ON A NECESSARY CONDITION OF LOCAL INTEGRABILITY FOR COMPLEX VECTOR FIELD IN \mathbb{R}^2

HARUKI NINOMIYA

Received November 12, 1999; revised December 3, 1999

ABSTRACT. Let X be a non-solvable C^{∞} complex vector field in \mathbb{R}^2 satisfying certain conditions. A necessary condition for the equation Xu = 0 to have a solution u such that $du \neq 0$ near the origin and one for the Xu = 0 to admit a solution u such that $du \not\equiv 0$ in any sufficiently small neighborhood of the origin are given. These are expressed by making use of an estimate.

1. INTRODUCTION

Let X_n be a nowhere-zero C^{∞} complex vector field defined near a point P in \mathbb{R}^n . We shall say that X_n is locally integrable at P if there exist a neighborhood Ω of P and functions $u_i(i = 1, 2, \dots, n-1)$ satisfying $X_n u_i = 0$ in Ω such that $du_1 \wedge du_2 \wedge \dots \wedge du_{n-1}(P) \neq 0$ (see [13] and [14]).

The importance of the study of the local integrability originated from the papers of Lewy ([2] and [3]), where he found a holomorphic extension property of the solutions of some kind of homogeneous equations $X_n u = 0(n = 3, 4)$ and pioneered a new type of the concept of holomorphic hull.

We know the following facts: X_n is locally integrable at P if X_n is real-analytic or locally solvable at P(see [14], for instance); there exists a X_2 which has the property that the $X_2u = 0$ admits no non-trivial solutions in any neighborhood of the origin(Nirenberg [9]; see also [5]).

It is an open problem to obtain a necessary and sufficient condition for the local integrability of X_n that is non-analytic and not locally solvable.

In this paper, we investigate the case where n = 2.

We know that the equation $X_2 u = 0$ near P is transformed into that of the form

$$Lu \equiv (\partial_t + ia(t, x)\partial_x)u = 0$$

near the origin in \mathbb{R}^2 , where a(t, x) is a real-valued C^{∞} function.

Now the following theorems are proved:

Theorem 1([12]). Assume that a(0,0) = 0 and $a_t(0,0) \neq 0$. L is locally integrable at the origin if and only if there is a change of local coordinates such that L becomes a (non-vanishing C^{∞} function) multiple of the Mizohata operator $\partial_{x_1} + ix_1 \partial_{x_2}$.

¹⁹⁹¹ Mathematics Subject Classification. Primary 35A07; Secondary 35Fxx, 32F40.

Key Words and Phrases.Local integrability, complex vector field, non-solvable operator.

HARUKI NINOMIYA

Theorem 2([10]). Assume that L satisfies a(0,0) = 0 and $\partial_t a(0,0) \neq 0$. Then there exist C^{∞} functions u^+ , which is defined in $t \geq 0$, and u^- , which is defined in $t \leq 0$, such that $u^{\pm}(0,x)$ are real, $\partial_x u^{\pm}(0,x) > 0$, and $Lu^{\pm} = 0$. L is locally integrable at the origin if and only if the function $u^{+-1} \circ u^-(0,x)$ is real analytic at the origin.

Theorem 3([8]). Assume that $a(t,x) = (t^{2d})'b(t,x)$, where d is a positive integer and b(t,x) a positive C^{∞} function. Then L is locally integrable at the origin if and only if there exist an element $(Z_1(t,x), Z_2(t,x), T_0) \in \mathfrak{S}$ and a function f which is holomorphic in $\mathfrak{J} = \{z \in \mathbb{C}; z = Z_2(0,x), x \in (-T_0, T_0)\}$ and satisfies $Z_1(0,x) = f(Z_2(0,x))$. (See [8] on the meaning of the symbol \mathfrak{S} .)

We can say that the above theorems are qualitative ones. On the other hand, in [6](see also [7]), we tried to obtain a quantitative condition to present a necessary condition(Theorem 3 in [6]) that is expressed by making use of an estimate, under the following assumption:

(i) a(0, x) vanishes identically.

(ii) There is a neighborhood ω of the origin such that

$$t(a(t,x) - a(-t,x)) > 0 \quad \text{in} \quad \{t \neq 0\} \cap \omega$$

and

$$a(t,x) + a(-t,x) \ge 0$$
 in ω .

