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Abstract. Let X be a non-solvable C1 complex vector �eld in R2 satisfying certain condi-
tions. A necessary condition for the equation Xu = 0 to have a solution u such that du 6= 0
near the origin and one for the Xu = 0 to admit a solution u such that du 6� 0 in any suÆ-
ciently small neighborhood of the origin are given. These are expressed by making use of an
estimate.

1. Introduction

Let Xn be a nowhere-zero C1 complex vector �eld de�ned near a point P in Rn. We

shall say that Xn is locally integrable at P if there exist a neighborhood 
 of P and functions

ui(i = 1; 2; � � � ; n�1) satisfying Xnui = 0 in 
 such that du1^du2^� � �^dun�1(P) 6= 0(see

[13] and [14]).

The importance of the study of the local integrability originated from the papers of Lewy

([2] and [3]), where he found a holomorphic extension property of the solutions of some kind

of homogeneous equations Xnu = 0(n = 3; 4) and pioneered a new type of the concept of

holomorphic hull.

We know the following facts: Xn is locally integrable at P if Xn is real-analytic or locally

solvable at P(see [14], for instance); there exists a X2 which has the property that the

X2u = 0 admits no non-trivial solutions in any neighborhood of the origin(Nirenberg [9];

see also [5]).

It is an open problem to obtain a necessary and suÆcient condition for the local integra-

bility of Xn that is non-analytic and not locally solvable.

In this paper, we investigate the case where n = 2.

We know that the equation X2u = 0 near P is transformed into that of the form

Lu �
�
@t + ia(t; x)@x

�
u = 0

near the origin in R2, where a(t; x) is a real-valued C1 function.

Now the following theorems are proved:

Theorem 1([12]). Assume that a(0; 0) = 0 and at(0; 0) 6= 0. L is locally integrable at the
origin if and only if there is a change of local coordinates such that L becomes a (non-
vanishing C1 function) multiple of the Mizohata operator @x1 + ix1@x2 .
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Theorem 2([10]). Assume that L satis�es a(0; 0) = 0 and @ta(0; 0) 6= 0. Then there exist
C1 functions u+; which is de�ned in t � 0; and u�; which is de�ned in t � 0; such that
u�(0; x) are real, @xu

�(0; x) > 0; and Lu� = 0: L is locally integrable at the origin if and

only if the function u+
�1 Æ u�(0; x) is real analytic at the origin.

Theorem 3([8]). Assume that a(t; x) = (t2d)0b(t; x), where d is a positive integer and
b(t; x) a positive C1 function. Then L is locally integrable at the origin if and only if there

exist an element
�
Z1(t; x); Z2(t; x); T0

�
2 S and a function f which is holomorphic in J =

fz 2 C ; z = Z2(0; x); x 2 (�T0; T0)g and satis�es Z1(0; x) = f
�
Z2(0; x)

�
.

(See [8] on the meaning of the symbol S.)

We can say that the above theorems are qualitative ones. On the other hand, in

[6](see also [7]), we tried to obtain a quantitative condition to present a necessary condi-

tion(Theorem 3 in [6]) that is expressed by making use of an estimate, under the following

assumption:

(i) a(0; x) vanishes identically.

(ii) There is a neighborhood ! of the origin such that

t
�
a(t; x) � a(�t; x)

�
> 0 in ft 6= 0g \ !

and

a(t; x) + a(�t; x) � 0 in !:

In this article, we aim at giving a necessary condition for the local integrability and one*

for the equation Lu = 0 to have a non-trivial solution that are also expressed by making

use of estimates, under the following assumption:

(a.1) at(0; 0) > 0.

(a.2) There is a neighborhood !0 of the origin such that

ta(t; x) > 0; tax(t; x) � 0 in ft 6= 0g \ !0:

Those estimates are shown in Theorems I and II stated in the next section.

