ON A NECESSARY CONDITION OF LOCAL INTEGRABILITY FOR COMPLEX VECTOR FIELD IN \mathbb{R}^{2}

Haruki NINOMIYA

Received November 12, 1999; revised December 3, 1999

Abstract

Let X be a non-solvable C^{∞} complex vector field in \mathbb{R}^{2} satisfying certain conditions. A necessary condition for the equation $X u=0$ to have a solution u such that $d u \neq 0$ near the origin and one for the $X u=0$ to admit a solution u such that $d u \not \equiv 0$ in any sufficiently small neighborhood of the origin are given. These are expressed by making use of an estimate.

1. Introduction

Let X_{n} be a nowhere-zero C^{∞} complex vector field defined near a point P in \mathbb{R}^{n}. We shall say that X_{n} is locally integrable at P if there exist a neighborhood Ω of P and functions $u_{i}(i=1,2, \cdots, n-1)$ satisfying $X_{n} u_{i}=0$ in Ω such that $d u_{1} \wedge d u_{2} \wedge \cdots \wedge d u_{n-1}(\mathrm{P}) \neq 0($ see [13] and [14]).

The importance of the study of the local integrability originated from the papers of Lewy ([2] and [3]), where he found a holomorphic extension property of the solutions of some kind of homogeneous equations $X_{n} u=0(n=3,4)$ and pioneered a new type of the concept of holomorphic hull.

We know the following facts: X_{n} is locally integrable at P if X_{n} is real-analytic or locally solvable at P (see [14], for instance); there exists a X_{2} which has the property that the $X_{2} u=0$ admits no non-trivial solutions in any neighborhood of the origin(Nirenberg [9]; see also [5]).

It is an open problem to obtain a necessary and sufficient condition for the local integrability of X_{n} that is non-analytic and not locally solvable.

In this paper, we investigate the case where $n=2$.
We know that the equation $X_{2} u=0$ near P is transformed into that of the form

$$
L u \equiv\left(\partial_{t}+i a(t, x) \partial_{x}\right) u=0
$$

near the origin in \mathbb{R}^{2}, where $a(t, x)$ is a real-valued C^{∞} function.
Now the following theorems are proved:
Theorem 1([12]). Assume that $a(0,0)=0$ and $a_{t}(0,0) \neq 0 . L$ is locally integrable at the origin if and only if there is a change of local coordinates such that L becomes a (nonvanishing C^{∞} function) multiple of the Mizohata operator $\partial_{x_{1}}+i x_{1} \partial_{x_{2}}$.

[^0]Theorem $2([10])$. Assume that L satisfies $a(0,0)=0$ and $\partial_{t} a(0,0) \neq 0$. Then there exist C^{∞} functions u^{+}, which is defined in $t \geq 0$, and u^{-}, which is defined in $t \leq 0$, such that $u^{ \pm}(0, x)$ are real, $\partial_{x} u^{ \pm}(0, x)>0$, and $L u^{ \pm}=0 . L$ is locally integrable at the origin if and only if the function $u^{+^{-1}} \circ u^{-}(0, x)$ is real analytic at the origin.

Theorem $3([8])$. Assume that $a(t, x)=\left(t^{2 d}\right)^{\prime} b(t, x)$, where d is a positive integer and $b(t, x)$ a positive C^{∞} function. Then L is locally integrable at the origin if and only if there exist an element $\left(Z_{1}(t, x), Z_{2}(t, x), T_{0}\right) \in \mathfrak{S}$ and a function f which is holomorphic in $\mathfrak{J}=$ $\left\{z \in \mathbb{C} ; z=Z_{2}(0, x), x \in\left(-T_{0}, T_{0}\right)\right\}$ and satisfies $Z_{1}(0, x)=f\left(Z_{2}(0, x)\right)$.
(See $[8]$ on the meaning of the symbol \mathfrak{S}.)

We can say that the above theorems are qualitative ones. On the other hand, in [6](see also [7]), we tried to obtain a quantitative condition to present a necessary condition(Theorem 3 in [6]) that is expressed by making use of an estimate, under the following assumption:
(i) $a(0, x)$ vanishes identically.
(ii) There is a neighborhood ω of the origin such that

$$
t(a(t, x)-a(-t, x))>0 \quad \text { in } \quad\{t \neq 0\} \cap \omega
$$

and

$$
a(t, x)+a(-t, x) \geq 0 \quad \text { in } \quad \omega .
$$

In this article, we aim at giving a necessary condition for the local integrability and one* for the equation $L u=0$ to have a non-trivial solution that are also expressed by making use of estimates, under the following assumption:
(a.1) $a_{t}(0,0)>0$.
(a.2) There is a neighborhood ω_{0} of the origin such that

$$
\operatorname{ta}(t, x)>0, \quad \operatorname{ta} a_{x}(t, x) \geq 0 \quad \text { in } \quad\{t \neq 0\} \cap \omega_{0}
$$

Those estimates are shown in Theorems I and II stated in the next section.

