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ABSTRACT. It is shown that if a topologically semisimple algebra A, which has at
least one closed maximal left (or right) ideal, is a locally pseudoconvex Waelbroeck
algebra, a locally A-pseudoconvex algebra, a locally pseudoconvex Fréchet algebra, an
exponentially galbed algebra with bounded elements, or a Gelfand-Mazur algebra, for
which there exists at least one closed 2-sided ideal, which is maximal as left (or right)
ideal, then A is representable as a subalgebra of a section algebra.

1. Introduction

Let C be the field of complex numbers. A linear topological space (A,7) over C is
called a topological algebra over C (shortly, a topological algebra) if there has been defined
an associative separately continuous multiplication such that A is an algebra. It means that
for each neighbourhood O of zero and each a € A there exists a neighbourhood U of zero
such that el C O and Ua C O.

We say that A is a locally pseudoconvez algebra if A has a base of neighbourhoods of zero
consisting of balanced pseudoconvex sets. The set U is called pseudoconvez if U+U C vU for
some v > 0. A locally pseudoconvex algebra A is called a locally absorbingly pseudoconvex
algebra (shortly, a locally A-pseudoconver algebra) if A has a base B of neighbourhoods of
zero consisting of balanced pseudoconvex sets which satisfies the following condition: for
each U € B and for each a € A there exists v = v(a,U) > 0 such that ad,Ua C vlUd. We also
say that a topological algebra A is an ezponentially galbed algebra if for each neighbourhood
O of zero of A there exists another neighbourhood U of zero such that

n

{ ;—gzao,...,anEU}C(’)

k=0
for each n € N (see [1], p. 65) and a Fréchet algebra if A is complete and metrizable.

Let A be a topological algebra with unit e4, m(A) denote the set of all closed two-sided
ideals of A which are maximal as left (right) ideals. In case when the quotient algebra
A/ M (in the quotient topology) is topologically isomorphic with C for each M € m(A),
then A is called a Gelfand-Mazur algebra. The term Gelfand-Mazur algebra is initially
applied, independently of each other, by Mati Abel ([2], [3]) and A. Mallios [7]. Since then
this terminology has been extensively employed.

An element a of a topological algebra A is called to be bounded in A if there exists a
number A € C\{0} such that the set {(%)" : n € N} is bounded in A and A is called to be

a topological algebra with bounded elements if every element of A is bounded in A.
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An element a € A is called quasi-invertiblein A if there exists b € A such that a+b—ab =
a+b—ba = 04 (here 64 is the zero element of A). A topological algebra A is a Q-algebra if
the set of all quasi- invertible elements @inv.A is open in A. It is known that a topological
algebra A with unit e4 is Q-algebra if and only if the set of its invertible elements Inv.A is
open in A (since QinvA = e 4—InvA). A topological algebra with unit is called @ Waelbroeck
algebra if it is both a Q-algebra and a topological algebra with continuous inversion (see [7],
p. 54).

Let M be a maximal regular left (right) ideal of an algebra A and let
P=H{a€eAd:ad C M} (P ={a€ A: Ada C M} respectively). Then we say that
P is a primitive ideal of A (with respect to M). Let now A be a topological algebra with
unit and let Z(A) = {z € A : za = az for each a € A} be the center of A. An ideal
M e m(Z(A)) is called an estendible ideal in A if

I(M)= cZA{Zakmk :n €N, a,ag, . an € A my,ma, ..., m, € M} #£ A
k=1

(Here ¢l 4(U) stands for the closure of the set U in the topology of A.) We know (see [8], p.
169) that for every two-sided ideal T of A for which ¢l4(Z) # A the set ¢l 4(T) is a two-sided
ideal of A. So (M) is also a two-sided ideal in A. Let m(Z(A)) ={M e m(Z(A)) : M
is an extendible ideal in A}.

Let A be again a topological algebra. The set R = [{M : M is a closed maximal
regular left ideal of A} = [[{M : M is a closed maximal regular right ideal of A} is called
the topological radical of the algebra A. The topological algebra A is said to be topologically
semisimple if its topological radical R = {64}.

