j,4)); j=1.2,... » # 0.

(2) If (@,¢) is admissible at some point in E, then F is the polynomial for (g,¢) and
(g,¢) is admissible at P.

(3) Let A = (g,9) be a left symmetric algebra over § corresponding to an admissible
affine representation (@, p) at P. Then A is non degenerate.

(4) If B is a proper ideal of A, then it is expressed as a sum @ A;;, where {i1,1i2,... ,is}
=1

is a subset of {1,2,... v} and A; =77 1(V;) (1 <i<r).

Proof. (1) it is clear that a Lie subalgebra {g&(s) ; 8 € 6} of the Lie algebra of all

infinitesimal linear transformations on E spans the tangent space at P of a submanifold of

E defined by
{zr € E; F(i)(z) = F(i)(P), 1<i<r}.
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Moreover, we have

Ly F (i) = =(Tra(ii))FG) (1< 4.5 < ).

elef)
This implies (1).

(2) is followed from Lemma 2.

(3) By (1), a relative invariant F' corresponding to an infinitesimal character —(Tr )
coincides with the polynomial for (g, ). Moreover, since the symmetric bilinear form on
Vi defined by F(i) (1 <i<r) is non degenerate, A is non degenerate.

(4) Denote by A; = #~1(V;) the inverse image of V; of the linear isomorphism 7 defined
by m(x) = o(2)P (x € g). Then A; is a left ideal of A. Denote by @, (1 < ¢ <r) the Lie
algebra of A;. Then, since g, D G, and the codimension of &, in g, = 1, 4; is a simple
subalgebra of A.

Let B be a proper ideal of 4, and b the Lie algebra of B. Because of deg |G = dim @, we
have b 2 &. Moreover, because of simplicity of 4;, if b  &;, then we have bn &; = {0}.
Thus, after a suitable choice of indeces if necessary, we may assume that there exists an
integer s (1 < s < r) such that

b6, 1<i<sandbnN &, ={0}, s+1<j5<r
Assume that b O &;. Then, since
7(6:) ¢ 7(6:6i) = ¢(6:)x(Gi) C =(b).
we have 7(b) D V;. This completes the proof of (4). O

Example. In the above theorem, put {¢(e;)}, ., as follows:

Non vanishing terms of {a(7, 7)1} are

{ a(l,1) :1 (17)2:27“,
afi, i) = ali,i— 1) =22 (2<i<r).

Then (g, ) is admissible and the left symmetric algebra A = (g, ¢) corresponding to an
admissible affine representation (g, ¢) at P is simple.

[C] Let V be an affine space over K of dimension m. A commutative algebra A over K is
called o commutative algebra ober V, if A is a commutative subalgebra of gl(V') consisting
of upper triangular linear transformations of V' with respect to some fixed base of V' such
that

(1) dimA =m,

(2) the semi simple part of the algebra A is spanned by the identity transformation of
V.
Let a = (a;;) and b; (2 <17 < m) be matrices in gl(m, K) expressed as
L jg=i1+1,

0, otherwise, and
bi=e1; (2<i<m),

Ay5 =

where €;; denotes the matrix unit in gl(m, K'). Then a commutative algebra over I spanned
by {id7 a,a’, ... 7a"“l} (resp. {id,bz,...,by}) is a commutative algebra over K. We call
it a commutative algebra over K™ of 1st kind (resp. 2nd kind).
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Let (my,ma,... ,my) be a r-tuple of positive integers m; such that m;+mqo+---4+m, =
m. A commutative algebra A over V is called of type (mq,m2,...,m,) if there exists a

-

direct sum decomposition V' = @V; and a set of commutative algebras A(i) over V; such
i=1

that

(1) dimVi=m; (1<i<r),

A commutative algebra A = @ A(i) over V of type (my,ma,... ,m;y) is called of Ist
=1

kind (vesp. 2nd kind) if A(7) is of 1st kind for any ¢ (resp. » = 1 and A is of 2nd kind).
Let g = © & € be a reductive Lie algebra of dimension n(n + 1), where & = sl(n, K)
and € denotes the center of g of dimension n + 1.
Denote by ¢ a linear representation of g into an affine space E over K of dimension
n(n + 1) defined as follows:

(1) 9|6 =id@ Ent,

(2) there exists a r-tuple (my,ma,... ,m,) of positive integers m; such that m; + msq +