2. Results

Our main results are stated as follows:
Theorem I. Assume:
(a.1) $a_{t}(0,0)>0$.
(a.2) There is a neighborhood ω_{0} of the origin such that

$$
t a(t, x)>0, \quad t a_{x}(t, x) \geq 0 \quad \text { in } \quad\{t \neq 0\} \cap \omega_{0}
$$

If $L u=0$ has a C^{∞} solution u near the origin such that $u_{x}(0,0) \neq 0$, then there must exist positive constants C and G satisfying that, for every positive constant ϵ and for every positive constant ν larger than G

$$
\iint_{\left\{(t, x) ; 0 \leq t<\nu^{-\epsilon},|x|<\nu^{-\epsilon}\right\}} a_{x}(t, x) d t d x \leq C \nu^{-1-\epsilon} .
$$

[^1]Theorem II. Assume:
(a.1) $a_{t}(0,0)>0$.
(a.2) There is a neighborhood ω_{0} of the origin such that

$$
t a(t, x)>0, \quad t a_{x}(t, x) \geq 0 \quad \text { in } \quad\{t \neq 0\} \cap \omega_{0}
$$

If $L u=0$ has a C^{∞} solution u in a neighborhood of the origin such that du $\not \equiv 0$ in any sufficiently small neighborhood of the origin, then there must exist a sequence of positive numbers $\left\{x_{m}\right\}(m=1,2, \cdots)$ which tends to 0 as $m \rightarrow \infty$ having the following property:

There exist positive constants C_{m} and G_{m} satisfying that, for every positive constant ϵ and for every positive constant ν larger than G_{m}

$$
\iint_{\left\{(t, x) ; 0 \leq t<\nu^{-\epsilon},\left|x-x_{m}\right|<\nu^{-\epsilon}\right\}} a_{x}(t, x) d t d x \leq C_{m} \nu^{-1-\epsilon}
$$

Let us give an example:

Example.

Set:

$$
\begin{gathered}
a_{n}=\frac{1}{n} \\
b_{n}=a_{n+1}+\frac{a_{n}-a_{n+1}}{2}, \\
U_{n}=\left\{(t, x) ; b_{n}-\frac{a_{n}-a_{n+1}}{2^{2}} \leq t \leq b_{n}+\frac{a_{n}-a_{n+1}}{2^{2}}, 0 \leq x \leq 1\right\},
\end{gathered}
$$

and

$$
V_{n}=\left\{(t, x) ; b_{n}-\frac{a_{n}-a_{n+1}}{2^{3}} \leq t \leq b_{n}+\frac{a_{n}-a_{n+1}}{2^{3}}, 0 \leq x \leq 1\right\}
$$

where $n \in \mathbb{N}$. Let $f_{n}(t, x)$ be the C^{∞} function having the following properties:
(i) $0 \leq f_{n}(t, x) \leq a_{n+2}-a_{n+3}$.
(ii) $f_{n}(t, x)$ vanishes outside of U_{n} and equals $a_{n+2}-a_{n+3}$ in V_{n}.

We define the C_{o}^{∞} function $\alpha(t, x)$ as follows:
(iii) $\alpha(t, x)=f_{n}(t, x)$ in U_{n}.
(iv) $\alpha(t, x)=0$ in $\mathbb{R}_{t, x}^{2} \backslash \bigcup_{n=1}^{\infty} U_{n}$.

We have the following
Collorary. The equation $\left\{\partial_{t}+i t\left(1+\int_{0}^{x} \alpha(t, s) d s\right) \partial_{x}\right\} u=0$ admits no non-trivial C^{∞} solutions in any neighborhood of the origin.

3. Proof of Theorem I

Suppose $L u=0$ holds in a neighborhood Ω of the origin. Then we may assume that $t a(t, x)>0$ and $t a_{x}(t, x) \geq 0$ in $\Omega \backslash\{t=0\}$. Let us set $\operatorname{Re} u_{x}(0,0)=\alpha$ and $\operatorname{Im} u_{x}(0,0)=\beta$. Multiplying $u(t, x)$ by an appropriate complex number $\exp (i \theta)$, where θ is real, we can assume that $\alpha>0, \beta<0$, and $\alpha+\beta \neq 0$. Further let us set $\operatorname{Re} u_{x x}(0,0)=\gamma$ and $\operatorname{Im} u_{x x}(0,0)=\delta$.

For a positive number ν we define a complex number $\xi+i \eta$ in the following way:
Case $1 \quad \alpha+\beta>0 . \quad \xi=\nu, \eta=0$.
Case $2 \quad \alpha+\beta<0 . \quad \xi=\nu, \eta=\nu$.
We define the function $w(t, x)$ by

$$
w(t, x)=\exp \{(\xi+i \eta) u(t, x)\} / \exp \{(\xi+i \eta) u(0,0)\}
$$

It trivially follows that

$$
\begin{gather*}
L w(t, x)=0 . \tag{3.1}\\
L u_{x}(t, x)=-i a_{x} u_{x}(t, x) .
\end{gather*}
$$

