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STRUCTURE OF RINGS WITH A CONDITION ON ZERO DIVISORS
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Abstract. Let R be a ring such that every zero divisor is nilpotent. We call such a ring

a D-ring. We give the structure of periodic D-rings, weakly periodic D-rings, Artinian

D-rings, semiperfect D-rings, von Neumann regular D-rings, D-rings satisfying certain

polynomial identities, and semiprime D-rings. We also include some indecomposability

results.

1. Introduction

Throughout, R will represent an associative ring, N the set of nilpotent elements of R,

J the Jacobson radical, and C(R) the commutator ideal of R. For each integer n > 1;

we set En = fx 2 Rjxn = xg: An element x in R is called potent if x 2 [1
n=2

En: A

ring R is called periodic if for every x in R, xm = xn for some distinct positive integers

m =m(x); n = n(x): By a theorem of Chacron(see [4; Theorem 1]) R is periodic if and only

if for each x 2 R; there exists a positive integer k = k(x) and a polynomial f(�) = fx(�)

with integer coeÆcients such that xk = xk+1f(x): A ring R is called weakly periodic if every

element of R is expressible as a sum of a nilpotent element and a potent element of R:

Recall that a ring R is local [2; page 170] if and only if R=J is a division ring. We study

rings in which every zero divisor (left or right) is nilpotent. We call such a ring a D-ring.

Clearly, every nil ring is a D-ring; every domain is a D-ring; and the ring of integers (mod

pk), p prime, is a D-ring. A less trivial example is Example 1.1 of [11].

2. Structural results for various classes of D-rings

We start by stating the following lemmas.

Lemma 1. Let R be D-ring. Then aR is a nil right ideal for all a 2 N:

Lemma 1 follows at once, since ak = 0; ak�1 6= 0 implies ak�1(ax) = 0; and thus ax 2 N:

Lemma 2. Let R be a D-ring. If e is an idempotent element of R; then e = 0 or e = 1:

Proof. Suppose e2 = e 6= 0; and x 2 R: Then e(ex�x) = 0 and hence ex�x = 0; otherwise,

e will be nilpotent (R is a D-ring) forcing e = 0: Similarly, xe � x = 0 for all x in R; and

thus e = 1:

Theorem 1. Let R be a D-ring such that N is an ideal of R. Then, either R = N or R=N

is a domain.
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Proof. Suppose that R 6= N: Let �x = x +N and �y = y +N be two elements in R=N such

that �x�y = �0: Then xy 2 N: This implies that (xy)m = 0 and (xy)m�1 6= 0 for some positive

integer m: Hence (xy)m�1(xy) = 0: This implies that

y is a zero divisor or (xy)m�1x = 0;

therefore, y is a zero divisor or x is a zero divisor, since (xy)m�1 6= 0: Hence y 2 N or

x 2 N; so �x = �0 or �y = �0; and thus R=N is a domain.

Corollary 1. Let R be a D-ring with N commutative. Then either R = N; or N is an

ideal and R=N is a domain.

Proof. If N is commutative, N is an additive subgroup of R; hence an ideal by Lemma 1.

Theorem 2. If R is a periodic D-ring, then R is either nil or local. Further, if R has an

identity element, then N is an ideal and R=N is a �eld.

Proof. Since R is periodic, for each x 2 R; there exists a positive integer k = k(x) such that

xk is idempotent [4]. Using Lemma 2, xk = 0 or xk = 1; and hence x is either nilpotent or

invertible. Therefore, R is nil or local. If R has an identity element, then R is local, and

hence N is an ideal. Thus, R=N is a periodic division ring, and hence R=N is a �eld.

Theorem 3. Let R be an Artinian D-ring such that R 6= N: Then R has an identity and

R is a local ring. In fact, N = J and R=N is a division ring.

Proof. Let a be any element of N . Then by Lemma 1, aR is a nil right ideal of R: This

implies that aR � J for all a 2 N; hence a 2 J and thus N � J: Also, R being Artinian

implies that J is a nilpotent ideal and hence J � N: It follows that N = J is an ideal, and

hence by Theorem 1, R=N is a domain. Thus, R=N is an Artinian domain which can be

easily shown to be a division ring. Since N = J; we see that R is a local ring. Let �e = e+N

be the identity element of R=N: Then e� e2 2 N and hence there exists a positive integer

k such that ek = ek+1p(e) for some polynomial p(�) 2 Z[�]: From this equation, it is easy

to show that ek(p(e))k is a nonzero idempotent; hence 1 2 R; by Lemma 2.

Now, we consider semiperfect D-rings. Recall that a ring R is semiperfect [2] if and only

if R=J is semisimple (Artinian) and idempotents lift modulo J:

Theorem 4. A semiperfect D-ring R such that R 6= J must be local.