In this article, we aim at giving a necessary condition for the local integrability and one^{*} for the equation Lu = 0 to have a non-trivial solution that are also expressed by making use of estimates, under the following assumption: (a, 1), $a_{i}(0, 0) > 0$

(a.1) $a_t(0,0) > 0.$

(a.2) There is a neighborhood ω_0 of the origin such that

$$ta(t,x) > 0, \quad ta_x(t,x) \ge 0 \quad \text{in} \quad \{t \ne 0\} \cap \omega_0.$$

Those estimates are shown in Theorems I and II stated in the next section.

2. Results

Our main results are stated as follows:

Theorem I. Assume:

(a.1) $a_t(0,0) > 0$. (a.2) There is a neighborhood ω_0 of the origin such that

$$ta(t,x) > 0, \quad ta_x(t,x) \ge 0 \quad in \quad \{t \neq 0\} \cap \omega_0.$$

If Lu = 0 has a C^{∞} solution u near the origin such that $u_x(0,0) \neq 0$, then there must exist positive constants C and G satisfying that, for every positive constant ϵ and for every positive constant ν larger than G

$$\iint_{\left\{(t,x); \ 0 \le t < \nu^{-\epsilon}, \ |x| < \nu^{-\epsilon}\right\}} a_x(t,x) \, dt dx \le C \nu^{-1-\epsilon}$$

^{*}If X_n is locally integrable, then the equation $X_n u = 0$ trivially has a non-trivial solution. But we remark that the converse is not necessarily true: by virtue of Hölmander([1], Theorem 8.9.2), we see that there exists a X_2 having the property that the equation $X_2 u = 0$ has a non-trivial solution near the origin and X_2 is not locally integrable at the origin.

Theorem II. Assume:

(a.1) $a_t(0,0) > 0$. (a.2) There is a neighborhood ω_0 of the origin such that

$$ta(t,x) > 0, \quad ta_x(t,x) \ge 0 \quad in \quad \{t \neq 0\} \cap \omega_0.$$

If Lu = 0 has a C^{∞} solution u in a neighborhood of the origin such that $du \neq 0$ in any sufficiently small neighborhood of the origin, then there must exist a sequence of positive numbers $\{x_m\}(m = 1, 2, \cdots)$ which tends to 0 as $m \to \infty$ having the following property:

There exist positive constants C_m and G_m satisfying that, for every positive constant ϵ and for every positive constant ν larger than G_m

$$\iint_{\left\{(t,x); \ 0 \le t < \nu^{-\epsilon}, |x-x_m| < \nu^{-\epsilon}\right\}} a_x(t,x) \, dt \, dx \le C_m \, \nu^{-1-\epsilon}.$$

Let us give an example:

Example.

Set:

$$a_n = \frac{1}{n},$$

$$b_n = a_{n+1} + \frac{a_n - a_{n+1}}{2},$$

$$U_n = \left\{ (t, x); b_n - \frac{a_n - a_{n+1}}{2^2} \le t \le b_n + \frac{a_n - a_{n+1}}{2^2}, \ 0 \le x \le 1 \right\}$$

1

 and

$$V_n = \left\{ (t, x); b_n - \frac{a_n - a_{n+1}}{2^3} \le t \le b_n + \frac{a_n - a_{n+1}}{2^3}, \ 0 \le x \le 1 \right\}$$

where $n \in \mathbb{N}$. Let $f_n(t, x)$ be the C^{∞} function having the following properties: (i) $0 \leq f_n(t, x) \leq a_{n+2} - a_{n+3}$.

(ii) $f_n(t, x)$ vanishes outside of U_n and equals $a_{n+2} - a_{n+3}$ in V_n . We define the C_o^{∞} function $\alpha(t, x)$ as follows:

(iii) $\alpha(t, x) = f_n(t, x)$ in U_n . (iv) $\alpha(t, x) = 0$ in $\mathbb{R}^2_{t,x} \setminus \bigcup_{n=1}^{\infty} U_n$.

We have the following

Collorary. The equation $\left\{\partial_t + it\left(1 + \int_0^x \alpha(t,s) \, ds\right)\partial_x\right\}u = 0$ admits no non-trivial C^{∞} solutions in any neighborhood of the origin.

3. PROOF OF THEOREM I

Suppose Lu = 0 holds in a neighborhood Ω of the origin. Then we may assume that ta(t, x) > 0 and $ta_x(t, x) \ge 0$ in $\Omega \setminus \{t = 0\}$. Let us set $\operatorname{Re} u_x(0, 0) = \alpha$ and $\operatorname{Im} u_x(0, 0) = \beta$. Multiplying u(t, x) by an appropriate complex number $\exp(i\theta)$, where θ is real, we can assume that $\alpha > 0$, $\beta < 0$, and $\alpha + \beta \neq 0$. Further let us set $\operatorname{Re} u_{xx}(0, 0) = \gamma$ and $\operatorname{Im} u_{xx}(0, 0) = \delta$.