Hereafter let us set:

$$
\begin{gathered}
\alpha_{1}=\operatorname{Re} w_{x}(0,0), \beta_{1}=\operatorname{Im} w_{x}(0,0), \gamma_{1}=\operatorname{Re} w_{x x}(0,0), \delta_{1}=\operatorname{Im} w_{x x}(0,0) \\
c=\operatorname{Im} w_{x}(0,0) \operatorname{Re} w_{x x}(0,0)-\operatorname{Re} w_{x}(0,0) \operatorname{Im} w_{x x}(0,0)
\end{gathered}
$$

and

$$
d=\frac{\frac{a_{x}^{2}(0,0)}{a_{t}(0,0)}-\frac{\operatorname{Im} w_{x}(0,0) \operatorname{Re} w_{x x}(0,0)-\operatorname{Re} w_{x}(0,0) \operatorname{Im} w_{x x}(0,0)}{\left(\operatorname{Re} w_{x}(0,0)\right)^{2}+\left(\operatorname{Im} w_{x x}(0,0)\right)^{2}}}{\operatorname{Im} w_{x}(0,0)}
$$

Then we have the following:
Lemma 5. There exists a positive constant G_{0} such that, for every ν satisfying $\nu \geq G_{0}$, it holds that

$$
\alpha_{1}>0, \beta_{1}<0, \gamma_{1}>0, \delta_{1}<0, c>0, \quad \text { and } \quad d \geq \frac{3}{4}
$$

Proof. We have

$$
\begin{gathered}
\alpha_{1}=\alpha \xi-\beta \eta, \beta_{1}=\alpha \eta+\beta \xi \\
\gamma_{1}=\alpha_{1}^{2}-\beta_{1}^{2}+\gamma \xi-\delta \eta=\left(\alpha^{2}-\beta^{2}\right)\left(\xi^{2}-\eta^{2}\right)-4 \alpha \beta \xi \eta+\gamma \xi-\delta \eta
\end{gathered}
$$

and

$$
\delta_{1}=2 \alpha_{1} \beta_{1}+\gamma \eta+\delta \xi=2\left(\alpha^{2}-\beta^{2}\right) \xi \eta+2 \alpha \beta\left(\xi^{2}-\eta^{2}\right)+\gamma \eta+\delta \xi
$$

The symbols $K_{l}(\gamma, \delta)(l=1, \cdots, 8)$ which will appear in the below denote certain polynomials, whose coefficients may depend on α or β, with respect to γ and δ.
Case 1. We have:

$$
\begin{gathered}
\alpha_{1}=\alpha \nu, \beta_{1}=\beta \nu \\
\gamma_{1}=(\alpha-\beta)(\alpha+\beta) \nu^{2}+K_{1}(\gamma, \delta) \nu, \delta_{1}=2 \alpha \beta \nu^{2}+K_{2}(\gamma, \delta) \nu \\
c=-\beta\left(\alpha^{2}+\beta^{2}\right) \nu^{3}+K_{3}(\gamma, \delta) \nu^{2} \\
d=\frac{a_{x}^{2}(0,0)}{\beta \nu a_{t}(0,0)}+1+\frac{K_{4}(\gamma, \delta)}{\nu}
\end{gathered}
$$

Case 2. We have:

$$
\begin{gathered}
\alpha_{1}=(\alpha-\beta) \nu, \beta_{1}=(\alpha+\beta) \nu \\
\gamma_{1}=-4 \alpha \beta \nu^{2}+K_{5}(\gamma, \delta) \nu, \delta_{1}=2(\alpha-\beta)(\alpha+\beta) \nu^{2}+K_{6}(\gamma, \delta) \nu
\end{gathered}
$$

$$
\begin{gathered}
c=-2(\alpha+\beta)\left(\alpha^{2}+\beta^{2}\right) \nu^{3}+K_{7}(\gamma, \delta) \nu^{2} \\
d=\frac{a_{x}^{2}(0,0)}{(\alpha+\beta) \nu a_{t}(0,0)}+1+\frac{K_{8}(\gamma, \delta)}{\nu} .
\end{gathered}
$$

Thus we find that there exists a positive constant G_{0} such that, in either case of the above it holds that

$$
\alpha_{1}>0, \beta_{1}<0, \gamma_{1}>0, \delta_{1}<0, c>0 \text { and } d \geq \frac{3}{4}
$$

for every ν satisfying $\nu \geq G_{0}$.
Hereafter let $\nu \geq G_{0}$. Then by Lemma 5 we can take a neighborhood $\Omega_{0}\left(G_{0}\right)$ of the origin to suppose that the following hold: for every ν such that $\nu \geq G_{0}$,

$$
\begin{equation*}
\operatorname{Im} w_{x}(t, x)<0 \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re} w_{x}(t, x)>0 \tag{3.3}
\end{equation*}
$$

in $\Omega_{0}\left(G_{0}\right)$.
Here we remark the following:
The function $i \log u_{x}(t, x)$ is defined as a single-valued function in $\Omega_{0}\left(G_{0}\right)$.
Since $\alpha_{1}>0$ and $\beta_{1}<0$, we can choose a positive constant b satisfying

$$
\begin{equation*}
2 \alpha_{1}+b \beta_{1}=0 \tag{3.4}
\end{equation*}
$$

We set

$$
W(t, x)=w(t, x)+1+i b
$$

We note that

$$
W_{x}(t, x)=w_{x}(t, x) \quad \text { and } \quad W_{t}(t, x)=w_{t}(t, x)
$$

Now, we have the following
Lemma 6. There exists a neighborhood ω_{1} of the origin satisfying

$$
\sup _{\omega_{1}}|W(t, x)|=|W(0,0)|=\frac{2 \sqrt{\alpha_{1}^{2}+\beta_{1}^{2}}}{\left|\beta_{1}\right|}
$$