Proof. Let R be a semiperfect D-ring such that R 6= J: Then R=J is semisimple (Artinian)

with more than one element, and hence it is isomorphic to a �nite direct product R1�R2�
� � � �Rn where each Ri is a complete ti� ti matrix ring over a division ring Di: By Lemma

2, the only idempotents of R are 0 and 1: Since R is semiperfect, the idempotents of R=J

lift to idempotents in R: Hence, �0 and �1 are the only idempotents of R=J: If n > 1; then

the element (0; : : : ; 0; 1j ; 0; : : : ; 0); where 1j is the identity of Rj ; is an idempotent of R=J

other that �0 and �1; so n = 1 and R=J �= R1; the complete t1� t1 matrix ring over a division

ring D1: Now, if t1 > 1; then E11 is an idempotent of R=J other than �0 and �1; therefore

t1 = 1 and R=J �= D1: Hence, R is local.

Remark. Note that J need not be equal to N in Theorem 4, as a consideration of this local

(and hence semiperfect) ring shows:

Z(p) =
na
b
2 Qjb 62 pZ; (a; b) = 1; p prime

o
:

Here, Z(p) is a D-ring, since it is a domain, and J 6= N [2; p. 174].
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Recall that a ring R is regular (von Neumann) if for each a in R; there exists an element

x in R such that axa = a: A ring is said to be � � regular if for each a in R; there exists

a positive integer n; and an element x in R such that anxan = an: A ring R is called

semiprimitive if J = f0g:

Theorem 5. Let R be a D-ring with R 6= N:

(i) If R has no nonzero nil ideals, then R is prime.

(ii) If R has no nonzero nil right ideals, then R is a domain.

(iii) If R is semiprimitive, then R is a domain.

(iv) If R is regular, then R is a division ring.

(v) If R is ��regular, then N is an ideal and R=N is a division ring.

Proof.

(i) Let K be any nonzero right ideal. Then the right annihilator Ar(K) is a nil ideal

and hence Ar(K) = f0g: This implies that R is a prime ring [9; p. 44].

(ii) Let a; b 2 N: Then aR; bR are nil right ideals, by Lemma 1. Hence aR = bR = f0g;
by hypothesis, so a2 = 0 = ab = ba = b2 for all a; b 2 N: Therefore, (a� b)2 = 0;

and a� b 2 N: Moreover, for all a in N; aR � N (Lemma 1), and hence N is

a nil right ideal of R: Thus, N = f0g by hypothesis, and hence R is a domain by

Theorem 1.(Recall that, by hypothesis, R 6= N:)

(iii) This is an immediate consequence of (ii) (since J = f0g and any nil right ideal of

R is contained in J).

(iv) Let a be a nonzero element of R: Since R is regular, there exists an element x 2 R

such that axa = a: This implies that (ax)2 = ax; and thus ax is an idempotent

element in R; hence, by Lemma 2, ax = 0 or ax = 1: If ax = 0; then a = axa = 0:

This is not true since a 6= 0; so ax = 1: Similarly, xa = 1: Hence, a is invertible and

thus R is a division ring.

(v) Suppose that R is �-regular, and let a 2 R: Then, anxan = an for some x 2 R and

some positive integer n: This implies that (anx)2 = anx; so by Lemma 2, anx = 0

or anx = 1: Thus, an = anxan = 0 or anx = 1; so a 2 N or a has a right inverse.

Similarly, a 2 N or a has a left inverse; hence for all a 2 R; either a 2 N or

a is invertible, which readily implies that N is an ideal and R=N is a division ring.

3. D-rings and commutativity conditions

In this section we study the structure of periodic D-rings, weakly periodic D-rings,

semiprime D-rings, and D-rings satisfying certain polynomial identities. We will begin

with the following lemmas which were proved in [7].

Lemma 3. Let R be a weakly periodic ring. Then the Jacobson radical J of R is nil. If,

furthermore, xR � N for all x 2 N; then N = J and R is periodic.

Lemma 4. If R is a weakly periodic division ring, then R is a �eld.

Theorem 6. If R is a periodic D-ring, then C(R) is nil.

Proof. If R is nil, there is nothing to prove. Suppose R 6= N; and let x 2 RnN: Then
xn = xm for some integers n > m � 1: It is readily veri�ed that xm(n�m) is a nonzero
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idempotent, and hence by Lemma 2, 1 2 R: By Theorem 2, R is local, N is an ideal, and

R=N is a �eld. Thus, C(R) is nil.

Theorem 7. If R is a weakly periodic D-ring, then R is periodic.

Proof. Since R is a D-ring, aR is a nil right ideal for all a 2 N; by Lemma 1. By Lemma

3, N = J and R is periodic.