2. Results

Our main results are stated as follows:

Theorem I. Assume:
(a.1) at(0; 0) > 0.
(a.2) There is a neighborhood !0 of the origin such that

ta(t; x) > 0; tax(t; x) � 0 in ft 6= 0g \ !0:

If Lu = 0 has a C1 solution u near the origin such that ux(0; 0) 6= 0, then there must
exist positive constants C and G satisfying that, for every positive constant � and for every
positive constant � larger than GZZ�

(t;x); 0�t<��� ; jxj<���
	 ax(t; x) dtdx � C��1��:

*If Xn is locally integrable, then the equation Xnu = 0 trivially has a non-trivial solution. But we
remark that the converse is not necessarily true: by virtue of H�olmander([1], Theorem 8.9.2), we see that
there exists a X2 having the property that the equation X2u = 0 has a non-trivial solution near the origin

and X2 is not locally integrable at the origin.
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Theorem II. Assume:
(a.1) at(0; 0) > 0.
(a.2) There is a neighborhood !0 of the origin such that

ta(t; x) > 0; tax(t; x) � 0 in ft 6= 0g \ !0:

If Lu = 0 has a C1 solution u in a neighborhood of the origin such that du 6� 0 in any
suÆciently small neighborhood of the origin, then there must exist a sequence of positive
numbers fxmg(m = 1; 2; � � � ) which tends to 0 as m!1 having the following property:

There exist positive constants Cm and Gm satisfying that, for every positive constant �
and for every positive constant � larger than GmZZ�

(t;x); 0�t<��� ;jx� xmj<�
��

	 ax(t; x) dtdx � Cm ��1��:

Let us give an example:

Example.

Set:

an =
1

n
;

bn = an+1 +
an � an+1

2
;

Un =
�
(t; x); bn �

an � an+1

22
� t � bn +

an � an+1

22
; 0 � x � 1

	
;

and

Vn =
�
(t; x); bn �

an � an+1

23
� t � bn +

an � an+1

23
; 0 � x � 1

	
;

where n 2 N. Let fn(t; x) be the C1 function having the following properties:

(i) 0 � fn(t; x) � an+2 � an+3.

(ii) fn(t; x) vanishes outside of Un and equals an+2 � an+3 in Vn.

We de�ne the C1
o

function �(t; x) as follows:

(iii) �(t; x) = fn(t; x) in Un.

(iv) �(t; x) = 0 in R2
t;x
n
S
1

n=1Un.

We have the following

Collorary. The equation
n
@t + it

�
1 +

R
x

0
�(t; s) ds

�
@x

o
u = 0 admits no non-trivial C1

solutions in any neighborhood of the origin.

3. Proof of Theorem I

Suppose Lu = 0 holds in a neighborhood 
 of the origin. Then we may assume that

ta(t; x) > 0 and tax(t; x) � 0 in 
nft = 0g. Let us set Reux(0; 0) = � and Imux(0; 0) = �.

Multiplying u(t; x) by an appropriate complex number exp(i�), where � is real, we can

assume that � > 0, � < 0, and � + � 6= 0. Further let us set Reuxx(0; 0) =  and

Imuxx(0; 0) = Æ.
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For a positive number � we de�ne a complex number � + i� in the following way:

Case 1 �+ � > 0. � = �, � = 0.

Case 2 �+ � < 0. � = �, � = �.

We de�ne the function w(t; x) by

w(t; x) = expf(� + i�)u(t; x)g=expf(� + i�)u(0; 0)g:

It trivially follows that

(3.1) Lw(t; x) = 0:

(3.1') Lux(t; x) = �iaxux(t; x):

Hereafter let us set:

�1 = Rewx(0; 0); �1 = Imwx(0; 0); 1 = Rewxx(0; 0); Æ1 = Imwxx(0; 0);

c = Imwx(0; 0)Rewxx(0; 0) �Rewx(0; 0) Imwxx(0; 0);

and

d =

a
2

x
(0;0)

at(0;0)
� Imwx(0;0)Rewxx(0;0)�Rewx(0;0) Imwxx(0;0)�

Rewx(0;0)

�
2

+

�
Imwx(0;0)

�
2

Imwx(0; 0)
:

Then we have the following:

Lemma 5. There exists a positive constant G0 such that, for every � satisfying � � G0, it
holds that