Let now B and X be topological spaces and 7 : B — X a continuous and open surjection.
Then the complex (B, r, X) is called a fiber bundle. The mapping f: X — B is said to be
a section of the fiber bundle (B, 7, X) (shortly, a section of 7) if and only if = f(z) = « for
every @ € X. Let (B, 7, X) be a fiber bundle for which the fibers

B,={beB:xn(b) =z}

are topological algebras, for every * € X. Then the set of all continuous sections of 7 is
denoted by I'(7). Defining algebraic operations in I'(7) point-wise and topology by giving
the subbase of fy € I'(7) by

B(fo) ={Uo(fo) : O € B(6p)}.

where B(€p) is a base of neighbourhoods of zero of the algebra

P:HBI

reX

in the product topology and Uo(fo) = {f € I'(7) : ((f — fo)(2)),cx € O}, we see that I'(r)
is a topological algebra which is called a section algebra.

Let now f be a representation of a topological algebra A in another topological algebra
B, that is f is a continuous homomorphism from A into B. In case when B is a section
algebra, then f is called a sectional representation of A. The aim of this paper is to
generalize sectional representations of Banach algebras with unit given in [4] to the case of
topological algebras and find the possible general conditions for a topological algebra with
unit to be representable as a subalgebra of a section algebra.

I would like to thank Professor A. Mallios for valuable comments and suggestions. I am
also indebted to the referee for constructive criticism.
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2. Properties of the quotient algebra and its center

To describe properties of a quotient algebra and its center, we need the following results.
Theorem 1. Let A be a topological algebra and T a two-sided ideal of A. If A is a Gelfand-
Mazur algebra for which m(A) # (), then there exists such a topology T on A that A/T in
the quotient topology (defined by 7) and Z(A/I) in the subspace topology are exponentially
galbed algebras with bounded elements.

Proof. It is known (see [2], p. 123, Theorem 2) that any topological algebra for which
m(A) # 0 is a Gelfand-Mazur algebra iff there exists a topology 7 on A such that (A, 7) is
an exponentially galbed algebra with bounded elements.

Let 7z be the quotient topology on A/Z and = : A — A/Z the canonical homomorphism.
Then 7z = {T"(Z(A/Z): T' € 7z} is the topology on Z(A/T) generated by 7z.

Let O’ be a neighbourhood of zero in (A/Z, 77). Since 7 is a continuous open mapping
(see [6], p 104), then O = 7~ 1(0’) is a neighbourhood of zero in (A, 7). Now we can find a
neighbourhood of zero U in (A, 7) such that

{ a—k:ao,...,anEU}C(’)

2k
k=0

for every n € N. Taking V' = n(U), we can see that

n
T
{Z 2—: D20, T,y €V CO

k=0

for every n € N which implies that A4/7 is exponentially galbed.

Every mneighbourhood of zero in Z(A/I) is representable in the form
0" = 0" N Z(A/T) where O is a neighbourhood of zero in A/Z. As above we can find the
neighborhood V' of zero. Taking now V" =V’ (| Z(A/Z), we can see that

n

Yk ,
{Z 97 DY0, Y1y Yn € V"} - 0"
k=0~

for every n € N which implies that Z(A/7) is also exponentially galbed.

It is easy to see that the elements of A/Z and Z(A/T) are bounded.
Corollary 1. Let A be a topological algebra and T a two-sided ideal of A. If A is a
Gelfand-Mazur algebra for which m(A) # 0, then A/T is a Gelfand-Mazur algebra. If
hereby m(AJI) # 0 then Z(A/T) is a Gelfand-Mazur algebra too.
Lemma 1. Let A be a locally pseudoconvex (a locally A-pseudoconver) algebra and T
a two-sided ideal of A. Then AJ/T and Z(AJI) are also locally pseudoconver (locally A-
pseudoconves) algebras.
Proof. Since A is a locally pseudoconvex algebra, we can find a base B of neighbourhoods
of zero of A consisting of balanced pseudoconvex neighbourhoods of zero. It is easy to see
that B’ = 7(B) and

B"={U'(Z(A/D): U' €B'}

are suitable bases of neighbourhoods of zero for A/Z and Z(A/T) respectively.

Lemma 2. Let A be a Fréchet (a unital locally pseudoconver Fréchet) algebra and T «
closed two-sided ideal. Then A/T and Z(A/T) are also Fréchet (unital locally pseudoconves
Fréchet) algebras.
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Proof. According to our hypothesis (see also [6], p. 138, Theorem 2), A/T is a Fréchet
algebra. Since Z(A/Z) is a closed linear subspace of A/Z, then Z(A/Z) is also complete
and metrizable, that is, a Fréchet algebra too.

