GENERALIZED d-DERIVATIONS OF RINGS WITHOUT UNIT ELEMENTS

Naoki Hamaguchi

Received October 4, 2000; revised January 22, 2001

Abstract

We show the difference between the set of Brešar generalized derivations and the set of generalized derivations as K-modules over a commutative ring K. We also refer to the extendability of Brešar generalized derivations. Moreover, we apply the results to generalized Jordan derivations.

1 Introduction The notion of derivations has been generalized in several forms. One of them is defined by M. Brešar[1], which we call Brešar generalized derivations or generalized d-derivations. We denote by $\operatorname{BDer}(A, M)$ the set of Brešar generalized derivations from a K-algebra A to an A / K bimodule M over a commutative ring K. A number of authors have studied these derivations (e.g. [2] and [3]). In [3], A. Nakajima defined a notion of derivations generalized in another form, which we call generalized derivations. We denote the set of generalized derivations from A to M by $g \operatorname{Der}(A, M)$. If A has a unit element, then $g \operatorname{Der}(A, M)$ is in one-to-one correspondence with $\operatorname{BDer}(A, M)$; however, this relation does not hold when A does not have a unit element.

In this paper, we consider the difference between $g \operatorname{Der}(A, M)$ and $\operatorname{BDer}(A, M)$, and give a necessary and sufficient condition for $\operatorname{gDer}(A, M)$ to be isomorphic to $\operatorname{BDer}(A, M)$ as K-modules. Moreover, we apply the results to generalized Jordan derivations.

We also refer to the extendability of these generalized derivations to a ring having a unit element.

2 Preliminaries Let K be a commutative ring with a unit element, and A a K-algebra. Let M be an A / K-bimodule, that is, M is an A-bimodule and is a unitary K-bimodule such that, for any $a \in A, \alpha \in K$ and $m \in M, \alpha(a m)=(\alpha a) m=a(\alpha m),(m a) \alpha=$ $(m \alpha) a=m(a \alpha)$ and $\alpha m=m \alpha$. A K-homomorphism $d: A \longrightarrow M$ is called a K-derivation if $d(a b)=d(a) b+a d(b)$ for all $a, b \in A$. We denote the set of K-derivations from A to M by $\operatorname{Der}(A, M)$.

Let $d: A \longrightarrow M$ be a K-derivation, and $f: A \longrightarrow M$ a K-homomorphism. Then a pair (f, d) is said to be a Brešar generalized derivation or a generalized d-derivation if $f(a b)=f(a) b+a d(b)$ for all $a, b \in A$. Two Brešar generalized derivations $\left(f_{1}, d_{1}\right)$ and $\left(f_{2}, d_{2}\right)$ are equal if $f_{1}=f_{2}$ and $d_{1}=d_{2}$. We denote by $\operatorname{BDer}(A, M)$ the set of Brešar generalized derivations from A to M. If $\left(f_{1}, d_{1}\right)$ and (f_{2}, d_{2}) are Brešar generalized derivations and $\alpha \in K$, then $\left(f_{1}+f_{2}, d_{1}+d_{2}\right)$ and $\left(\alpha f_{1}, \alpha d_{1}\right)$ are also Brešar generalized derivations and hence, $\operatorname{BDer}(A, M)$ is a K-module.

Take $m \in M$, and let $f: A \longrightarrow M$ be a K-homomorphism. Then a pair (f, m) is said to be a generalized derivation if $f(a b)=f(a) b+a f(b)+a m b$ for all $a, b \in A$. Two generalized derivations $\left(f_{1}, m_{1}\right)$ and $\left(f_{2}, m_{2}\right)$ are equal if $f_{1}=f_{2}$ and $m_{1}=m_{2}$. We denote by $g \operatorname{Der}(A, M)$ the set of generalized derivations from A to M. If $\left(f_{1}, m_{1}\right)$ and $\left(f_{2}, m_{2}\right)$
are generalized derivations and $\alpha \in K$, then $\left(f_{1}+f_{2}, m_{1}+m_{2}\right)$ and $\left(\alpha f_{1}, \alpha m_{1}\right)$ are also generalized derivations and hence, $\mathrm{g} \operatorname{Der}(A, M)$ is also a K-module.