HARUKI NINOMIYA

For a positive number ν we define a complex number $\xi + i\eta$ in the following way: Case 1 $\alpha + \beta > 0$. $\xi = \nu, \eta = 0$. Case 2 $\alpha + \beta < 0$. $\xi = \nu, \eta = \nu$.

We define the function w(t, x) by

$$w(t,x) = exp\{(\xi + i\eta)u(t,x)\}/exp\{(\xi + i\eta)u(0,0)\}$$

It trivially follows that

$$Lw(t,x) = 0.$$

$$Lu_x(t,x) = -ia_x u_x(t,x).$$

Hereafter let us set:

$$\begin{aligned} \alpha_1 &= \operatorname{Re} w_x(0,0), \beta_1 = \operatorname{Im} w_x(0,0), \gamma_1 = \operatorname{Re} w_{xx}(0,0), \delta_1 = \operatorname{Im} w_{xx}(0,0), \\ c &= \operatorname{Im} w_x(0,0) \operatorname{Re} w_{xx}(0,0) - \operatorname{Re} w_x(0,0) \operatorname{Im} w_{xx}(0,0), \end{aligned}$$

and

$$d = \frac{\frac{a_x^2(0,0)}{a_t(0,0)} - \frac{\operatorname{Im} w_x(0,0) \operatorname{Re} w_{xx}(0,0) - \operatorname{Re} w_x(0,0) \operatorname{Im} w_{xx}(0,0)}{\left(\operatorname{Re} w_x(0,0)\right)^2 + \left(\operatorname{Im} w_x(0,0)\right)^2}}{\operatorname{Im} w_x(0,0)}.$$

Then we have the following:

Lemma 5. There exists a positive constant G_0 such that, for every ν satisfying $\nu \geq G_0$, it holds that

$$\alpha_1 > 0, \ \beta_1 < 0, \ \gamma_1 > 0, \ \delta_1 < 0, \ c > 0, \quad and \quad d \ge \frac{3}{4}.$$

Proof. We have

$$\alpha_1 = \alpha \xi - \beta \eta, \beta_1 = \alpha \eta + \beta \xi,$$

$$\gamma_1 = \alpha_1^2 - \beta_1^2 + \gamma \xi - \delta \eta = (\alpha^2 - \beta^2)(\xi^2 - \eta^2) - 4\alpha\beta\xi\eta + \gamma\xi - \delta\eta,$$

 and

$$\delta_1 = 2\alpha_1\beta_1 + \gamma\eta + \delta\xi = 2(\alpha^2 - \beta^2)\xi\eta + 2\alpha\beta(\xi^2 - \eta^2) + \gamma\eta + \delta\xi.$$

The symbols $K_l(\gamma, \delta)(l = 1, \dots, 8)$ which will appear in the below denote certain polynomials, whose coefficients may depend on α or β , with respect to γ and δ . Case 1. We have:

$$\alpha_1 = \alpha \nu, \ \beta_1 = \beta \nu$$

$$\gamma_1 = (\alpha - \beta)(\alpha + \beta)\nu^2 + K_1(\gamma, \delta)\nu, \\ \delta_1 = 2\alpha\beta\nu^2 + K_2(\gamma, \delta)\nu$$

$$c = -\beta(\alpha^2 + \beta^2)\nu^3 + K_3(\gamma, \delta)\nu^2$$

$$d = \frac{a_x^2(0, 0)}{\beta\nu a_t(0, 0)} + 1 + \frac{K_4(\gamma, \delta)}{\nu}.$$

Case 2. We have:

$$\alpha_1 = (\alpha - \beta)\nu, \ \beta_1 = (\alpha + \beta)\nu$$
$$\gamma_1 = -4\alpha\beta\nu^2 + K_5(\gamma, \delta)\nu, \\ \delta_1 = 2(\alpha - \beta)(\alpha + \beta)\nu^2 + K_6(\gamma, \delta)\nu$$

$$c = -2(\alpha + \beta)(\alpha^{2} + \beta^{2})\nu^{3} + K_{7}(\gamma, \delta)\nu^{2}$$
$$d = \frac{a_{x}^{2}(0, 0)}{(\alpha + \beta)\nu a_{t}(0, 0)} + 1 + \frac{K_{8}(\gamma, \delta)}{\nu}.$$