Proof. Since $W_{x}(t, x)=w_{x}(t, x), \operatorname{Re} W(0,0)=2$ and $\operatorname{Im} W(0,0)=b>0$, we can take a sufficiently small neighborhood $\omega_{1}\left(\subseteq \Omega_{0}\left(G_{0}\right)\right)$ of the origin such that the following hold:

$$
\begin{gather*}
\operatorname{Re} W(t, x)>0 \tag{3.5.1}\\
\operatorname{Im} W(t, x)>0 \tag{3.5.2}\\
\operatorname{Re} W_{x}(t, x)>\frac{\alpha_{1}}{2} \tag{3.5.3}
\end{gather*}
$$

$$
\operatorname{Im} W_{x}(t, x)<\frac{\beta_{1}}{2}
$$

Here we remark that the ω_{1} is dependent of G_{0} but can be chosen independently of ν. Now we set:

$$
f(t, x)=\frac{1}{2}|W(t, x)|^{2}
$$

Since $W(0,0)=2+i b=2\left(1-\frac{\alpha_{1}}{\beta_{1}} i\right)$, we have only to prove the following:
(1) $f_{t}(t, x)=f_{x}(t, x)=0$ in ω_{1} if and only if $(t, x)=(0,0)$.
(2) $f_{t t}(0,0)<0$ and $f_{t x}(0,0)^{2}-f_{t t}(0,0) f_{x x}(0,0)<0$.

Let us set $\operatorname{Re} W(t, x)=A(t, x)$ and $\operatorname{Im} W(t, x)=B(t, x)$. Since $L W(t, x)=0$, we have

$$
\begin{equation*}
A_{t}(t, x)=a(t, x) B_{x}(t, x), B_{t}(t, x)=-a(t, x) A_{x}(t, x) \tag{3.6}
\end{equation*}
$$

First, (1) is proved in the following manner:
Let $f_{t}(t, x)=f_{x}(t, x)=0$ in ω_{1}. From (3.6), this implies

$$
a(t, x)\left\{A(t, x) B_{x}(t, x)-B(t, x) A_{x}(t, x)\right\}=0, A(t, x) A_{x}(t, x)+B(t, x) B_{x}(t, x)=0
$$

Suppose $t \neq 0$. Since $a(t, x) \neq 0$ for $t \neq 0$ by our assumption (a.2), we have

$$
\begin{aligned}
& A(t, x) B_{x}(t, x)-B(t, x) A_{x}(t, x)=0 \\
& A(t, x) A_{x}(t, x)+B(t, x) B_{x}(t, x)=0
\end{aligned}
$$

Since $A_{x}(t, x)^{2}+B_{x}(t, x)^{2} \neq 0$ by (3.5.3), and so $A(t, x)=B(t, x)=0$. This is contradictory to (3.5.1). Therefore t must be 0 . Then it follows that

$$
A(0, x) A_{x}(0, x)+B(0, x) B_{x}(0, x)=0
$$

Since there exist real numbers $\xi_{j}(j=1,2,3,4)$ such that, $\left(0, \xi_{j}\right) \in \omega_{1}$ and

$$
\begin{aligned}
A(0, x) & =A(0,0)+A_{x}(0,0) x+A_{x x}\left(0, \xi_{1}\right) x^{2} \\
A_{x}(0, x) & =A_{x}(0,0)+A_{x x}\left(0, \xi_{2}\right) x \\
B(0, x) & =B(0,0)+B_{x}(0,0) x+B_{x x}\left(0, \xi_{3}\right) x^{2} \\
B_{x}(0, x) & =B_{x}(0,0)+B_{x x}\left(0, \xi_{4}\right) x
\end{aligned}
$$

we have the following:

$$
\begin{aligned}
& A(0, x) A_{x}(0, x)+B(0, x) B_{x}(0, x)= \\
& A(0,0) A_{x}(0,0)+\left\{A(0,0) A_{x x}\left(0, \xi_{2}\right)+A_{x}(0,0)^{2}\right\} x+ \\
& A_{x}(0,0)\left(A_{x x}\left(0, \xi_{1}\right)+A_{x x}\left(0, \xi_{2}\right)\right) x^{2}+ \\
& A_{x x}\left(0, \xi_{1}\right) A_{x x}\left(0, \xi_{2}\right) x^{3}+ \\
& B(0,0) B_{x}(0,0)+\left\{B(0,0) B_{x x}\left(0, \xi_{4}\right)+B_{x x}(0,0)^{2}\right\} x+ \\
& B_{x}(0,0)\left(B_{x x}\left(0, \xi_{3}\right)+B_{x x}\left(0, \xi_{4}\right)\right) x^{2}+ \\
& B_{x x}\left(0, \xi_{3}\right) B_{x x}\left(0, \xi_{4}\right) x^{3}=
\end{aligned}
$$