�1 > 0; �1 < 0; 1 > 0; Æ1 < 0; c > 0; and d �
3

4
:

Proof. We have

�1 = �� � ��; �1 = �� + ��;

1 = �21 � �21 + � � Æ� = (�2 � �2)(�2 � �2) � 4���� + � � Æ�;

and

Æ1 = 2�1�1 + � + Æ� = 2(�2 � �2)�� + 2��(�2 � �2) + � + Æ�:

The symbols Kl(; Æ)(l = 1; � � � ; 8) which will appear in the below denote certain polyno-

mials, whose coeÆcients may depend on � or �, with respect to  and Æ.

Case 1. We have:

�1 = ��; �1 = ��

1 = (� � �)(� + �)�2 +K1(; Æ)�; Æ1 = 2���2 +K2(; Æ)�

c = ��(�2 + �2)�3 +K3(; Æ)�
2

d =
a2
x
(0; 0)

��at(0; 0)
+ 1 +

K4(; Æ)

�
:

Case 2. We have:

�1 = (�� �)�; �1 = (� + �)�

1 = �4���2 +K5(; Æ)�; Æ1 = 2(�� �)(� + �)�2 +K6(; Æ)�
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c = �2(�+ �)(�2 + �2)�3 +K7(; Æ)�
2

d =
a2
x
(0; 0)

(�+ �)�at(0; 0)
+ 1 +

K8(; Æ)

�
:

Thus we �nd that there exists a positive constant G0 such that, in either case of the

above it holds that

�1 > 0; �1 < 0; 1 > 0; Æ1 < 0; c > 0 and d �
3

4

for every � satisfying � � G0. �

Hereafter let � � G0. Then by Lemma 5 we can take a neighborhood 
0(G0) of the

origin to suppose that the following hold: for every � such that � � G0,

(3.2) Imwx(t; x) < 0;

and

(3.3) Rewx(t; x) > 0

in 
0(G0).

Here we remark the following:

The function i log ux(t; x) is de�ned as a single-valued function in 
0(G0).

Since �1 > 0 and �1 < 0, we can choose a positive constant b satisfying

(3.4) 2�1 + b�1 = 0:

We set

W (t; x) = w(t; x) + 1 + ib:

We note that

Wx(t; x) = wx(t; x) and Wt(t; x) = wt(t; x):

Now, we have the following

Lemma 6. There exists a neighborhood !1 of the origin satisfying

sup
!1

jW (t; x)j = jW (0; 0)j =
2
p
�21 + �21
j�1j

:

Proof. Since Wx(t; x) = wx(t; x), ReW (0; 0) = 2 and ImW (0; 0) = b > 0, we can take a

suÆciently small neighborhood !1 ( � 
0(G0) ) of the origin such that the following hold:

(3.5.1) ReW (t; x) > 0:

(3.5.2) ImW (t; x) > 0:

(3.5.3) ReWx(t; x) >
�1

2
:
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(3.5.4) ImWx(t; x) <
�1

2
:

Here we remark that the !1 is dependent of G0 but can be chosen independently of �.

Now we set:

f(t; x) =
1

2
jW (t; x)j2:

Since W (0; 0) = 2 + ib = 2(1� �1

�1
i), we have only to prove the following:

(1) ft(t; x) = fx(t; x) = 0 in !1 if and only if (t; x) = (0; 0).

(2) ftt(0; 0) < 0 and ftx(0; 0)
2 � ftt(0; 0)fxx(0; 0) < 0.