Thus we find that there exists a positive constant G_0 such that, in either case of the above it holds that

$$\alpha_1 > 0, \ \beta_1 < 0, \ \gamma_1 > 0, \ \delta_1 < 0, \ c > 0 \ \text{ and } \ d \ge \frac{3}{4}$$

for every ν satisfying $\nu \geq G_0$. \Box

Hereafter let $\nu \geq G_0$. Then by Lemma 5 we can take a neighborhood $\Omega_0(G_0)$ of the origin to suppose that the following hold: for every ν such that $\nu \geq G_0$,

and

in $\Omega_0(G_0)$.

Here we remark the following:

The function $i \log u_x(t, x)$ is defined as a single-valued function in $\Omega_0(G_0)$. Since $\alpha_1 > 0$ and $\beta_1 < 0$, we can choose a positive constant b satisfying

We set

$$W(t,x) = w(t,x) + 1 + ib.$$

We note that

$$W_x(t,x) = w_x(t,x)$$
 and $W_t(t,x) = w_t(t,x)$.

Now, we have the following

Lemma 6. There exists a neighborhood ω_1 of the origin satisfying

$$\sup_{\omega_1} |W(t,x)| = |W(0,0)| = \frac{2\sqrt{\alpha_1^2 + \beta_1^2}}{|\beta_1|}.$$

Proof. Since $W_x(t,x) = w_x(t,x)$, $\operatorname{Re} W(0,0) = 2$ and $\operatorname{Im} W(0,0) = b > 0$, we can take a sufficiently small neighborhood $\omega_1 (\subseteq \Omega_0(G_0))$ of the origin such that the following hold:

(3.5.2)
$$\operatorname{Im} W(t, x) > 0.$$

(3.5.4)
$$\operatorname{Im} W_x(t,x) < \frac{\beta_1}{2}$$

Here we remark that the ω_1 is dependent of G_0 but can be chosen independently of ν . Now we set:

$$f(t,x) = \frac{1}{2} |W(t,x)|^2.$$

Since $W(0,0) = 2 + ib = 2(1 - \frac{\alpha_1}{\beta_1}i)$, we have only to prove the following:

(1) $f_t(t,x) = f_x(t,x) = 0$ in ω_1 if and only if (t,x) = (0,0). (2) $f_{tt}(0,0) < 0$ and $f_{tx}(0,0)^2 - f_{tt}(0,0)f_{xx}(0,0) < 0$.

Let us set $\operatorname{Re} W(t,x) = A(t,x)$ and $\operatorname{Im} W(t,x) = B(t,x)$. Since LW(t,x) = 0, we have

(3.6)
$$A_t(t,x) = a(t,x)B_x(t,x), B_t(t,x) = -a(t,x)A_x(t,x)$$

First, (1) is proved in the following manner:

Let $f_t(t,x) = f_x(t,x) = 0$ in ω_1 . From (3.6), this implies

$$a(t,x)\{A(t,x)B_x(t,x) - B(t,x)A_x(t,x)\} = 0, A(t,x)A_x(t,x) + B(t,x)B_x(t,x) = 0.$$

Suppose $t \neq 0$. Since $a(t, x) \neq 0$ for $t \neq 0$ by our assumption (a.2), we have

$$A(t,x)B_x(t,x) - B(t,x)A_x(t,x) = 0,$$

$$A(t,x)A_x(t,x) + B(t,x)B_x(t,x) = 0.$$

Since $A_x(t, x)^2 + B_x(t, x)^2 \neq 0$ by (3.5.3), and so A(t, x) = B(t, x) = 0. This is contradictory to (3.5.1). Therefore t must be 0. Then it follows that

$$A(0, x)A_x(0, x) + B(0, x)B_x(0, x) = 0.$$

Since there exist real numbers ξ_i (j = 1, 2, 3, 4) such that, $(0, \xi_i) \in \omega_1$ and

$$\begin{aligned} A(0,x) &= A(0,0) + A_x(0,0)x + A_{xx}(0,\xi_1)x^2 \\ A_x(0,x) &= A_x(0,0) + A_{xx}(0,\xi_2)x \\ B(0,x) &= B(0,0) + B_x(0,0)x + B_{xx}(0,\xi_3)x^2 \\ B_x(0,x) &= B_x(0,0) + B_{xx}(0,\xi_4)x, \end{aligned}$$