$$
\begin{gathered}
2 \alpha_{1}+\left\{2 A_{x x}\left(0, \xi_{2}\right)+\alpha_{1}^{2}\right\} x+\alpha_{1}\left(A_{x x}\left(0, \xi_{1}\right)+A_{x x}\left(0, \xi_{2}\right)\right) x^{2}+A_{x x}\left(0, \xi_{1}\right) A_{x x}\left(0, \xi_{2}\right) x^{3}+ \\
b \beta_{1}+\left\{b B_{x x}\left(0, \xi_{4}\right)+\beta_{1}^{2}\right\} x+\beta_{1}\left(B_{x x}\left(0, \xi_{3}\right)+B_{x x}\left(0, \xi_{4}\right)\right) x^{2}+B_{x x}\left(0, \xi_{3}\right) B_{x x}\left(0, \xi_{4}\right) x^{3}= \\
x\left\{2 A_{x x}\left(0, \xi_{2}\right)+\alpha_{1}^{2}+b B_{x x}\left(0, \xi_{4}\right)+\beta_{1}^{2}+\right. \\
\left\{\alpha_{1}\left(A_{x x}\left(0, \xi_{1}\right)+A_{x x}\left(0, \xi_{2}\right)\right)+\beta_{1}\left(B_{x x}\left(0, \xi_{3}\right)+B_{x x}\left(0, \xi_{4}\right)\right)\right\} x+ \\
\left.\left(A_{x x}\left(0, \xi_{1}\right) A_{x x}\left(0, \xi_{2}\right)+B_{x x}\left(0, \xi_{3}\right) B_{x x}\left(0, \xi_{4}\right)\right) x^{2}\right\}
\end{gathered}
$$

(by (3.4)). Therefore we have:

$$
\begin{align*}
& x\left\{2 A_{x x}\left(0, \xi_{2}\right)+\alpha_{1}^{2}+b B_{x x}\left(0, \xi_{4}\right)+\beta_{1}^{2}+\right. \tag{3.7}\\
& \left\{\alpha_{1}\left(A_{x x}\left(0, \xi_{1}\right)+A_{x x}\left(0, \xi_{2}\right)\right)+\beta_{1}\left(B_{x x}\left(0, \xi_{3}\right)+B_{x x}\left(0, \xi_{4}\right)\right)\right\} x+ \\
& \left.\left(A_{x x}\left(0, \xi_{1}\right) A_{x x}\left(0, \xi_{2}\right)+B_{x x}\left(0, \xi_{3}\right) B_{x x}\left(0, \xi_{4}\right)\right) x^{2}\right\}=0 .
\end{align*}
$$

Now we have:

$$
2 A_{x x}(0,0)+\alpha_{1}^{2}+b B_{x x}(0,0)+\beta_{1}^{2}<0
$$

Proof. From (3.4), $\quad b=-\frac{2 \alpha_{1}}{\beta_{1}}$. Hence

$$
\begin{aligned}
& 2 A_{x x}(0,0)+\alpha_{1}^{2}+b B_{x x}(0,0)+\beta_{1}^{2}= \\
& \alpha_{1}^{2}+\beta_{1}^{2}+2\left\{\frac{\beta_{1} A_{x x}(0,0)-\alpha_{1} B_{x x}(0,0)}{\beta_{1}}\right\}=\alpha_{1}^{2}+\beta_{1}^{2}+\frac{2 c}{\beta_{1}}= \\
& 2\left(\alpha_{1}^{2}+\beta_{1}^{2}\right)\left\{\frac{\frac{a_{x}(0,0)^{2}}{a_{t}(0,0)}}{\beta_{1}}+\frac{1}{2}-d\right\}<0
\end{aligned}
$$

by Lemma 5 and our assumption (a.1).
Thus we find that (3.7) implies that $x=0$ and hence $f_{t}(t, x)=f_{x}(t, x)=0$ in ω_{1} implies $(x, t)=(0,0)$. On the other hand it holds that $f_{t}(0,0)=f_{x}(0,0)=0$ by (3.4).

Therefore, we have proved: $f_{t}(t, x)=f_{x}(t, x)=0$ in $\omega_{1} \Longleftrightarrow(x, t)=(0,0)$.
Next, (2) is proved in the following way:
Using (3.6), we have

$$
\begin{gathered}
f_{t x}=A_{t} A_{x}+\left(A B_{x}-B A_{x}\right) a_{x}(t, x)+\left(A B_{x x}-B A_{x x}\right) a(t, x) \\
f_{t t}=A_{t}^{2}+B_{t}^{2}+\left(A B_{x}-B A_{x}\right) a_{t}(t, x)+\left(A B_{t x}-B A_{t x}\right) a(t, x) \\
f_{x x}=A_{x}^{2}+B_{x}^{2}+A A_{x x}+B B_{x x}
\end{gathered}
$$