Using Lemmas 1 and 3, we can get the following.

Lemma 3. Let A be a (locally pseudoconver) Waelbroeck algebra with unit and T a closed
two-sided ideal. Then AT and Z(A/T) are also (locally pseudoconver) Waelbroeck algebras
with unit.

Proof. It is shown in [11] that A/Z is a Waelbroeck algebra with unit. This implies that
InvA/Z is an open set in A/Z. Since InvZ(A/Z) = = InvA/I(Z(A/T), then InvZ(A/T)
is an open set in Z(A). We can see that the inversion is continuous in Z(A/Z) (because
InvZ(A/T) is a subset of Inv.A/T). Hence, Z(A/T) is a Waelbroeck algebra too.

Using [2], p. 120-122 (Theorem 1 and Corollary 1), see also [3], the following result can
be proved:

Lemma 4. Let A be a topological division algebra for which at least one of the following
statements holds:

a) there exzists a topology 7 on A such that (A, 7) is a locally pseudoconver Hausdorff
algebra with continuous mversion;

b) A is a locally A-pseudoconver Hausdorff algebra;

c) A is a locally pseudoconver Fréchet algebra;

d) there ezists a topology T on A such that (A,7) is an ezponentially galbed Hausdor[f
algebra with bounded elements.

Then A 1is topologically isomorphic to C.
Theorem 3. Let A be a topological algebra with unit, P a closed primitive ideal of it and
let one of the following statements be true:

a) A 1s a locally pseudoconver Waelbroeck algebra;

b) A is a locally A-pseudoconver algebra;

c) A is a locally pseudoconver Fréchet algebra;

d) A is an exponentially galbed algebra with bounded elements;

e) A is a Gelfand-Mazur algebra for which m(A) # ().

Then Z(A/JP) is topologically isomorphic to C.
Proof. Since P is a primitive ideal of A then Z(A/P) is a field (see [5], p. 136 (Proposition
9) and [9], p. 61 (Corollary 2.4.5)). Thus Z(A/P) is a division Hausdorff algebra.

In case a) we obtain from Lemma 3 that Z(.A/P) is a locally pseudoconvex Waelbroeck
algebra. Since every Waelbroeck algebra is an algebra with continuous inversion, then
Z(A/P) satisfies condition a) of Lemma 4.In case b) we obtain from Lemma 1 that Z(A/P)
is a locally A-pseudoconvex algebra and thus satisfies the condition b) of Lemma 4. In case
¢) we obtain from Lemma 2 that Z(.A/P) satisfies the condition ¢) of Lemma 4. In cases
d) and e) we obtain from Theorem 1 that Z(.A/P) has a topology in which Z(A/P) is
an exponentially galbed algebra with bounded elements and thus satisfies condition d) of
Lemma 4.

Corollary 2. Let A be a topological algebra with unit and M be a closed mazimal left
(right) ideal of A. If at least one of the statements a) - e) of the Theorem 3 is true, then
the following statements are also true:

1) every b € Z(A) defines such A\ € C that b— \eq € M;

2) MNZ(A) € m(Z(A)).

Proof. 1) Let b € Z(A), P be a primitive ideal in A with respect to M and 7 : 4 — A/P
the canonical homomorphism. Then Z(A/P) is topologically isomorphic to C, according
Theorem 3. We will denote this isomorphism by p. Since w(b) € Z(A/P), we can find
A € C such that u(w(b)) = A = p(w(Aes)). Therefore w(b) = w(Aeq) which implies that
b—)deg € P C M.
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2) Let Mz = M(Z(A). Then Mz is a closed linear subspace of A because M and
Z(A) were closed subsets of A. Since e4 ¢ M then Mz # Z(A). Let now z € M3z.
Then z € M which implies za € M for every a € A. Hence za € Mz for every a € Z(A)
which implies that Mz is a closed ideal of Z(A). Let now T be an ideal of Z(.A) such that
Mz CT. T # Mz then there exists b € T\ M z and according to 1) there exists A € C
such that b — \eq € Mz. Since b € Mz we see that A # 0 and therefore there exists A\ ™',
Since b—Xeq € Mz C T we have eq = A7 [b— (b— Nea)] € T and therefore T = Z(A). So
Mz € m(Z(A)). Since Mz C M and M is a closed subset, we have Z(Mz) C M # A.
Hence Mz € m.(Z(A)).