The following result is proved in [3]:
Proposition 2.1. (1) If $(f, m): A \longrightarrow M$ is a generalized derivation, then $f+m_{\ell}: A \longrightarrow$ M is a K-derivation, where $m_{\ell}: A \rightarrow M$ is a left multiplication, i.e. $m_{\ell}(a)=m a$.
(2) If $d: A \longrightarrow M$ is a K-derivation, then $\left(d+m_{\ell},-m\right): A \longrightarrow M$ is a generalized derivation for all $m \in M$.
(3) If $(f, m): A \longrightarrow M$ is a generalized derivation, then $\left(f, f+m_{\ell}\right): A \longrightarrow M$ is a Bres̆ar generalized derivation.
(4) If A has a unit element and $(f, d): A \longrightarrow M$ is a Brešar generalized derivation, then $(f,-f(1)): A \longrightarrow M$ is a generalized derivation.

From Proposition 2.1 (1), (2), we have the following split exact sequence of K-modules:

$$
0 \longrightarrow M \xrightarrow{\varphi_{1}} g \operatorname{Der}(A, M) \xrightarrow{\varphi_{2}} \operatorname{Der}(A, M) \longrightarrow 0,
$$

where $\varphi_{1}(m)=\left(m_{\ell},-m\right)$ and $\varphi_{2}(f, m)=f+m_{\ell}$. And from Proposition 2.1 (3), (4), we can handle generalized derivations as Brešar generalized derivations, and if A has a unit element, we can also handle Brešar generalized derivations as generalized derivations. Hence, our aim is to show the difference between generalized derivations and Brešar generalized derivations when A does not have a unit element.

In the following, K will denote a commutative ring with a unit element, A a K-algebra without the assumption of the existence of a unit element, and M an A / K-bimodule.

3 Properties of Brešar generalized derivations A K-homomorphism $f: A \longrightarrow M$ is said to be a left multiplier if $f(a b)=f(a) b$ for all $a, b \in A$. We denote by $\operatorname{Mul}(A, M)$ the set of left multipliers from A to M. If f and g are left multipliers and $\alpha \in K$, then $f+g$ and αf are also left multipliers and hence, $\operatorname{Mul}(A, M)$ is a K-module. Note that, for an arbitrary Brešar generalized derivation (f, d) from A to $M, f-d \in \operatorname{Mul}(A, M)$.

Next theorem gives us a necessary and sufficient condition for $\operatorname{BDer}(A, M)$ to be isomorphic to $\mathrm{g} \operatorname{Der}(A, M)$ as a K-module:

Theorem 3.1. Let $\Phi: \operatorname{gDer}(A, M) \longrightarrow \operatorname{BDer}(A, M)$ and $\Psi: M \longrightarrow \operatorname{Mul}(A, M)$ be K-homomorphisms such that $\Phi((f, m))=\left(f, f+m_{\ell}\right)$ and $\Psi(m)=m_{\ell}$. Then Φ is a K-isomorphism if and only if Ψ is a K-isomorphism.
Proof. Let $\psi_{1}: \operatorname{Mul}(A, M) \longrightarrow \operatorname{BDer}(A, M)$ and $\psi_{2}: \operatorname{BDer}(A, M) \longrightarrow \operatorname{Der}(A, M)$ be K-homomorphisms such that $\psi_{1}(g)=(g, 0)$ and $\psi_{2}((f, d))=d$. Let $\iota_{2}: \operatorname{Der}(A, M) \rightarrow$ $\operatorname{BDer}(A, M)$ be a K-homomorphism such that $\iota_{2}(d)=(d, d)$. Then $\psi_{2} \iota_{2}=i d_{\operatorname{Der}(A, M)}$, and hence, we have the following split exact sequence of K-modules:

$$
0 \longrightarrow \operatorname{Mul}(A, M) \xrightarrow{\psi_{1}} \operatorname{BDer}(A, M) \xrightarrow{\psi_{2}} \operatorname{Der}(A, M) \longrightarrow 0
$$

Then we have the following commutative diagram:

By using Five Lemma, we complete the proof of Theorem 3.1.