-+ 4+ m, =n -+ 1 such that

¢|€= E, @ o,
where ¢o(€) is a commutative algebra over K"+ of type (my,ma,... ,m,). We call (g,¢)
of type (my,ma, ... ,m,;).
n+1
Let E = @ V; be adirect sum decomposition of E, where V; = K™ (241, %42, .. ,Zin) (1 <
=1
i < n+ 1) denotes an affine space over I with a system ; = (241, %i2,... ,Zin) of affine
coordinates.
Denote by F(i) a polynomial defined by
F(Z) = det(:cl.,:cg, e ,fi,. .. 7$n+1)-
By Lemma 12, it is easily showed that if (@,¢) is of type (my,m2, ... ,m,), then

F=1][FG;)m
7=1

is a relative invariant of (@, ¢) corresponding to the infinitesimal character y = —(Tr ),
where
i =1,

19 =mq + 1,

tp=m1+ma+ -+ my_ + 1

Denote by P a point of E defined by

P=(e1,€2,... ,€n,61+ €2+ +ey),
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where {e;} denotes the canonical base of K. Then we have F(P) # 0. Thus, by Lemma
2, we obtain the following.

Proposition 1.  Let (g,¢) be a linear representation in E of type (my,ma,... ,m,). If
(g,¢) 1s admissible at some point, then

(1) F is the polynomial for (@, ),

(2) (@.¢) is admissible at P.

Let (@, ¢) be a linear representation of g in E of type (my, m2, ... ,m;). We may assume
that mq > mo >+ > m,.
First we shall prove the following.

Theorem 3.  Let (g,¢) be a linear representation of @ in E of type (m1,mz,... ,my).
If it is of 1st kind or of 2nd kind, then it is admassible.

Proof. Let (@, ) be a linear representation of g in E of type (my,ma,... ,m,). By the
definition of (g, ¢), there exists an element e of € such that ¢(e) = E,(,,4+1). Therefore, by
the definition of (g, ), the action of {@(3) (s € ©) and np(e)} on E is equivalent to that
of {t @ E,q1; v €gl(n,K)} on E.

Denote by @ a point of E defined by

tQ: (61 + €2 +"'+6n:617627-" 7671)-
Then the action of {# @ E,,41; « € gl(n, K)} at a point @Q is expressed as follows:
En En o En

E, 0

(611 024 En+17 €21 ® En+1, e e @ En+1) Q = En

0 i E,

Denote by €y = {a1,as,... ,a,} a subalgebra of € such that € = {e} & &,.
Put

Dn+1

where D; (1 <¢<n+ 1) denotes a matrix in gl(n, '), and

n+1
D=D,-)> D.
=2
Then the subspace ¢(g)Q is spanned by column vectors of the following matrix:
E, E, -+ E, D
E, O D,
E, D

0 En Dn+1
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which is equivalent to

0 .- 0 D

E, O D,
E, D

0 E, Dypyy

After a suitable choice of a base {a;} of &y, we can easily prove the following:
(1) Assume that (g, ) is of type (my1, m2,... ,m,) and of st kind.
()Ifr=n+1thenmy=my=--=m,=1and D = —F,.
(ii) If 7 < n, then m; > 2 and D is expressed as follows:

D, 0
— 2
D =

where

Dy = my — 1, and

(2) If (g,¢) is of 2nd kind, then

Hence (g, ) is admissible at a point Q. O

Next let A = (g.¢) be an algebra over g corresponding an admissible affine representa-
tion (g, ) at P of type (m1,mz,... ,my).

By the definition , there exists an element e € € such that ¢(e) = E,(nt1)- Denote by
B a linear subspace of A spanned by {S € G and e}. Then B is a subalgebra of A which
is isomorphic to an associative algebra gl(n, K).

In fact, for s,s" € ©, there exist t € & and a € K such that ss’ =t + aE, in gl(n, K).
Therefore, by the definition of ¢, we have ss’ = ¢t + ae in A. Thus B is a subalgebra of A
which is isomorphic to gl(n, K).

Let h (vesp. hy) be the canonical 2-form on A (resp. B). Then, by Lemma 3, h|B and
hy are conformal. Moreover, since B is isomorphic to gl(n, K), h; is non degenerate. Thus,
denote by AL the orthogonal complement of A with respect to h, we have BN A+ = {0}
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By Lemma 4, we obtain the following.

Proposition 2.  Let A = (g,¢) be a left symmetric algebra as above. Then Al isa
subalgebra of A of dimension < n satisfying BN A+ = {0}.

Let B be a proper ideal of A, and b its Lie algebra. By the definition of ¢, we have
b 2 &. Moreover, since BN B = {0} and 7(b) is ¢(&)-invariant, we have

dimB =nand b C €.

Therefore, by Lemmas 8 and 10, B is nilpotent. Thus we have r = 1 and (&) is a
commutative algebra on K"*! of 2nd kind.