3. Sectional representations

Let A be a topological algebra with unit for which at least one of the conditions a) -
e) of Theorem 3 is true and which has at least one closed left (right) maximal ideal. Then
Z(A) is a (commutative) Gelfand-Mazur algebra by Theorem 1 and Lemmas 1, 2 and 3
(see also [2], p. 125-126, Corollaries 2 and 3) and m.(Z(A)) # 0, by Corollary 2.

For every M € m(Z(A)) let Ay = A/I(M) and ke © A = Apq the canonical
homomorphism, a” (M) = rka(a) for every M € m (Z(A)) and

B= U Am.

Mem(Z(A))

Then a” maps m.(Z(A)) into B.

Let now 7 : B — m¢(Z(A)) be such mapping, which will assign to every b € B such
ideal M € m (Z(A)) that b € Axie. b= rp(a) for some a € A. It is easy to see that
is well defined. Indeed, if b = K aq,(a1) (ice. 7(b) = My) and b = kK p,(a2) (e w(b) = Ma),
then a1 + Z(My) =b=ay + I(M3:). Since a; = a3 + 04 € a3 + T(M1) = a2 + T(M3), we
can find dy € Z(Ms) such that a; = as +ds or a1 — az = dy € T(My).

Let ¢; € Z(M;) be an arbitrary element. Then
a + c1 € ay +I(JM1) = a3 —I—I(/\/tg)

and we can find ¢o € T(Maz) such that a; + ¢y = a2 + ¢3. Since a1 — a2 € I(My) and
¢y € I(My) then ¢y = ¢3 — (a1 — az) € I(Ma), so that T(My) C Z(M2). Analogously we
get that Z(My) C Z(M;). Hence Z(My) = Z(M32) and

My =I(M) () Z(A) = (M) () Z(A) = Ms.

The last result proves that « is well defined and A, NAp, # @ if and only if My = M,.
The set m.(Z(.A)) is endowed with the topology 7, a subbase of neighbourhoods of
Mo € me(Z(A)) of which consists of sets

O(Mo) = {M € me(Z(A) : | (pan = pai)(2) | < €}

where € > 0 and z € Z(A) vary, while ¢ o¢ denotes such nontrivial homomorphism Z(A) —
C for which kerpoar = M. On the algebras A we shall consider quotient topologies T4
and on B the topology 75 = {7 () : U € 7}. Then (B,7,m.(Z(A))) is a fiber bundle
and a”€ I'(r) for every a € A.

Next we define a mapping A : A — I'(x), such that A(a) = a” for every a € A. It is
easy to see that A is a continuous homomorphism. Hence, A is a sectional representation
of the topological algebra A.
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Lemma 5. Let A be a topological algebra with unit, which satisfies at least one of the
conditions a) - €) of the Theorem 3 and T be a closed mazimal left (right) ideal of A. Then
we can find such M € m (Z(A)) that kpm(Z) = {a (M) : v € T} is a left (right) ideal of
A

Proof. See [4], p. 197-198 (Theorem 2.8 (iii)).

Theorem 4. Let A be a topological algebra with unit, which satisfies at least one of the
conditions a) - €) of the Theorem 3 and T o closed mazimal left (right) ideal of A. Then
IT=rm (J)={ac A:a" (M) e T} for some M € m.(Z(A)) and for some closed
mazimal left (right) ideal J of Aa.

Proof. Let 7 be a closed maximal left (right) ideal of A.

According to Lemma 5, we can find M € m.(Z(A)) such that J = {a"(M),a € T} is
a left (right) ideal of Ax. Next we can find a maximal left (right) ideal Zpq of Aaq such
that J C Za. If there exists j € T\ T, then it is possible to find b € A\Z such that
b (M) = j. Hence st "(Zm) 2 {6} JUZ D Z. Let ¢ € Aand d € kar *(Zm). Then
kmled) = kpm(e)sm(d) € Tag which implies that ed € sy (Tam) (de € kp H(Zm) for a
right ideal). Analogously, we get ¢+ d, A\¢ € K ' (Zaq). Since 7 is a maximal left (right)
ideal of A, we have k¢ ' (Zapg) = A which implies that a” (M) € Iy for every a € A.
Hence Ax¢ = Taq which is not possible. So we have shown that J is a maximal left (right)
ideal of Axq. According to the definition of J, it is clear that Z = k™' (J).