In Diagram 1, using Snake Lemma, we have the following exact sequence:

$$
0 \longrightarrow \operatorname{Ker} \Psi \longrightarrow \operatorname{Ker} \Phi \longrightarrow 0 \longrightarrow \operatorname{Coker} \Psi \longrightarrow \operatorname{Coker} \Phi \longrightarrow 0
$$

and hence, $\operatorname{Ker} \Psi \cong \operatorname{Ker} \Phi$ and $\operatorname{Coker} \Psi \cong \operatorname{Coker} \Phi$. In fact, we can also easily check that

$$
\begin{aligned}
\operatorname{Ker} \Psi & =\{m \in M \mid m A=0\} \\
\operatorname{Ker} \Phi & =\{(0, m) \in \operatorname{Der}(A, M) \mid m A=0\}
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Im} \Psi & =\left\{m_{\ell} \in \operatorname{Mul}(A, M) \mid m \in M\right\} \\
\operatorname{Im} \Phi & =\left\{(f, d) \in \operatorname{BDer}(A, M) \mid f-d=m_{\ell} \text { for some } m \in M\right\}
\end{aligned}
$$

The following two examples show that there exists a K-algebra A such that $\Psi: A \longrightarrow$ $\operatorname{Mul}(A, A)$ is not a K-isomorphism:

Example 1. Let $A=\left(\begin{array}{cc}K[x] & 0 \\ K[x] & 0\end{array}\right)$, where $K[x]$ is the polynomial ring in one variable x. Then A is a non-commutative K-algebra, which is a subring of $\mathrm{M}_{2}(K[x])$, and A does not have a unit element. Let $f_{i}: K[x] \longrightarrow K[x](i=1,2)$ be K-homomorphisms satisfying $f_{i}(a b)=f_{i}(a) b$ for all $a, b \in K[x]$ (i.e. f_{1} and f_{2} are left multipliers of $K[x]$). Then $f_{i}(a)=f_{i}(1) a$ since $1 \in K[x]$. We take f_{i} such that $f_{1}(1) \neq f_{2}(1)=1$. Let $F: A \longrightarrow A$ be a K-homomorphism defined by

$$
F\left(\begin{array}{cc}
a & 0 \\
b & 0
\end{array}\right)=\left(\begin{array}{cc}
f_{1}(a) & 0 \\
f_{2}(b) & 0
\end{array}\right)
$$

Put $P=\left(\begin{array}{ll}p_{1} & 0 \\ p_{2} & 0\end{array}\right), Q=\left(\begin{array}{ll}q_{1} & 0 \\ q_{2} & 0\end{array}\right) \in A$. Then

$$
\begin{aligned}
F(P Q) & =F\left(\left(\begin{array}{ll}
p_{1} & 0 \\
p_{2} & 0
\end{array}\right)\left(\begin{array}{ll}
q_{1} & 0 \\
q_{2} & 0
\end{array}\right)\right)=F\left(\left(\begin{array}{ll}
p_{1} q_{1} & 0 \\
p_{2} q_{1} & 0
\end{array}\right)\right) \\
& =\left(\begin{array}{ll}
f_{1}\left(p_{1} q_{1}\right) & 0 \\
f_{2}\left(p_{2} q_{1}\right) & 0
\end{array}\right)=\left(\begin{array}{ll}
f_{1}\left(p_{1}\right) q_{1} & 0 \\
f_{2}\left(p_{2}\right) q_{1} & 0
\end{array}\right) \\
& =\left(\begin{array}{ll}
f_{1}\left(p_{1}\right) & 0 \\
f_{2}\left(p_{2}\right) & 0
\end{array}\right)\left(\begin{array}{ll}
q_{1} & 0 \\
q_{2} & 0
\end{array}\right)=F(P) Q .
\end{aligned}
$$

This means that F is a left multiplier of A. Now we consider $\Psi: A \longrightarrow \operatorname{Mul}(A, A)$. We can easily check that $\operatorname{Ker} \Psi=0$, and hence, Ψ is a monomorphism. Assume that there exists $L=\left(\begin{array}{cc}a & 0 \\ b & 0\end{array}\right) \in A$ such that $F(P)=L P$ for all $P \in A$, then

$$
F(P)=\left(\begin{array}{cc}
a & 0 \\
b & 0
\end{array}\right)\left(\begin{array}{ll}
p_{1} & 0 \\
p_{2} & 0
\end{array}\right)=\left(\begin{array}{ll}
a p_{1} & 0 \\
b p_{1} & 0
\end{array}\right)
$$

hence, $f_{2}\left(p_{2}\right)=1 \cdot p_{2}=p_{2}=b p_{1}$ for all $p_{1}, p_{2} \in K[x]$, a contradiction. This means that $F \notin \operatorname{Im} \Psi$. Hence, Ψ is not an epimorphism.