we have the following:

$$\begin{split} &A(0,x)A_x(0,x) + B(0,x)B_x(0,x) = \\ &A(0,0)A_x(0,0) + \{A(0,0)A_{xx}(0,\xi_2) + A_x(0,0)^2\}x + \\ &A_x(0,0)\Big(A_{xx}(0,\xi_1) + A_{xx}(0,\xi_2)\Big)x^2 + \\ &A_{xx}(0,\xi_1)A_{xx}(0,\xi_2)x^3 + \\ &B(0,0)B_x(0,0) + \{B(0,0)B_{xx}(0,\xi_4) + B_{xx}(0,0)^2\}x + \\ &B_x(0,0)\Big(B_{xx}(0,\xi_3) + B_{xx}(0,\xi_4)\Big)x^2 + \\ &B_{xx}(0,\xi_3)B_{xx}(0,\xi_4)x^3 = \end{split}$$

$$\begin{split} &2\alpha_1 + \left\{ 2A_{xx}(0,\xi_2) + \alpha_1^2 \right\} x + \alpha_1 \Big(A_{xx}(0,\xi_1) + A_{xx}(0,\xi_2) \Big) x^2 + A_{xx}(0,\xi_1) A_{xx}(0,\xi_2) x^3 + \\ &b\beta_1 + \left\{ bB_{xx}(0,\xi_4) + \beta_1^2 \right\} x + \beta_1 \Big(B_{xx}(0,\xi_3) + B_{xx}(0,\xi_4) \Big) x^2 + B_{xx}(0,\xi_3) B_{xx}(0,\xi_4) x^3 = \\ & x \left\{ 2A_{xx}(0,\xi_2) + \alpha_1^2 + bB_{xx}(0,\xi_4) + \beta_1^2 + \\ & \left\{ \alpha_1 \Big(A_{xx}(0,\xi_1) + A_{xx}(0,\xi_2) \Big) + \beta_1 \Big(B_{xx}(0,\xi_3) + B_{xx}(0,\xi_4) \Big) \Big\} x + \\ & \left(A_{xx}(0,\xi_1) A_{xx}(0,\xi_2) + B_{xx}(0,\xi_3) B_{xx}(0,\xi_4) \Big) x^2 \right\} \end{split}$$

(by (3.4)). Therefore we have:

$$(3.7) \qquad x \left\{ 2A_{xx}(0,\xi_2) + \alpha_1^2 + bB_{xx}(0,\xi_4) + \beta_1^2 + \left\{ \alpha_1 \left(A_{xx}(0,\xi_1) + A_{xx}(0,\xi_2) \right) + \beta_1 \left(B_{xx}(0,\xi_3) + B_{xx}(0,\xi_4) \right) \right\} x + \left(A_{xx}(0,\xi_1) A_{xx}(0,\xi_2) + B_{xx}(0,\xi_3) B_{xx}(0,\xi_4) \right) x^2 \right\} = 0.$$

Now we have:

$$2A_{xx}(0,0) + \alpha_1^2 + bB_{xx}(0,0) + \beta_1^2 < 0.$$

Proof. From (3.4), $b = -\frac{2\alpha_1}{\beta_1}$. Hence

$$\begin{split} &2A_{xx}(0,0) + \alpha_1^2 + bB_{xx}(0,0) + \beta_1^2 = \\ &\alpha_1^2 + \beta_1^2 + 2\left\{\frac{\beta_1 A_{xx}(0,0) - \alpha_1 B_{xx}(0,0)}{\beta_1}\right\} = \alpha_1^2 + \beta_1^2 + \frac{2c}{\beta_1} = \\ &2(\alpha_1^2 + \beta_1^2)\left\{\frac{\frac{a_x(0,0)^2}{a_t(0,0)}}{\beta_1} + \frac{1}{2} - d\right\} < 0 \end{split}$$

by Lemma 5 and our assumption (a.1). \Box

Thus we find that (3.7) implies that x = 0 and hence $f_t(t, x) = f_x(t, x) = 0$ in ω_1 implies (x, t) = (0, 0). On the other hand it holds that $f_t(0, 0) = f_x(0, 0) = 0$ by (3.4). Therefore, we have proved: $f_t(t, x) = f_x(t, x) = 0$ in $\omega_1 \iff (x, t) = (0, 0)$.