Let us set ReW (t; x) = A(t; x) and ImW (t; x) = B(t; x). Since LW (t; x) = 0, we have

(3.6) At(t; x) = a(t; x)Bx(t; x); Bt(t; x) = �a(t; x)Ax(t; x):

First, (1) is proved in the following manner:

Let ft(t; x) = fx(t; x) = 0 in !1. From (3.6), this implies

a(t; x)fA(t; x)Bx(t; x) �B(t; x)Ax(t; x)g = 0; A(t; x)Ax(t; x) +B(t; x)Bx(t; x) = 0:

Suppose t 6= 0. Since a(t; x) 6= 0 for t 6= 0 by our assumption (a.2), we have

A(t; x)Bx(t; x) �B(t; x)Ax(t; x) = 0;

A(t; x)Ax(t; x) +B(t; x)Bx(t; x) = 0:

Since Ax(t; x)
2+Bx(t; x)

2 6= 0 by (3.5.3), and so A(t; x) = B(t; x) = 0. This is contradictory

to (3.5.1). Therefore t must be 0. Then it follows that

A(0; x)Ax(0; x) +B(0; x)Bx(0; x) = 0:

Since there exist real numbers �j(j = 1; 2; 3; 4) such that, (0; �j) 2 !1 and

A(0; x) = A(0; 0) +Ax(0; 0)x +Axx(0; �1)x
2

Ax(0; x) = Ax(0; 0) +Axx(0; �2)x

B(0; x) = B(0; 0) +Bx(0; 0)x +Bxx(0; �3)x
2

Bx(0; x) = Bx(0; 0) +Bxx(0; �4)x;

we have the following:

A(0; x)Ax(0; x) +B(0; x)Bx(0; x) =

A(0; 0)Ax(0; 0) + fA(0; 0)Axx(0; �2) +Ax(0; 0)
2gx+

Ax(0; 0)
�
Axx(0; �1) +Axx(0; �2)

�
x2+

Axx(0; �1)Axx(0; �2)x
3+

B(0; 0)Bx(0; 0) + fB(0; 0)Bxx(0; �4) +Bxx(0; 0)
2gx+

Bx(0; 0)
�
Bxx(0; �3) +Bxx(0; �4)

�
x2+

Bxx(0; �3)Bxx(0; �4)x
3 =
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2�1 + f2Axx(0; �2) + �21gx + �1

�
Axx(0; �1) +Axx(0; �2)

�
x2 +Axx(0; �1)Axx(0; �2)x

3+

b�1 + fbBxx(0; �4) + �21gx+ �1

�
Bxx(0; �3) +Bxx(0; �4)

�
x2 +Bxx(0; �3)Bxx(0; �4)x

3 =

x

(
2Axx(0; �2) + �21 + bBxx(0; �4) + �21+n

�1

�
Axx(0; �1) +Axx(0; �2)

�
+ �1

�
Bxx(0; �3) +Bxx(0; �4)

�o
x+

�
Axx(0; �1)Axx(0; �2) +Bxx(0; �3)Bxx(0; �4)

�
x2

)

(by (3.4)). Therefore we have:

x

(
2Axx(0; �2) + �21 + bBxx(0; �4) + �21+(3.7)

n
�1

�
Axx(0; �1) +Axx(0; �2)

�
+ �1

�
Bxx(0; �3) +Bxx(0; �4)

�o
x+

�
Axx(0; �1)Axx(0; �2) +Bxx(0; �3)Bxx(0; �4)

�
x2

)
= 0:

Now we have:

2Axx(0; 0) + �21 + bBxx(0; 0) + �21 < 0:

Proof. From (3.4), b = �2�1
�1

. Hence

2Axx(0; 0) + �21 + bBxx(0; 0) + �21 =

�21 + �21 + 2

(
�1Axx(0; 0) � �1Bxx(0; 0)

�1

)
= �21 + �21 +

2c

�1
=

2(�21 + �21)

(
ax(0;0)

2

at(0;0)

�1
+

1

2
� d

)
< 0

by Lemma 5 and our assumption (a.1). �

Thus we �nd that (3.7) implies that x = 0 and hence ft(t; x) = fx(t; x) = 0 in !1 implies

(x; t) = (0; 0). On the other hand it holds that ft(0; 0) = fx(0; 0) = 0 by (3.4).

Therefore, we have proved: ft(t; x) = fx(t; x) = 0 in !1 () (x; t) = (0; 0).