Example 2. Let $A=\left(\begin{array}{cc}K[x] & K[x] \\ 0 & 0\end{array}\right)$. Then A is also a non-commutative K-algebra, and does not have a unit element. Let $F: A \longrightarrow A$ be a left multiplier. Put $P=$ $\left(\begin{array}{cc}p_{1} & p_{2} \\ 0 & 0\end{array}\right) \in A$. Then $P=\left(\begin{array}{cc}p_{1} & p_{2} \\ 0 & 0\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{cc}p_{1} & p_{2} \\ 0 & 0\end{array}\right)$ and hence, $F(P)=$ $F\left(\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\right) P$. This means that $\Psi: A \longrightarrow \operatorname{Mul}(A, A)$ is an epimorphism. However, since $\Psi\left(\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\right)=0$, we have $\operatorname{Ker} \Psi \neq 0$. Hence, Ψ is not a monomorphism.

4 Extensions of Brešar generalized derivations Let A be a K-algebra without a unit element. Let $\widehat{A}=\{(n, a) \mid n \in K, a \in A\}$ be a direct product $K \times A$ with multiplication $\left(n_{1}, a_{1}\right)\left(n_{2}, a_{2}\right)=\left(n_{1} n_{2}, n_{1} a_{2}+n_{2} a_{1}+a_{1} a_{2}\right)$ for $n_{1}, n_{2} \in K, a_{1}, a_{2} \in A$. Then \widehat{A} is a K-algebra with a unit element (1, 0$)$. Let M be an A / K-bimodule. Then M is an \widehat{A} / K-bimodule with $\left(n_{1}, a_{1}\right) \cdot m_{1}=n_{1} m_{1}+a_{1} m_{1}$ and $m_{2} \cdot\left(n_{2}, a_{2}\right)=n_{2} m_{2}+m_{2} a_{2}$ for $n_{i} \in K, a_{i} \in A$ and $m_{i} \in M$.

Let $d: A \longrightarrow M$ be a K-derivation. Then there exists a unique K-derivation $\tilde{d}: \widehat{A} \longrightarrow$ M such that its restriction $\left.\tilde{d}\right|_{A}$ is equal to d. This \tilde{d} is defined by $\tilde{d}(n, a)=d(a)$.

Now we consider the extendability of Brešar generalized derivations. An extension (F, D) of $(f, d) \in \operatorname{BDer}(A, M)$ means a Brešar generalized derivation (F, D) from \widehat{A} to M such that its restriction $\left.(F, D)\right|_{A}$ is equal to (f, d), where $D \in \operatorname{Der}(\widehat{A}, M)$ and $\left.D\right|_{A}=d \in \operatorname{Der}(A, M)$.
Theorem 4.1. Let A be a K-algebra, M an A / K-bimodule and \widehat{A} a K-algebra defined as above. Let (f, d) be a Brešar generalized derivation from A to M. Then the following conditions are equivalent:
(1) A Brešar generalized derivation (f, d) from A to M can be extended to a Brešar generalized derivation from \widehat{A} to M.
(2) A left multiplier $f-d$ from A to M can be extended to a left multiplier from \widehat{A} to M.
(3) There exists an element $m \in M$ such that $f-d=m_{\ell}$.