Theorem 8. Let R be a semiprime D-ring with commuting nilpotent elements, and suppose

R 6= N: Then R is a domain.

Proof. Let a 2 N with an = 0: By Lemma 1, aR � N: Moreover, since N is commutative,

it follows that (aR)n = f0g: Thus aR = f0g; since R is semiprime; hence a = 0 and R has

no zero divisors.

Remark. The hypothesis that R is a D-ring in Theorem 8 cannot be dropped, as a consid-

eration of the ring of integers mod 6 shows.

Theorem 9. Let R be a semiprime D-ring with R 6= N: If R satis�es a polynomial identity,

then R is a domain.

Proof. Let a be any nilpotent element of R: Then, by Lemma 1, aR is nil right ideal of R:

Suppose aR 6= f0g: Since, by hypothesis, R satis�es a polynomial identity, aR is a nonzero

nil right ideal satisfying the same polynomial identity. Hence, by Lemma 2.1.1 of [8], R has

a nonzero nilpotent ideal, contradicting the fact that R is semiprime. Thus aR = f0g and

hence a = 0: Therefore, N = f0g and hence R is a domain.

A consequence of Theorem 9 is the following:

Theorem 10. Let f(x1; x2; : : : ; xn) be a polynomial in n noncommuting indeterminates

with relatively prime integer coeÆcients, such that for each prime p the indentity f = 0 is

not satis�ed by the ring of 2� 2 matrices over GF (p): Then every semiprime D-ring R in

which R 6= N and which satis�es the identity f = 0 is a commutative domain.

Proof. That R is a domain follows from the previous theorem. That it is commutative

follows by a theorem of Kezlan [10].

Let [x1; x2]1 = [x1; x2] denote x1x2 � x2x1; and for k > 1; let [x1; x2; : : : ; xk+1] =

[[x1; : : : ; xk ]; xk+1]: For x1 = x and x2 = x3 = � � � = xk+1 = y; denote the extended

commutator [x; y; : : : ; y] by [x; y]k:Next, we considerD-rings with a certain variable identity.

Theorem 11. Let R be a semiprime D-ring such that R 6= N: If for each x; y in R; there

exist positive integers m = m(x; y) � S; and n = n(x; y) � T; where S and T are �xed

positive integers, such that [xm; yn]k = 0; k � 1 �xed, then R is a domain.

Proof. Clearly R satis�es the polynomial identity

[x; y]k[x; y
2]k � � � [x; y

T ]k[x
2; y]k � � � [x

2; yT ]k � � � [x
S ; y]k � � � [x

S ; yT ]k = 0:

The theorem now follows from Theorem 9.

3. Indecomposability considerations

The following theorem is immediate from the de�nition of D-ring and known results on

direct-product decompositions of rings R in which (R;+) is a torsion group.
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Theorem 12. Let R be an arbitrary D-ring and T its ideal of torsion elements. Then R

is either nil or indecomposable. Moreover, either T is a nil ideal or (T;+) is a p-group for

some prime p.

This theorem, together with known results on direct-sum decomposition, provides struc-

tural dichotomy theorems for certain classes of D-rings. Our �nal two theorems provide a

sample of theorems of this type.

In [5] a ring R is de�ned to be quasi-Boolean if for each x 2 R there exists an integer

n = n(x) � 1 for which xn = xn+1; and it is proved that a quasi-Boolean ring is a direct

sum of a Boolean ring and a nil ring if and only if it contains no subring isomorphic to Q2

or Q2

0; where Q2 (resp. Q2

0) denotes the ring of 2 � 2 matrices over GF (2) with second

row (resp. second column) zero. This result, together with Theorem 12, yields

Theorem 13. A quasi-Boolean D-ring is either GF (2) or a nil ring.

Proof. Let R be any quasi-Boolean D-ring. Clearly, Q2 and Q
0

2
are not D-rings, hence R is

a direct sum of a Boolean ring and a nil ring; and by Theorem 12, R is either Boolean or

nil. But by Lemma 2, the only Boolean D-ring is GF (2):

Theorem 14. Let R be a D-ring such that for each x; y 2 R there exists a polynomial

p(X;Y ) in two noncommuting indeterminates, with integer coeÆcients, for which

(�) xy = (xy)2p(x; y):

Then R is either a zero ring or a periodic �eld.

Proof. Theorem 1 of [6] states that any ring R satisfying (�) is a direct sum of a J-ring

(i.e. a ring in which every element is potent) and a zero ring. In view of Theorem 12, a

D-ring with (�) must be either a J-ring or a zero ring. By Lemma 2, D-rings which are also

J-rings must be periodic division rings; and J-rings are commutative by Jacobson's famous

\an = a Theorem."
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