Next, (2) is proved in the following way:

Using (3.6), we have

$$f_{tx} = A_t A_x + (AB_x - BA_x) a_x(t, x) + (AB_{xx} - BA_{xx}) a(t, x),$$

$$f_{tt} = A_t^2 + B_t^2 + (AB_x - BA_x) a_t(t, x) + (AB_{tx} - BA_{tx}) a(t, x),$$

$$f_{xx} = A_x^2 + B_x^2 + AA_{xx} + BB_{xx}.$$

Hence, we have

$$f_{tt}(0,0) = (2\beta_1 - b\alpha_1)a_t(0,0)$$

and

818

$$f_{tx}(0,0)^2 - f_{tt}(0,0)f_{xx}(0,0) = (2\beta_1 - b\alpha_1)^2 a_x(0,0)^2 - (2\beta_1 - b\alpha_1)(\alpha_1^2 + \beta_1^2 + 2\gamma_1 + b\delta_1)a_t(0,0) = (2\beta_1 - b\alpha_1)^2 a_t(0,0) \Big\{ \frac{a_x(0,0)^2}{a_t(0,0)} - \frac{\alpha_1^2 + \beta_1^2 + 2\gamma_1 + b\delta_1}{2\beta_1 - b\alpha_1} \Big\}.$$

Substituting $b = -\frac{2\alpha_1}{\beta_1}$, we have

$$2\beta_1 - b\alpha_1 = \frac{2\left(\alpha_1^2 + \beta_1^2\right)}{\beta_1}.$$

Hence we have

$$\begin{aligned} \frac{a_x(0,0)^2}{a_t(0,0)} &- \frac{\alpha_1^2 + \beta_1^2 + 2\gamma_1 + b\delta_1}{2\beta_1 - b\alpha_1} = \\ \frac{a_x(0,0)^2}{a_t(0,0)} &- \frac{\beta_1\gamma_1 - \alpha_1\delta_1}{\alpha_1^2 + \beta_1^2} - \frac{\beta_1}{2} = \beta_1 d - \frac{\beta_1}{2} = \beta_1 \left(d - \frac{1}{2}\right). \end{aligned}$$

Therefore by Lemma 5, we see: $f_{tt}(0,0) < 0, \; f_{tx}(0,0)^2 - f_{tt}(0,0)f_{xx}(0,0) < 0.$

Now let us set $U(t,x) = i \log u_x(t,x)$ (We have remarked that U(t,x) is a single-valued function in ω_1). From (3.1'), we see:

(3.8)
$$LU(t,x) = a_x(t,x) \quad \text{in} \quad \omega_1.$$

Let ϵ be an arbitrary positive number. Taking ν large such that $\{(t,x); 0 \leq t < \nu^{-\epsilon}, |x| < \nu^{-\epsilon}\} \subset \omega_1$, we set $r = \nu^{-\epsilon}$ and $D(r) = \{(t,x); 0 \leq t < r, |x| < r\}$. Then we obtain the following

Lemma 7.

$$-\iint_{D(r)} a_x(t,x)W_x(t,x) dt dx =$$
$$\int_{\partial D(r)} W(t,x)U_t(t,x) dt + W(t,x)U_x(t,x) dx.$$

Proof. From (3.8), we have

(3.9)
$$\iint_{D(r)} -W_x(t,x) \Big\{ U_t(t,x) + ia(t,x)U_x(t,x) \Big\} dt dx = \\ \iint_{D(r)} -a_x(t,x)W_x(t,x) dt dx.$$

Since $W_t(t,x) = -ia(t,x)W_x(t,x)$, the left-hand side of (3.9) =

$$\iint_{D(r)} - \left\{ W_x(t,x)U_t(t,x) - W_t(t,x)U_x(t,x) \right\} dt dx =$$

$$\begin{split} & \iint_{D(r)} d\Big\{W(t,x)dU(t,x)\Big\} = \\ & \int_{\partial D(r)} W(t,x)U_t(t,x)\,dt + W(t,x)U_x(t,x)\,dx. \quad \Box \end{split}$$

From Lemma 7, we thus have:

(3.10)
$$\left| \iint_{D(r)} a_x(t,x) \{ \operatorname{Re} W_x(t,x) + i \operatorname{Im} W_x(t,x) \} dt dx \right| \leq \left| \int_{\partial D(r)} W(t,x) U_t(t,x) dt + W(t,x) U_x(t,x) dx \right|.$$

