STRUCTURE OF RINGS WITH A CONDITION ON ZERO DIVISORS

Hazar Abu-Khuzam, Howard E. Bell, and Adil Yaqub

Received May 9, 2000

Abstract

Let R be a ring such that every zero divisor is nilpotent. We call such a ring a D-ring. We give the structure of periodic D-rings, weakly periodic D-rings, Artinian D-rings, semiperfect D-rings, von Neumann regular D-rings, D-rings satisfying certain polynomial identities, and semiprime D-rings. We also include some indecomposability results.

1. Introduction

Throughout, R will represent an associative ring, N the set of nilpotent elements of R, J the Jacobson radical, and $C(R)$ the commutator ideal of R. For each integer $n>1$, we set $E_{n}=\left\{x \in R \mid x^{n}=x\right\}$. An element x in R is called potent if $x \in \cup_{n=2}^{\infty} E_{n}$. A ring R is called periodic if for every x in $R, x^{m}=x^{n}$ for some distinct positive integers $m=m(x), n=n(x)$. By a theorem of Chacron(see [4; Theorem 1]) R is periodic if and only if for each $x \in R$, there exists a positive integer $k=k(x)$ and a polynomial $f(\lambda)=f_{x}(\lambda)$ with integer coefficients such that $x^{k}=x^{k+1} f(x)$. A ring R is called weakly periodic if every element of R is expressible as a sum of a nilpotent element and a potent element of R. Recall that a ring R is local [2; page 170] if and only if R / J is a division ring. We study rings in which every zero divisor (left or right) is nilpotent. We call such a ring a D-ring. Clearly, every nil ring is a D-ring; every domain is a D-ring; and the ring of integers (mod p^{k}, p prime, is a D-ring. A less trivial example is Example 1.1 of [11].

2. Structural results for various classes of D-Rings

We start by stating the following lemmas.
Lemma 1. Let R be D-ring. Then $a R$ is a nil right ideal for all $a \in N$.
Lemma 1 follows at once, since $a^{k}=0, a^{k-1} \neq 0$ implies $a^{k-1}(a x)=0$, and thus $a x \in N$.
Lemma 2. Let R be a D-ring. If e is an idempotent element of R, then $e=0$ or $e=1$.
Proof. Suppose $e^{2}=e \neq 0$, and $x \in R$. Then $e(e x-x)=0$ and hence $e x-x=0$; otherwise, e will be nilpotent (R is a D-ring) forcing $e=0$. Similarly, $x e-x=0$ for all x in R, and thus $e=1$.

Theorem 1. Let R be a D-ring such that N is an ideal of R. Then, either $R=N$ or R / N is a domain.

[^0]Proof. Suppose that $R \neq N$. Let $\bar{x}=x+N$ and $\bar{y}=y+N$ be two elements in R / N such that $\bar{x} \bar{y}=\overline{0}$. Then $x y \in N$. This implies that $(x y)^{m}=0$ and $(x y)^{m-1} \neq 0$ for some positive integer m. Hence $(x y)^{m-1}(x y)=0$. This implies that

$$
y \text { is a zero divisor or }(x y)^{m-1} x=0 ;
$$

therefore, y is a zero divisor or x is a zero divisor, since $(x y)^{m-1} \neq 0$. Hence $y \in N$ or $x \in N$, so $\bar{x}=\overline{0}$ or $\bar{y}=\overline{0}$, and thus R / N is a domain.

Corollary 1. Let R be a D-ring with N commutative. Then either $R=N$, or N is an ideal and R / N is a domain.
Proof. If N is commutative, N is an additive subgroup of R, hence an ideal by Lemma 1 .
Theorem 2. If R is a periodic D-ring, then R is either nil or local. Further, if R has an identity element, then N is an ideal and R / N is a field.

Proof. Since R is periodic, for each $x \in R$, there exists a positive integer $k=k(x)$ such that x^{k} is idempotent [4]. Using Lemma $2, x^{k}=0$ or $x^{k}=1$, and hence x is either nilpotent or invertible. Therefore, R is nil or local. If R has an identity element, then R is local, and hence N is an ideal. Thus, R / N is a periodic division ring, and hence R / N is a field.

Theorem 3. Let R be an Artinian D-ring such that $R \neq N$. Then R has an identity and R is a local ring. In fact, $N=J$ and R / N is a division ring.