Hence, we have

$$
f_{t t}(0,0)=\left(2 \beta_{1}-b \alpha_{1}\right) a_{t}(0,0)
$$

and

$$
\begin{gathered}
f_{t x}(0,0)^{2}-f_{t t}(0,0) f_{x x}(0,0)= \\
\left(2 \beta_{1}-b \alpha_{1}\right)^{2} a_{x}(0,0)^{2}-\left(2 \beta_{1}-b \alpha_{1}\right)\left(\alpha_{1}^{2}+\beta_{1}^{2}+2 \gamma_{1}+b \delta_{1}\right) a_{t}(0,0)= \\
\left(2 \beta_{1}-b \alpha_{1}\right)^{2} a_{t}(0,0)\left\{\frac{a_{x}(0,0)^{2}}{a_{t}(0,0)}-\frac{\alpha_{1}^{2}+\beta_{1}^{2}+2 \gamma_{1}+b \delta_{1}}{2 \beta_{1}-b \alpha_{1}}\right\} .
\end{gathered}
$$

Substituting $\quad b=-\frac{2 \alpha_{1}}{\beta_{1}}$, we have

$$
2 \beta_{1}-b \alpha_{1}=\frac{2\left(\alpha_{1}^{2}+\beta_{1}^{2}\right)}{\beta_{1}}
$$

Hence we have

$$
\begin{aligned}
& \frac{a_{x}(0,0)^{2}}{a_{t}(0,0)}-\frac{\alpha_{1}^{2}+\beta_{1}^{2}+2 \gamma_{1}+b \delta_{1}}{2 \beta_{1}-b \alpha_{1}}= \\
& \frac{a_{x}(0,0)^{2}}{a_{t}(0,0)}-\frac{\beta_{1} \gamma_{1}-\alpha_{1} \delta_{1}}{\alpha_{1}^{2}+\beta_{1}^{2}}-\frac{\beta_{1}}{2}=\beta_{1} d-\frac{\beta_{1}}{2}=\beta_{1}\left(d-\frac{1}{2}\right) .
\end{aligned}
$$

Therefore by Lemma 5, we see: $f_{t t}(0,0)<0, f_{t x}(0,0)^{2}-f_{t t}(0,0) f_{x x}(0,0)<0$.

Now let us set $U(t, x)=i \log u_{x}(t, x)$ (We have remarked that $U(t, x)$ is a single-valued function in ω_{1}). From (3.1'), we see:

$$
\begin{equation*}
L U(t, x)=a_{x}(t, x) \quad \text { in } \quad \omega_{1} . \tag{3.8}
\end{equation*}
$$

Let ϵ be an arbitrary positive number. Taking ν large such that $\left\{(t, x) ; 0 \leq t<\nu^{-\epsilon},|x|<\right.$ $\left.\nu^{-\epsilon}\right\} \subset \omega_{1}$, we set $r=\nu^{-\epsilon}$ and $D(r)=\{(t, x) ; 0 \leq t<r,|x|<r\}$. Then we obtain the following

Lemma 7.

$$
\begin{aligned}
& -\iint_{D(r)} a_{x}(t, x) W_{x}(t, x) d t d x= \\
& \int_{\partial D(r)} W(t, x) U_{t}(t, x) d t+W(t, x) U_{x}(t, x) d x .
\end{aligned}
$$

Proof. From (3.8), we have

$$
\begin{gather*}
\iint_{D(r)}-W_{x}(t, x)\left\{U_{t}(t, x)+i a(t, x) U_{x}(t, x)\right\} d t d x= \tag{3.9}\\
\iint_{D(r)}-a_{x}(t, x) W_{x}(t, x) d t d x
\end{gather*}
$$

Since $W_{t}(t, x)=-i a(t, x) W_{x}(t, x)$, the left-hand side of $(3.9)=$

$$
\iint_{D(r)}-\left\{W_{x}(t, x) U_{t}(t, x)-W_{t}(t, x) U_{x}(t, x)\right\} d t d x=
$$

$$
\begin{gathered}
\iint_{D(r)} d\{W(t, x) d U(t, x)\}= \\
\int_{\partial D(r)} W(t, x) U_{t}(t, x) d t+W(t, x) U_{x}(t, x) d x
\end{gathered}
$$

From Lemma 7, we thus have:

$$
\begin{gather*}
\left|\iint_{D(r)} a_{x}(t, x)\left\{\operatorname{Re} W_{x}(t, x)+i \operatorname{Im} W_{x}(t, x)\right\} d t d x\right| \leq \tag{3.10}\\
\left|\int_{\partial D(r)} W(t, x) U_{t}(t, x) d t+W(t, x) U_{x}(t, x) d x\right|
\end{gather*}
$$

We shall estimate the right-hand side and the left-hand one of (3.10). Firstly the left-hand side is estimated as follows:

$$
\begin{gathered}
\left|\iint_{D(r)} a_{x}(t, x)\left\{\operatorname{Re} W_{x}(t, x)+i \operatorname{Im} W_{x}(t, x)\right\} d t d x\right| \geq \\
\frac{\sqrt{\alpha_{1}^{2}+\beta_{1}^{2}}}{4} \iint_{D(r)} a_{x}(t, x) d t d x
\end{gathered}
$$