We shall estimate the right-hand side and the left-hand one of (3.10). Firstly the left-hand side is estimated as follows:

$$\left| \iint_{D(r)} a_x(t,x) \{ \operatorname{Re} W_x(t,x) + i \operatorname{Im} W_x(t,x) \} dt dx \right| \ge \frac{\sqrt{\alpha_1^2 + \beta_1^2}}{4} \iint_{D(r)} a_x(t,x) dt dx$$

Proof. The left-hand side above \geq

$$\frac{\left|\iint_{D(r)} a_x(t,x)A_x(t,x)\,dtdx\right| + \left|\iint_{D(r)} a_x(t,x)B_x(t,x)\,dtdx\right|}{\sqrt{2}}.$$

By (3.5.3) and (3.5.4),

$$\left| \iint_{D(r)} a_x(t,x) A_x(t,x) dt dx \right| =$$
$$\iint_{D(r)} a_x(t,x) A_x(t,x) dt dx \ge$$
$$\frac{\alpha_1}{2} \iint_{D(r)} a_x(t,x) dt dx.$$
$$\left| \iint_{D(r)} a_x(t,x) B_x(t,x) dt dx \right| =$$
$$\iint_{D(r)} a_x(t,x) \{-B_x(t,x)\} dt dx \ge$$
$$-\frac{\beta_1}{2} \iint_{D(r)} a_x(t,x) dt dx.$$

Hence we see

$$\frac{\left|\iint_{D(r)} a_x(t,x)A_x(t,x)\,dtdx\right| + \left|\iint_{D(r)} a_x(t,x)B_x(t,x)\,dtdx\right|}{\sqrt{2}} \ge$$

$$\frac{\alpha_1 - \beta_1}{2\sqrt{2}} \iint_{D(r)} a_x(t, x) \, dt dx >$$

$$\frac{\sqrt{\alpha_1^2 + \beta_1^2}}{4} \iint_{D(r)} a_x(t, x) \, dt dx. \quad \Box$$

Next, since

$$\left|\int_{\partial D(r)} W(t,x)U_t(t,x) dt + W(t,x)U_x(t,x) dx\right| \le \int_{\partial D(r)} |W(t,x)| |U_t(t,x)| dt + |W(t,x)| |U_x(t,x)| dx,$$

we find that there exists a positive constant C_0 satisfying

$$\left|\int_{\partial D(r)} W(t,x)U_t(t,x) dt + W(t,x)U_x(t,x) dx\right| \le C_0 |\partial D(r)| \sup_{\partial D(r)} |W(t,x)|.$$

Thus we have the following estimate:

$$\frac{\sqrt{\alpha_1^2 + \beta_1^2}}{4} \iint_{D(r)} a_x(t, x) \, dt dx \le C_0 |\partial D(r)| \sup_{\partial D(r)} |W(t, x)|.$$

Making use of Lemma 5 and the above inequality, at last we have

$$\iint_{D(r)} a_x(t,x) \, dt dx \leq 8C_0 \frac{|\partial D(r)|}{|\beta_1|}.$$

From this we easily obtain the conclusion of Theorem I. \Box

4. Proof of Theorem 2

Suppose that Lu = 0 holds in a neighborhood $\omega = (-\epsilon_1, \epsilon_1) \times (-\epsilon_1, \epsilon_1)$ of the origin where ϵ_1 is a positive constant. Needless to say, we may suppose that ta(t, x) > 0 and $ta_x(t, x) \ge 0$ in $\omega \setminus \{t = 0\}$.

Now we have the following:

Lemma 8. There exists a sequence $\{x_m\}$ of positive numbers which tends to 0 as $m \to \infty$ such that $u_x(0, x_m) \neq 0$ $(m = 1, 2, \cdots)$.

Proof. Assume that there is a positive constant $\epsilon_0 \leq \epsilon_1$ such that $u_x(0, x)$ vanishes in $\{x; 0 \leq x \leq \epsilon_0\}$.

Setting $v = u_x(t, x)$, we have $Lv + ia_x(t, x)v = 0$. Since v(0, x) = 0 in $\{x; 0 \le x \le \epsilon_0\}$ and ta(t, x) > 0 for $t \ne 0$, applying the uniqueness theorem (see [4] or [11]), we find that v vanishes in $[-\epsilon_0, \epsilon_0] \times [0, \epsilon_0]$. Then, since L is elliptic for $t \ne 0$, we can apply the unique continuation theorem to conclude that v must vanish in ω . Thus we arrive at the contradiction that u is constant.