Proof. Let a be any element of N. Then by Lemma $1, a R$ is a nil right ideal of R. This implies that $a R \subseteq J$ for all $a \in N$, hence $a \in J$ and thus $N \subseteq J$. Also, R being Artinian implies that J is a nilpotent ideal and hence $J \subseteq N$. It follows that $N=J$ is an ideal, and hence by Theorem $1, R / N$ is a domain. Thus, R / N is an Artinian domain which can be easily shown to be a division ring. Since $N=J$, we see that R is a local ring. Let $\bar{e}=e+N$ be the identity element of R / N. Then $e-e^{2} \in N$ and hence there exists a positive integer k such that $e^{k}=e^{k+1} p(e)$ for some polynomial $p(\lambda) \in \mathbb{Z}[\lambda]$. From this equation, it is easy to show that $e^{k}(p(e))^{k}$ is a nonzero idempotent; hence $1 \in R$, by Lemma 2 .

Now, we consider semiperfect D-rings. Recall that a ring R is semiperfect [2] if and only if R / J is semisimple (Artinian) and idempotents lift modulo J.

Theorem 4. A semiperfect $D-$ ring R such that $R \neq J$ must be local.
Proof. Let R be a semiperfect D-ring such that $R \neq J$. Then R / J is semisimple (Artinian) with more than one element, and hence it is isomorphic to a finite direct product $R_{1} \times R_{2} \times$ $\cdots \times R_{n}$ where each R_{i} is a complete $t_{i} \times t_{i}$ matrix ring over a division ring D_{i}. By Lemma 2 , the only idempotents of R are 0 and 1 . Since R is semiperfect, the idempotents of R / J lift to idempotents in R. Hence, $\overline{0}$ and $\overline{1}$ are the only idempotents of R / J. If $n>1$, then the element $\left(0, \ldots, 0,1_{j}, 0, \ldots, 0\right)$, where 1_{j} is the identity of R_{j}, is an idempotent of R / J other that $\overline{0}$ and $\overline{1}$; so $n=1$ and $R / J \cong R_{1}$, the complete $t_{1} \times t_{1}$ matrix ring over a division ring D_{1}. Now, if $t_{1}>1$, then E_{11} is an idempotent of R / J other than $\overline{0}$ and $\overline{1}$; therefore $t_{1}=1$ and $R / J \cong D_{1}$. Hence, R is local.

Remark. Note that J need not be equal to N in Theorem 4, as a consideration of this local (and hence semiperfect) ring shows:

$$
\mathbb{Z}_{(p)}=\left\{\left.\frac{a}{b} \in \mathbb{Q} \right\rvert\, b \notin p \mathbb{Z},(a, b)=1, p \text { prime }\right\}
$$

Here, $\mathbb{Z}(p)$ is a D-ring, since it is a domain, and $J \neq N[2 ;$ p. 174].

Recall that a ring R is regular (von Neumann) if for each a in R, there exists an element x in R such that axa $=a$. A ring is said to be $\pi-r e g u l a r$ if for each a in R, there exists a positive integer n, and an element x in R such that $a^{n} x a^{n}=a^{n}$. A ring R is called semiprimitive if $J=\{0\}$.

Theorem 5. Let R be a D-ring with $R \neq N$.
(i) If R has no nonzero nil ideals, then R is prime.
(ii) If R has no nonzero nil right ideals, then R is a domain.
(iii) If R is semiprimitive, then R is a domain.
(iv) If R is regular, then R is a division ring.
(v) If R is π-regular, then N is an ideal and R / N is a division ring.

Proof.
(i) Let K be any nonzero right ideal. Then the right annihilator $A_{r}(K)$ is a nil ideal and hence $A_{r}(K)=\{0\}$. This implies that R is a prime ring [9; p. 44].
(ii) Let $a, b \in N$. Then $a R, b R$ are nil right ideals, by Lemma 1. Hence $a R=b R=\{0\}$, by hypothesis, so $a^{2}=0=a b=b a=b^{2}$ for all $a, b \in N$. Therefore, $(a-b)^{2}=0$, and $a-b \in N$. Moreover, for all a in $N, a R \subseteq N$ (Lemma 1), and hence N is a nil right ideal of R. Thus, $N=\{0\}$ by hypothesis, and hence R is a domain by Theorem 1.(Recall that, by hypothesis, $R \neq N$.)
(iii) This is an immediate consequence of (ii) (since $J=\{0\}$ and any nil right ideal of R is contained in J).
(iv) Let a be a nonzero element of R. Since R is regular, there exists an element $x \in R$ such that $a x a=a$. This implies that $(a x)^{2}=a x$, and thus $a x$ is an idempotent element in R; hence, by Lemma $2, a x=0$ or $a x=1$. If $a x=0$, then $a=a x a=0$. This is not true since $a \neq 0$, so $a x=1$. Similarly, $x a=1$. Hence, a is invertible and thus R is a division ring.
(v) Suppose that R is π-regular, and let $a \in R$. Then, $a^{n} x a^{n}=a^{n}$ for some $x \in R$ and some positive integer n. This implies that $\left(a^{n} x\right)^{2}=a^{n} x$, so by Lemma 2, $a^{n} x=0$ or $a^{n} x=1$. Thus, $a^{n}=a^{n} x a^{n}=0$ or $a^{n} x=1$, so $a \in N$ or a has a right inverse. Similarly, $a \in N$ or a has a left inverse; hence for all $a \in R$, either $a \in N$ or a is invertible, which readily implies that N is an ideal and R / N is a division ring.