Conversely, assume that (g, ) satisfies the conditions described as above. Then (g, ¢)
is admissible at a point @, by Theorem 3. Therefore, by Lemma 2, it is admissible at a
point P. Denote by A = (g,¢) a left symmetric algebra corresponding to an admissible
affine representation (g,¢) at P. Then 771(V}) is a left ideal of A contained in €. Thus it
is an ideal of A of dimension n (which is contained in the radical R(A) of A). This proves
the following.

Theorem 4. Let A = (g,¢) be a left symmetric algebra over @ corresponding to an
admissible affine representation (@,¢) at P of type (my,ma,... ,m;). If A has a proper
ideal B, then

(1) dimB =n,
(2) r=1,
(3) wo(€) is of 2nd kind.

Conversely, if (g,¢) is a linear representation satisfying the above conditions (2) and
(3), then it is admissible at P and the corresponding algebra A = (g, ¢) has a commutative
nilpotent ideal of dimension n.

Remark. Let A = (g,¢) be a left symmetric algebra over @ corresponding to an admis-
sible affine representation at P of type (my,mz,... ,m;). Then the radical R(A) of A is
non trivial if and only if r = 1.

Let (@,4) be an admissible affine representation in E of type (mi,ms,...,m,) with

r
my > mg > - > m,. Since F = HF(1])mJ is a relative invariant of (g, ¢) corresponding
j=1
to the infinitesimal character x = —(Tr¢), it is the polynomial for (g, ¢), by Lemma 2.
Denote by (@, ¢*) the contragradient representation of (@, ). Then (g, ¢*) is a linear
representation of g in E*, where

E* — ‘/'1* \_mb‘/'z* ‘\:B @‘/:+17
"/’1* — I(n(yilayﬂ'/ . ,ym)

denotes an affine space over K with a system y; = (yi1, iz, ... ,Yin) of affine coordinates.

Put

F* = F*(my)"™ F*(m1 +m2)"2 - F*(my + -+ m,)™"



46 Akira MIZUHARA

where F*(i) denotes the polynomial on E* defined by

F*(Z) :det(yl,yg,... ,yAl‘j... -,yn+1)-

Then it is clear that F* is a relative invariant of (g, ¢*) corresponding to the infinitesimal
character x* = —(Tr¢*).

Denote by € the domain in E defined by Q@ = {z € E; F(z) # 0}, and by ¥ a mapping
of  into E* defined by

= (57 5 (o) @ e )

for1<i<n+1,1<75<n. Put

50 = ((55) (5 7)) ) (2

for 1 <i,7<n+1,1<k<n.
By a direct computation, we obtain the following.

Lemma 13.  Non vanishing terms of (i;7,k) are as follows:
(1) (5,0)=—1, 145, 1<i,j<n,
(2) (5n+1,0)=1, 1<i<n,
B) (550) =1, 177, 1<4,5<n,
(4) (

4) (n+ljj)=1,1<j<n.

Denote by ¥(P)(j,k) the (j, k)-component of the point ¥(P) in E*.

Lemma 14.
(1) Inthe case thatr=n+1land m;=1 (1 <i<n+1),

U(P)j, k)= n, j=k 1<j<n,
1 7=n+11<k<n.

7

(2) In the case that my > 2.

, . _ n + 17 ] = mi,
\IJ(P)(]‘/ml) - { 0, otherwise.

In fact, in the first case, we have

n+1

U(P)(j. k) = (55, k).

=1

In the second case, we have

\I}(P)(]7m1) = Zm3(75~]7m1)
s=1
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Using them and the above Lemma, we obtain the desired results. O

In the case that m; > 2. By the above Lemma 14, we have F*(m1)(¥(P)) = 0, that
is, F*(U(P)) = 0. Therefore, by Lemma 8, the Hessian of the mapping ¥ vanishes at P.
Thus A = (@, ) is degenerate, by Lemmas 6 and 7.

Next consider the case that r = n+1. In this case, (g, ¢) is admissible at P, by Theorem
3. Moreover, by the above Lemma 14, we have

P (W(P) = (~1)"i(n + 1", 1<i <,

F(n+ 1D(B(P)) = (n + 1),
Hence we have F*(¥(P)) # 0. Since F* is a relative invariant of (g,¢*) corresponding to
x* = —(Tre*) and F*(¥(P)) # 0, the Hessian of ¥ does not vanish at P, by Lemma 8.

This implies that A = (@, ) is non degenerate, by Lemma 6.
Thus we obtain the following.

Theorem 5.  Let (g,¢) be a linear representation of type (my,ma, ... ,m,).

(1) Ifr = n+1, then it 1s admissible at a point P, and the corresponding algebra
A =(g,¢) is non degenerate.

(2) If1<r<n and (@,p) is admissible at some point, then the corresponding algebra
A =(@,¢) 1s degenerate.
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