Hence we see that Lemma 8 holds. \Box

By virtue of Lemma 8, we find that the same manner as is employed in the proof of Theorem 1 can be applied by only replacing the reasoning near the origin with the one near the point $(0, x_m)$ to get the conclusion of Theorem 2. \Box

820

5. Proof of Corollary

It is clear that the assumptions (a.1) and (a.2) hold. Now assume the contrary. Then there exist positive constants x_m , C_m , and G_m satisfying that, for every positive constant ϵ and for every positive constant ν larger than G_m

(4.1)
$$\iint_{\{(t,x); \ 0 \le t < \nu^{-\epsilon}, |x-x_m| < \nu^{-\epsilon}\}} a_x(t,x) \, dt dx \le C_m \, \nu^{-1-\epsilon}.$$

First, we take the positive integer p such that $\frac{1}{p+1} < x_m \leq \frac{1}{p}$ and set $\epsilon = \frac{1}{5}$. Next, we take ν sufficiently large such that $\nu^{-\frac{1}{5}} < \frac{1}{p} - \frac{1}{p+1} (= a_p - a_{p+1})$. Next, we take the positive integer N such that $\frac{1}{N} \leq \nu^{-\frac{1}{5}} < \frac{1}{N-1}$. Then, from (4.1), we have

$$\sum_{k=N}^{\infty} \nu^{-\frac{1}{5}} \cdot a_{k+4} \cdot \left(\frac{a_k - a_{k+1}}{2^2}\right) \cdot \left(a_{k+2} - a_{k+3}\right) \le C_m \nu^{-1 - \frac{1}{5}}.$$

Hence we have

(4.2)
$$\sum_{k=N}^{\infty} \frac{(a_k - a_{k+1})(a_{k+2} - a_{k+3})a_{k+4}}{2^2} \le C_m \nu^{-1}.$$

The lefthand side of $(4.2) = \frac{1}{4N(N+1)(N+2)(N+3)}$. Therefore we have:

(4.3)
$$\frac{1}{4N(N+1)(N+2)(N+3)} \le C_m \nu^{-1} \le \frac{C_m}{(N-1)^5}.$$

Since N can be taken sufficiently large, (4.3) produces a contradiction.

References

- 1. L. Hölmander, Linear Partial Differential Operators, Springer-Verlag, New York, 1969.
- 2. H. Lewy, On the local character of the solutions of an atypical linear partial differential equation in three variables and a related theorem for regular functions of two complex variables, Ann. Math. 64 (1956), 514-522.
- 3. H. Lewy, On hulls of holomorphy, Comm.Pure Apply. Math. 13 (1960), 587-591.
- 4. H. Ninomiya, Some Remarks on the Uniqueness in the Cauchy Problem for a First-Order Partial Differential Equation in Two Variables, Memo. Osaka Institute of Tech. Series A 19(2) (1975), 83-92.
- H. Ninomiya, A note on the Nirenberg example, Funkcialaj Ekvacioj (Serio Internacia) 39(3) (1996), 339-402.
- H. Ninomiya, A necessary condition of local integrability for a nowhere-zero complex vector field in ℝ², Scientiae Mathematicae 2(1) (1999), 1-9.
- H. Ninomiya, On a property of Nirenberg type operator, J. of Math. of Kyoto Univ. 38(3) (1998), 173-184.
- 8. H. Ninomiya, A necessary and sufficient condition of local integrability, J. of Math. of Kyoto Univ. **39(4)** (1999), 685-696.
- 9. L. Nirenberg, Lectures on linear partial differential equations, Reg.Conf. Series in Math. 17 A.M.S. (1973).
- 10. J. Sjöstrand, Note on a paper of F. Treves, Duke Math.J. 47(3) (1981), 601-608.
- M. Strauss & F. Treves, First-Order Linear PDEs and Uniqueness in the Cauchy problem, J. Differential Equations 15 (1974), 195-209.
- F. Treves, Remarks about certain first-order linear PDE in two variables, Comm. in Partial Differential Equations 15 (1980), 381-425.

HARUKI NINOMIYA

- 13. F. Treves, On the local integrability and local solvability of systems of vector fields, Acta Math. 151 (1983), 1-38.
- 14. F. Treves, Approximation and representation of functions and distributions annihilated by a system of complex vector fields, École Polytechnique Centre de Mathématiques (1981).

Department of mathematics, Osaka Institute of Technology, 5chome-16-1, Ohmiya Asahiku, Osaka 535, Japan

E-mail address: ninomiya@ge.oit.ac.jp