3. D-Rings and commutativity conditions

In this section we study the structure of periodic D-rings, weakly periodic D-rings, semiprime D-rings, and D-rings satisfying certain polynomial identities. We will begin with the following lemmas which were proved in [7].

Lemma 3. Let R be a weakly periodic ring. Then the Jacobson radical J of R is nil. If, furthermore, $x R \subseteq N$ for all $x \in N$, then $N=J$ and R is periodic.
Lemma 4. If R is a weakly periodic division ring, then R is a field.
Theorem 6. If R is a periodic D-ring, then $C(R)$ is nil.
Proof. If R is nil, there is nothing to prove. Suppose $R \neq N$, and let $x \in R \backslash N$. Then $x^{n}=x^{m}$ for some integers $n>m \geq 1$. It is readily verified that $x^{m(n-m)}$ is a nonzero
idempotent, and hence by Lemma $2,1 \in R$. By Theorem $2, R$ is local, N is an ideal, and R / N is a field. Thus, $C(R)$ is nil.

Theorem 7. If R is a weakly periodic D-ring, then R is periodic.
Proof. Since R is a D-ring, $a R$ is a nil right ideal for all $a \in N$, by Lemma 1. By Lemma $3, N=J$ and R is periodic.

Theorem 8. Let R be a semiprime D-ring with commuting nilpotent elements, and suppose $R \neq N$. Then R is a domain.

Proof. Let $a \in N$ with $a^{n}=0$. By Lemma $1, a R \subseteq N$. Moreover, since N is commutative, it follows that $(a R)^{n}=\{0\}$. Thus $a R=\{0\}$, since R is semiprime; hence $a=0$ and R has no zero divisors.

Remark. The hypothesis that R is a D-ring in Theorem 8 cannot be dropped, as a consideration of the ring of integers mod 6 shows.

Theorem 9. Let R be a semiprime D-ring with $R \neq N$. If R satisfies a polynomial identity, then R is a domain.

Proof. Let a be any nilpotent element of R. Then, by Lemma $1, a R$ is nil right ideal of R. Suppose $a R \neq\{0\}$. Since, by hypothesis, R satisfies a polynomial identity, $a R$ is a nonzero nil right ideal satisfying the same polynomial identity. Hence, by Lemma 2.1.1 of [8], R has a nonzero nilpotent ideal, contradicting the fact that R is semiprime. Thus $a R=\{0\}$ and hence $a=0$. Therefore, $N=\{0\}$ and hence R is a domain.

A consequence of Theorem 9 is the following:
Theorem 10. Let $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a polynomial in noncommuting indeterminates with relatively prime integer coefficients, such that for each prime p the indentity $f=0$ is not satisfied by the ring of 2×2 matrices over $G F(p)$. Then every semiprime D-ring R in which $R \neq N$ and which satisfies the identity $f=0$ is a commutative domain.

Proof. That R is a domain follows from the previous theorem. That it is commutative follows by a theorem of Kezlan [10].

Let $\left[x_{1}, x_{2}\right]_{1}=\left[x_{1}, x_{2}\right]$ denote $x_{1} x_{2}-x_{2} x_{1}$, and for $k>1$, let $\left[x_{1}, x_{2}, \ldots, x_{k+1}\right]=$ $\left[\left[x_{1}, \ldots, x_{k}\right], x_{k+1}\right]$. For $x_{1}=x$ and $x_{2}=x_{3}=\cdots=x_{k+1}=y$, denote the extended commutator $[x, y, \ldots, y]$ by $[x, y]_{k}$. Next, we consider D-rings with a certain variable identity.
Theorem 11. Let R be a semiprime D-ring such that $R \neq N$. If for each x, y in R, there exist positive integers $m=m(x, y) \leq S$, and $n=n(x, y) \leq T$, where S and T are fixed positive integers, such that $\left[x^{m}, y^{n}\right]_{k}=0, k \geq 1$ fixed, then R is a domain.