Proof. (1) $\Rightarrow(2): \operatorname{For}(f, d) \in \operatorname{BDer}(A, M)$, there exists its extension $(F, D) \in$ $\operatorname{BDer}(\widehat{A}, M)$. Then $F-D \in \operatorname{Mul}(\widehat{A}, M)$ and we can easily check that $\left.(F-D)\right|_{A}=f-d$.
$(2) \Rightarrow(3):$ For $f-d \in \operatorname{Mul}(A, M)$, there exists its extension $G \in \operatorname{Mul}(\widehat{A}, M)$. Then, for all $a \in A$,

$$
(f-d)(a)=G((0, a))=G((1,0)) \cdot(0, a)=G((1,0)) a .
$$

By putting $m=G((1,0)) \in M$, the result follows.
$(3) \Rightarrow(1):$ Let $D \in \operatorname{Der}(\widehat{A}, M)$ be a unique extension of $d \in \operatorname{Der}(A, M)$. Let $F: \widehat{A} \longrightarrow M$ be a K-homomorphism defined by $F((n, a))=n m+f(a)$ for all $(n, a) \in \widehat{A}$. Then

$$
\begin{aligned}
& F\left(\left(n_{1}, a_{1}\right)\left(n_{2}, a_{2}\right)\right) \\
& =n_{1} n_{2} m+n_{1} f\left(a_{2}\right)+n_{2} f\left(a_{1}\right)+f\left(a_{1}\right) a_{2}+a_{1} d\left(a_{2}\right)+n_{1} d\left(a_{2}\right)-n_{1} d\left(a_{2}\right) \\
& =n_{2}\left(n_{1} m+f\left(a_{1}\right)\right)+n_{1}(f-d)\left(a_{2}\right)+f\left(a_{1}\right) a_{2}+a_{1} d\left(a_{2}\right)+n_{1} d\left(a_{2}\right) \\
& =n_{2}\left(n_{1} m+f\left(a_{1}\right)\right)+n_{1} m a_{2}+f\left(a_{1}\right) a_{2}+n_{1} D\left(\left(0, a_{2}\right)\right)+a_{1} D\left(\left(0, a_{2}\right)\right) \\
& =\left(n_{1} m+f\left(a_{1}\right)\right) \cdot\left(n_{2}, a_{2}\right)+\left(n_{1}, a_{1}\right) \cdot D\left(\left(0, a_{2}\right)\right) \\
& =F\left(\left(n_{1}, a_{1}\right)\right) \cdot\left(n_{2}, a_{2}\right)+\left(n_{1}, a_{1}\right) \cdot D\left(\left(n_{2}, a_{2}\right)\right) .
\end{aligned}
$$

Hence, $(F, D) \in \operatorname{BDer}(\widehat{A}, M)$ and we can easily see that $\left.(F, D)\right|_{A}=(f, d)$.
Remark. When the equivalent condition of Theorem 4.1 holds, we can handle a Brešar generalized derivation (f, d) as a generalized derivation $(f,-m)$ even if A does not contain a unit element.

5 Jordan derivations In this section, we treat generalized Jordan derivations (cf., [4]). A K-homomorphism $J: A \longrightarrow M$ is called a Jordan derivation if $J\left(a^{2}\right)=J(a) a+a J(a)$ for all $a \in A$. We denote the set of Jordan derivations from A to M by $\operatorname{JDer}(A, M)$. Firstly, we generalize the notion of Brešar's generalized derivation to Jordan derivation.

Let $J: A \rightarrow M$ be a Jordan derivation, and $f: A \longrightarrow M$ a K-homomorphism. A pair (f, J) is called a generalized J-Jordan derivation (or a Bres̆ar generalized Jordan derivation) if, for any $a \in A$,

$$
f\left(a^{2}\right)=f(a) a+a J(a)
$$

and a pair $(f, m)(m \in M)$ is called a generalized Jordan derivation if

$$
f\left(a^{2}\right)=f(a) a+a f(a)+a m a
$$

We denote by $\operatorname{BJDer}(A, M)$ the set of generalized J-Jordan derivations for all Jordan derivations J and by $g \operatorname{JDer}(A, M)$ the set of generalized Jordan derivations. As usual, $\operatorname{BJDer}(A, M)$ and $\operatorname{g} \operatorname{JDer}(A, M)$ are K-modules and $\operatorname{BDer}(A, M)(r \operatorname{cesp} \cdot g \operatorname{Der}(A, M))$ is a K-submodule of $\operatorname{BJDer}(A, M)($ resp. $\operatorname{g} \operatorname{JDer}(A, M))$.