Proof. The left-hand side above \geq

$$
\frac{\left|\iint_{D(r)} a_{x}(t, x) A_{x}(t, x) d t d x\right|+\left|\iint_{D(r)} a_{x}(t, x) B_{x}(t, x) d t d x\right|}{\sqrt{2}} .
$$

By (3.5.3) and (3.5.4),

$$
\begin{gathered}
\left|\iint_{D(r)} a_{x}(t, x) A_{x}(t, x) d t d x\right|= \\
\iint_{D(r)} a_{x}(t, x) A_{x}(t, x) d t d x \geq \\
\frac{\alpha_{1}}{2} \iint_{D(r)} a_{x}(t, x) d t d x . \\
\left|\iint_{D(r)} a_{x}(t, x) B_{x}(t, x) d t d x\right|= \\
\iint_{D(r)} a_{x}(t, x)\left\{-B_{x}(t, x)\right\} d t d x \geq \\
\quad-\frac{\beta_{1}}{2} \iint_{D(r)} a_{x}(t, x) d t d x .
\end{gathered}
$$

Hence we see

$$
\frac{\left|\iint_{D(r)} a_{x}(t, x) A_{x}(t, x) d t d x\right|+\left|\iint_{D(r)} a_{x}(t, x) B_{x}(t, x) d t d x\right|}{\sqrt{2}} \geq
$$

$$
\begin{gathered}
\frac{\alpha_{1}-\beta_{1}}{2 \sqrt{2}} \iint_{D(r)} a_{x}(t, x) d t d x> \\
\frac{\sqrt{\alpha_{1}^{2}+\beta_{1}^{2}}}{4} \iint_{D(r)} a_{x}(t, x) d t d x
\end{gathered}
$$

Next, since

$$
\begin{aligned}
& \left|\int_{\partial D(r)} W(t, x) U_{t}(t, x) d t+W(t, x) U_{x}(t, x) d x\right| \leq \\
& \int_{\partial D(r)}|W(t, x)|\left|U_{t}(t, x)\right| d t+|W(t, x)|\left|U_{x}(t, x)\right| d x,
\end{aligned}
$$

we find that there exists a positive constant C_{0} satisfying

$$
\begin{gathered}
\left|\int_{\partial D(r)} W(t, x) U_{t}(t, x) d t+W(t, x) U_{x}(t, x) d x\right| \leq \\
C_{0}|\partial D(r)| \sup _{\partial D(r)}|W(t, x)|
\end{gathered}
$$

Thus we have the following estimate:

$$
\begin{gathered}
\frac{\sqrt{\alpha_{1}^{2}+\beta_{1}^{2}}}{4} \iint_{D(r)} a_{x}(t, x) d t d x \leq \\
C_{0}|\partial D(r)| \sup _{\partial D(r)}|W(t, x)|
\end{gathered}
$$

Making use of Lemma 5 and the above inequality, at last we have

$$
\iint_{D(r)} a_{x}(t, x) d t d x \leq 8 C_{0} \frac{|\partial D(r)|}{\left|\beta_{1}\right|} .
$$

From this we easily obtain the conclusion of Theorem I.

4. Proof of Theorem 2

Suppose that $L u=0$ holds in a neighborhood $\omega=\left(-\epsilon_{1}, \epsilon_{1}\right) \times\left(-\epsilon_{1}, \epsilon_{1}\right)$ of the origin where ϵ_{1} is a positive constant. Needless to say, we may suppose that ta(t,x)>0 and $t a_{x}(t, x) \geq 0$ in $\omega \backslash\{t=0\}$.

Now we have the following:
Lemma 8. There exists a sequence $\left\{x_{m}\right\}$ of positive numbers which tends to 0 as $m \longrightarrow \infty$ such that $u_{x}\left(0, x_{m}\right) \neq 0(m=1,2, \cdots)$.

Proof. Assume that there is a positive constant $\epsilon_{0} \leq \epsilon_{1}$ such that $u_{x}(0, x)$ vanishes in $\left\{x ; 0 \leq x \leq \epsilon_{0}\right\}$.

Setting $v=u_{x}(t, x)$, we have $L v+i a_{x}(t, x) v=0$. Since $v(0, x)=0$ in $\left\{x ; 0 \leq x \leq \epsilon_{0}\right\}$ and $\operatorname{ta}(t, x)>0$ for $t \neq 0$, applying the uniqueness theorem (see [4] or [11]), we find that v vanishes in $\left[-\epsilon_{0}, \epsilon_{0}\right] \times\left[0, \epsilon_{0}\right]$. Then, since L is elliptic for $t \neq 0$, we can apply the unique continuation theorem to conclude that v must vanish in ω. Thus we arrive at the contradiction that u is constant.

Hence we see that Lemma 8 holds.
By virtue of Lemma 8, we find that the same manner as is employed in the proof of Theorem 1 can be applied by only replacing the reasoning near the origin with the one near the point $\left(0, x_{m}\right)$ to get the conclusion of Theorem 2 .