Proof. Clearly R satisfies the polynomial identity

$$
[x, y]_{k}\left[x, y^{2}\right]_{k} \cdots\left[x, y^{T}\right]_{k}\left[x^{2}, y\right]_{k} \cdots\left[x^{2}, y^{T}\right]_{k} \cdots\left[x^{S}, y\right]_{k} \cdots\left[x^{S}, y^{T}\right]_{k}=0
$$

The theorem now follows from Theorem 9.

3. Indecomposability considerations

The following theorem is immediate from the definition of D-ring and known results on direct-product decompositions of rings R in which $(R,+)$ is a torsion group.

Theorem 12. Let R be an arbitrary D-ring and T its ideal of torsion elements. Then R is either nil or indecomposable. Moreover, either T is a nil ideal or $(T,+)$ is a p-group for some prime p.

This theorem, together with known results on direct-sum decomposition, provides structural dichotomy theorems for certain classes of D-rings. Our final two theorems provide a sample of theorems of this type.

In [5] a ring R is defined to be quasi-Boolean if for each $x \in R$ there exists an integer $n=n(x) \geq 1$ for which $x^{n}=x^{n+1}$; and it is proved that a quasi-Boolean ring is a direct sum of a Boolean ring and a nil ring if and only if it contains no subring isomorphic to Q_{2} or $Q_{2}{ }^{\prime}$, where Q_{2} (resp. $Q_{2}{ }^{\prime}$) denotes the ring of 2×2 matrices over $G F(2)$ with second row (resp. second column) zero. This result, together with Theorem 12, yields

Theorem 13. A quasi-Boolean D-ring is either $G F(2)$ or a nil ring.
Proof. Let R be any quasi-Boolean D-ring. Clearly, Q_{2} and Q_{2}^{\prime} are not D-rings, hence R is a direct sum of a Boolean ring and a nil ring; and by Theorem 12, R is either Boolean or nil. But by Lemma 2, the only Boolean D-ring is $G F(2)$.

Theorem 14. Let R be a D-ring such that for each $x, y \in R$ there exists a polynomial $p(X, Y)$ in two noncommuting indeterminates, with integer coefficients, for which

$$
\begin{equation*}
x y=(x y)^{2} p(x, y) \tag{*}
\end{equation*}
$$

Then R is either a zero ring or a periodic field.
Proof. Theorem 1 of [6] states that any ring R satisfying $(*)$ is a direct sum of a J-ring (i.e. a ring in which every element is potent) and a zero ring. In view of Theorem 12 , a D-ring with $(*)$ must be either a J-ring or a zero ring. By Lemma $2, D$-rings which are also J-rings must be periodic division rings; and J-rings are commutative by Jacobson's famous " $a^{n}=a$ Theorem."

Acknowledgement. Professor Bell's research was supported by the Natural Sciences and Engineering Research Council of Canada, Grant 3961.

References

[1] H. Abu-Khuzam, A note on rings with certain variable identities, Internat. J. Math. \& Math. Sci. 12 (1989), 463-466.
[2] F. W. Anderson and K. R. Fuller, Rings and categories of modules, Graduate Texts in Mathematics, vol. 13, Springer-Verlag, New York-Heidelberg- Berlin, 1974.
[3] H. E. Bell, A commutativity study for periodic rings, Pacific J. Math 70 (1977), 29-36.
[4] ———, On commutativity of periodic rings and near-rings, Acta Math. Acad. Sci. Hung. $\mathbf{3 6}$ (1980), 293-302.
[5] ———, On commutativity and structure of certain periodic rings, Glas. Mat. Ser. III 25 (45) (1990), 269-273.
[6] H. E. Bell and S. Ligh, Some decomposition theorems for periodic rings and near-rings, Math. J. Okayama Univ. 31 (1989), 93-99.
[7] J. Grosen, H. Tominaga, and A. Yaqub, On weakly periodic rings, periodic rings and commutativity theorems, Math. J. Okayama Univ. 32 (1990). 77-81.
[8] I. N. Herstein, Rings with involution, University of Chicago Press, Chicago. 1976.
[9] ———, Noncommutative rings, Carus Math. Monographs, Math. Assoc. Amer., 1971.
[10] T. P. Kezlan, A note on commutativity of semiprime PI-rings, Math. Japonica 27 (1982), 267-268.
[11] A. A. Klein and H. E. Bell, On central and noncentral zero divisors, Comm. Algebra 26 (1998), 1277-1292.

American University of Beirut, Beirut, Lebanon
Brock University, St. Catharines, Ontario, Canada L2S 3A1
University of California, Santa Barbara, CA 93106

[^0]: 2000 Mathematics Subject Classification. 16U99, 16U80.
 Key words and phrases. Structure, nilpotent zero divisors, commutativity, indecomposability.