A K-homomorphism $f: A \longrightarrow M$ is called a Jordan left multiplier if $f\left(a^{2}\right)=f(a) a$ for any $a \in A$. Left multipliers and left multiplications are also Jordan left multipliers. We denote by $\operatorname{JMul}(A, M)$ the set of Jordan left multipliers and it is also a K-module. Moreover, $\operatorname{Mul}(A, M)$ is a K-submodule of $\operatorname{JMul}(A, M)$. Under these notations, we have the results similar to those in $\S 3$. Since the proofs are very similar, we omit them.

Theorem 5.1. Let A be a K-algebra and M an A / K-bimodule. Then the following diagram is commutative and rows are split as K-modules:

where $\varphi_{1}(m)=\left(m_{\ell},-m\right), \varphi_{2}((f, m))=f+m_{\ell}, \psi_{1}(g)=(g, 0), \psi_{2}((f, J))=J$, $\Psi(m)=m_{\ell}, \Phi((f, m))=\left(f, f+m_{\ell}\right)$. Moreover, $\operatorname{Ker} \Phi \cong \operatorname{Ker} \Psi=\{m \in M \mid m A=0\}$.

Corollary 5.2. $\Phi: \mathrm{g} \operatorname{JDer}(A, M) \longrightarrow \operatorname{BJDer}(A, M)$ is a K-isomorphism if and only if $\Psi: M \longrightarrow \operatorname{JMul}(A, M)$ is a K-isomorphism.

Moreover, we have the following:
Theorem 5.3. Let A be a K-algebra without a unit element, M an A / K-bimodule and \widehat{A} a K-algebra defined as in $\S 4$. Let (f, J) be a generalized J-Jordan derivation from A to M. Then the following conditions are equivalent:
(1) A generalized J-Jordan derivation (f, J) from A to M can be extended to a generalized \widehat{J}-Jordan derivation from \widehat{A} to M, where $\widehat{J}: \widehat{A} \longrightarrow M$ is a unique Jordan derivation such that $\left.\widehat{J}\right|_{A}=J$.
(2) A Jordan left multiplier $f-J$ from A to M can be extended to a Jordan left multiplier from \widehat{A} to M.
(3) There exists an element $m \in M$ such that $f-J=m_{\ell}$.

Proof. (1) $\Rightarrow(2)$ and $(3) \Rightarrow(1)$ are similar to those in the proof of Theorem 4.1. So it remains to prove $(2) \Rightarrow(3)$. For $f-J \in \operatorname{JMul}(A, M)$, there exists its extension $G \in$ $\operatorname{JMul}(\widehat{A}, M)$. By the property of Jordan left multipliers, we have

$$
G\left(\left(n_{1}, a_{1}\right)\left(n_{2}, a_{2}\right)+\left(n_{2}, a_{2}\right)\left(n_{1}, a_{1}\right)\right)=G\left(\left(n_{1}, a_{1}\right)\right) \cdot\left(n_{2}, a_{2}\right)+G\left(\left(n_{2}, a_{2}\right)\right) \cdot\left(n_{1}, a_{1}\right)
$$

for all $\left(n_{1}, a_{1}\right),\left(n_{2}, a_{2}\right) \in \widehat{A}$. Then we get

$$
\begin{aligned}
& G((0, a))+G((0, a)) \\
& =G((0, a)(1,0)+(1,0)(0, a)) \\
& =G((0, a)) \cdot(1,0)+G((1,0)) \cdot(0, a) \\
& =G((0, a))+G((1,0)) a .
\end{aligned}
$$

Hence, we have, for all $a \in A$,

$$
(f-J)(a)=G((0, a))=G((1,0)) a .
$$

By putting $m=G((1,0)) \in M$, the result follows.

References

[1] M. Brešar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J. 33 (1991), 89-93.
[2] B. Hvala, Generalized derivations in rings, Comm. Algebra 26 (1998), 1147-1166.
[3] A. Nakajima, On categorical properties of generalized derivations, Scientiae Mathematicae 2 No. 3 (1999), 345-352.
[4] A. Nakajima, Generalized Jordan derivations, Proceedings of the Conference of Ring Theory in Korea, to appear.

Department of Mathematics, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, JAPAN