Next, (2) is proved in the following way:

Using (3.6), we have

ftx = AtAx +
�
ABx �BAx

�
ax(t; x) +

�
ABxx �BAxx

�
a(t; x);

ftt = A2
t
+B2

t
+
�
ABx �BAx

�
at(t; x) +

�
ABtx �BAtx

�
a(t; x);

fxx = A2
x
+B2

x
+AAxx +BBxx:

Hence, we have

ftt(0; 0) =
�
2�1 � b�1

�
at(0; 0)
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and

ftx(0; 0)
2 � ftt(0; 0)fxx(0; 0) =�

2�1 � b�1
�2
ax(0; 0)

2 �
�
2�1 � b�1

��
�21 + �21 + 21 + bÆ1

�
at(0; 0) =

�
2�1 � b�1

�2
at(0; 0)

nax(0; 0)2
at(0; 0)

�
�21 + �21 + 21 + bÆ1

2�1 � b�1

o
:

Substituting b = �2�1
�1

, we have

2�1 � b�1 =
2
�
�21 + �21

�
�1

:

Hence we have

ax(0; 0)
2

at(0; 0)
�
�21 + �21 + 21 + bÆ1

2�1 � b�1
=

ax(0; 0)
2

at(0; 0)
�
�11 � �1Æ1

�21 + �21
�
�1

2
= �1 d�

�1

2
= �1

�
d�

1

2

�
:

Therefore by Lemma 5, we see: ftt(0; 0) < 0; ftx(0; 0)
2 � ftt(0; 0)fxx(0; 0) < 0. �

Now let us set U(t; x) = i log ux(t; x)(We have remarked that U(t; x) is a single-valued

function in !1). From (3.1'), we see:

(3.8) LU(t; x) = ax(t; x) in !1:

Let � be an arbitrary positive number. Taking � large such that f(t; x); 0 � t < ���; jxj <
���g � !1, we set r = ��� and D(r) = f(t; x); 0 � t < r; jxj < rg. Then we obtain the

following

Lemma 7.

�
ZZ

D(r)

ax(t; x)Wx(t; x) dtdx =Z
@D(r)

W (t; x)Ut(t; x) dt +W (t; x)Ux(t; x) dx:

Proof. From (3.8), we have

(3.9)

ZZ
D(r)

�Wx(t; x)
n
Ut(t; x) + ia(t; x)Ux(t; x)

o
dtdx =

ZZ
D(r)

�ax(t; x)Wx(t; x) dtdx:

Since Wt(t; x) = �ia(t; x)Wx(t; x), the left-hand side of (3.9) =

ZZ
D(r)

�
n
Wx(t; x)Ut(t; x) �Wt(t; x)Ux(t; x)

o
dtdx =
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D(r)

d
n
W (t; x)dU(t; x)

o
=

Z
@D(r)

W (t; x)Ut(t; x) dt +W (t; x)Ux(t; x) dx: �

From Lemma 7, we thus have:

(3.10)

�����
ZZ

D(r)

ax(t; x)fReWx(t; x) + i ImWx(t; x)g dtdx

����� �
�����
Z
@D(r)

W (t; x)Ut(t; x) dt +W (t; x)Ux(t; x) dx

�����:
We shall estimate the right-hand side and the left-hand one of (3.10). Firstly the left-hand

side is estimated as follows:�����
ZZ

D(r)

ax(t; x)fReWx(t; x) + i ImWx(t; x)g dtdx

����� �
p
�21 + �21
4

ZZ
D(r)

ax(t; x) dtdx

Proof. The left-hand side above ����RR
D(r)

ax(t; x)Ax(t; x) dtdx
��� + ���RR

D(r)
ax(t; x)Bx(t; x) dtdx

���
p
2

:

By (3.5.3) and (3.5.4), ���ZZ
D(r)

ax(t; x)Ax(t; x) dtdx
��� =

ZZ
D(r)

ax(t; x)Ax(t; x) dtdx �

�1

2

ZZ
D(r)

ax(t; x) dtdx:

�����
ZZ

D(r)

ax(t; x)Bx(t; x) dtdx

����� =ZZ
D(r)

ax(t; x)f�Bx(t; x)g dtdx �

�
�1

2

ZZ
D(r)

ax(t; x) dtdx:

Hence we see ��RR
D(r)

ax(t; x)Ax(t; x) dtdx
�� + ��RR

D(r)
ax(t; x)Bx(t; x) dtdx

��
p
2

�
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�1 � �1

2
p
2

ZZ
D(r)

ax(t; x) dtdx >

p
�21 + �21
4

ZZ
D(r)

ax(t; x) dtdx: �

Next, since ��Z
@D(r)

W (t; x)Ut(t; x) dt +W (t; x)Ux(t; x) dx
�� �

Z
@D(r)

jW (t; x)jjUt(t; x)j dt + jW (t; x)jjUx(t; x)j dx;

we �nd that there exists a positive constant C0 satisfying

��Z
@D(r)

W (t; x)Ut(t; x) dt +W (t; x)Ux(t; x) dx
�� �

C0j@D(r)j sup
@D(r)

jW (t; x)j:

Thus we have the following estimate:p
�21 + �21
4

ZZ
D(r)

ax(t; x) dtdx �

C0j@D(r)j sup
@D(r)

jW (t; x)j:

Making use of Lemma 5 and the above inequality, at last we haveZZ
D(r)

ax(t; x) dtdx � 8C0

j@D(r)j
j�1j

:

From this we easily obtain the conclusion of Theorem I. �

4. Proof of Theorem 2

Suppose that Lu = 0 holds in a neighborhood ! = (��1; �1) � (��1; �1) of the origin

where �1 is a positive constant. Needless to say, we may suppose that ta(t; x) > 0 and

tax(t; x) � 0 in ! n ft = 0g.
Now we have the following:

Lemma 8. There exists a sequence fxmg of positive numbers which tends to 0 as m �!1
such that ux(0; xm) 6= 0 (m = 1; 2; � � � ).

Proof. Assume that there is a positive constant �0 � �1 such that ux(0; x) vanishes in

fx; 0 � x � �0g.
Setting v = ux(t; x), we have Lv + iax(t; x)v = 0. Since v(0; x) = 0 in fx; 0 � x � �0g

and ta(t; x) > 0 for t 6= 0, applying the uniqueness theorem (see [4] or [11]), we �nd

that v vanishes in [��0; �0] � [0; �0]. Then, since L is elliptic for t 6= 0, we can apply the

unique continuation theorem to conclude that v must vanish in !. Thus we arrive at the

contradiction that u is constant.

Hence we see that Lemma 8 holds. �

By virtue of Lemma 8, we �nd that the same manner as is employed in the proof of

Theorem 1 can be applied by only replacing the reasoning near the origin with the one near

the point (0; xm) to get the conclusion of Theorem 2. �
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5. Proof of Corollary

It is clear that the assumptions (a.1) and (a.2) hold. Now assume the contrary. Then

there exist positive constants xm ; Cm; and Gm satisfying that, for every positive constant

� and for every positive constant � larger than Gm

(4.1)

ZZ�
(t;x); 0�t<��� ;jx� xmj<�

��

	 ax(t; x) dtdx � Cm ��1��:

First, we take the positive integer p such that 1
p+1

< xm � 1
p
and set � = 1

5
. Next, we

take � suÆciently large such that ��
1

5 < 1
p
� 1

p+1
(= ap� ap+1). Next, we take the positive

integer N such that 1
N
� ��

1

5 < 1
N�1

. Then, from (4.1), we have

1X
k=N

��
1

5 � ak+4 �
�ak � ak+1

22

�
� (ak+2 � ak+3) � Cm ��1�

1

5 :

Hence we have

(4.2)

1X
k=N

(ak � ak+1)(ak+2 � ak+3)ak+4

22
� Cm ��1:

The lefthand side of (4.2)= 1
4N(N+1)(N+2)(N+3)

. Therefore we have:

(4.3)
1

4N(N + 1)(N + 2)(N + 3)
� Cm ��1 �

Cm

(N � 1)5
:

Since N can be taken suÆciently large, (4.3) produces a contradiction. �
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