5. Proof of Corollary

It is clear that the assumptions (a.1) and (a.2) hold. Now assume the contrary. Then there exist positive constants x_{m}, C_{m}, and G_{m} satisfying that, for every positive constant ϵ and for every positive constant ν larger than G_{m}

$$
\begin{equation*}
\iint_{\left\{(t, x) ; 0 \leq t<\nu^{-\epsilon},\left|x-x_{m}\right|<\nu^{-\epsilon}\right\}} a_{x}(t, x) d t d x \leq C_{m} \nu^{-1-\epsilon} \tag{4.1}
\end{equation*}
$$

First, we take the positive integer p such that $\frac{1}{p+1}<x_{m} \leq \frac{1}{p}$ and set $\epsilon=\frac{1}{5}$. Next, we take ν sufficiently large such that $\nu^{-\frac{1}{5}}<\frac{1}{p}-\frac{1}{p+1}\left(=a_{p}-a_{p+1}\right)$. Next, we take the positive integer N such that $\frac{1}{N} \leq \nu^{-\frac{1}{5}}<\frac{1}{N-1}$. Then, from (4.1), we have

$$
\sum_{k=N}^{\infty} \nu^{-\frac{1}{5}} \cdot a_{k+4} \cdot\left(\frac{a_{k}-a_{k+1}}{2^{2}}\right) \cdot\left(a_{k+2}-a_{k+3}\right) \leq C_{m} \nu^{-1-\frac{1}{5}}
$$

Hence we have

$$
\begin{equation*}
\sum_{k=N}^{\infty} \frac{\left(a_{k}-a_{k+1}\right)\left(a_{k+2}-a_{k+3}\right) a_{k+4}}{2^{2}} \leq C_{m} \nu^{-1} \tag{4.2}
\end{equation*}
$$

The lefthand side of $(4.2)=\frac{1}{4 N(N+1)(N+2)(N+3)}$. Therefore we have:

$$
\begin{equation*}
\frac{1}{4 N(N+1)(N+2)(N+3)} \leq C_{m} \nu^{-1} \leq \frac{C_{m}}{(N-1)^{5}} \tag{4.3}
\end{equation*}
$$

Since N can be taken sufficiently large, (4.3) produces a contradiction.

References

1. L. Hölmander, Linear Partial Differential Operators, Springer-Verlag, New York, 1969.
2. H. Lewy, On the local character of the solutions of an atypical linear partial differential equation in three variables and a related theorem for regular functions of two complex variables, Ann. Math. 64 (1956), 514-522.
3. H. Lewy, On hulls of holomorphy, Comm.Pure Apply. Math. 13 (1960), 587-591.
4. H. Ninomiya, Some Remarks on the Uniqueness in the Cauchy Problem for a First-Order Partial Differential Equation in Two Variables, Memo. Osaka Institute of Tech. Series A 19(2) (1975), 83-92.
5. H. Ninomiya, A note on the Nirenberg example, Funkcialaj Ekvacioj (Serio Internacia) 39(3) (1996), 339-402.
6. H. Ninomiya, A necessary condition of local integrability for a nowhere-zero complex vector field in \mathbb{R}^{2}, Scientiae Mathematicae 2(1) (1999), 1-9.
7. H. Ninomiya, On a property of Nirenberg type operator, J. of Math. of Kyoto Univ. 38(3) (1998), 173-184.
8. H. Ninomiya, A necessary and sufficient condition of local integrability, J. of Math. of Kyoto Univ. 39(4) (1999), 685-696.
9. L. Nirenberg, Lectures on linear partial differential equations, Reg.Conf. Series in Math. $\mathbf{1 7}$ A.M.S. (1973).
10. J. Sjöstrand, Note on a paper of F. Treves, Duke Math.J. $47(3)$ (1981), 601-608.
11. M. Strauss \& F. Treves, First-Order Linear PDEs and Uniqueness in the Cauchy problem, J. Differential Equations 15 (1974), 195-209.
12. F. Treves, Remarks about certain first-order linear PDE in two variables, Comm. in Partial Differential Equations 15 (1980), 381-425.
13. F. Treves, On the local integrability and local solvability of systems of vector fields, Acta Math. 151 (1983), 1-38.
14. F. Treves, Approximation and representation of functions and distributions annihilated by a system of complex vector fields, École Polytechnique Centre de Mathématiques (1981).

Department of mathematics, Osaka Institute of Technology, 5chome-16-1, Ohmiya Asahiku, Osaka 535, Japan

E-mail address: ninomiya@ge.oit.ac.jp

[^0]: 1991 Mathematics Subject Classification. Primary 35A07; Secondary 35Fxx, 32F40.
 Key Words and Phrases.Local integrability, complex vector field, non-solvable operator.

[^1]: *If X_{n} is locally integrable, then the equation $X_{n} u=0$ trivially has a non-trivial solution. But we remark that the converse is not necessarily true: by virtue of Hölmander([1], Theorem 8.9.2), we see that there exists a X_{2} having the property that the equation $X_{2} u=0$ has a non-trivial solution near the origin and X_{2} is not locally integrable at the origin.