Next we show that J is closed. If clg,(J) # Am then cla,, (T) is also an ideal
in Aup (see [8], p. 169) and J = cla,,(T). Let us suppose that cl4,,(J) = Am and
let @ be a neighbourhood of zero in A. Then s (O') = O is a neighbourhood of zero
in Ay Since ra(ea) € clay(T), then there exists a family (ix)yc, € Z such that
Km(ix)aenr — Hm(ea). Now we can find such a p € A that ku(in — ea) € O for every
AN > po If Ao > pothen iy, —ea € ki (km(O)) = Z(M) + O C T + O (because
M =T Z(A), see proof of Theorem 2.8 (iii) in [4]) and therefore

eA:(eAfi)\o)—l—‘i)\o €ceI+0+ITCcI+0O,
Hence
eq € ﬂ{l' + O : O is a neighbourhood of a base of zero in A} = cl4,, I =T

(see [10], p. 13). Thus T = A which is not possible. Therefore, J is a closed maximal left
(right) ideal.

It is easy to verify that the following statement holds.
Lemma 6. Let A be a topological algebra with unit, M € m.(Z(A)) and J be an arbitrary
closed left (right) ideal of Ap. Then k™' (J) 15 a left (right) ideal of A.
Lemma 7. Let A be a topological algebra with unit for which at least one of the conditions
a) - e) of Theorem 3 holds. Suppose that there exists a closed mazimal left (right) ideal in
A. If we denote the topological radicals of the algebras A and Arq, where M € m (Z(A)),
by R and Ry respectively, then

R={Hrm "(Ram): M€ mi(Z(A)}.

Proof. Suppose that # € ({rm ™' (Rm) : M € m(Z(A))} and T is an arbitrary closed
maximal left (right) ideal of A. According to Theorem 4, we can find M € m.(Z(A)) and a
closed maximal left (right) ideal J of A such that T = ko' (J). Since kpq(z) € Ry C
J then x € Z, for any closed maximal left (right) ideal Z of A. Therefore, # € R such that

RO (Hrm ™ (Ra) : M € me(Z(A))}
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Suppose now that y € R and M € m.(Z(A)). If J is an arbitrary closed maximal left
(right) ideal of Aaq, then ks (J) is a closed left (right) ideal of A by Lemma 6. It is clear
that Z(M) C k' (J). Suppose that Ky '(J) C H for a left (right) ideal H of A. Then
J Cem(H). If kp(H) = Apq then we can find such a h € H that kaq(h) = ea,, (here ea,,
denotes the unit element of Axq). But this means that h —eq € Z(M) C kpq "(J) C H,
which implies e 4 € H. Hence H = A which contradicts the assumption that H is an ideal of
A. Since J is a maximal left (right) ideal of A then J = kam(H), that is, H = kp ™ (T).
Hence, ka1 (J) is a closed maximal left (right) ideal of A and k(y) € j for every closed
maximal left (right) ideal J of Axq. Therefore £ a4(y) € R if M € m(Z(A)), so that

RC(ra  (Raa) : M€ me(Z(A))}

which completes the proof.

Corollary 3. Let A be a topologically semisimple algebra, which satisfies the conditions of
Lemma 7. Then the mapping A s one-to-one.

Proof. Since A is topologically semisimple, its topological radical R = {64}. Hence from

ker A = ({rm ' (Ba0) : M € m(Z(A))} C

C(rm ™ (Rm) : M € me(Z(A)} =R = {04}

one obtains that A is one-to-one.

Now we formulate the main result of this paper.
Theorem 5. Let A be a topologically semisimple algebra with unit, having at least one
closed mazimal left (right) ideal. If one of the following statements is true

) A is a locally pseudoconver Waelbroeck algebra;

A is a locally A-pseudoconvez algebra;
A s a locally pseudoconver Fréchet algebra;
A is an exponentially galbed algebra with bounded elements;

e A is a Gelfand-Mazur algebra for which m(A) # 0,
then A can be considered as a subalgebra of the section algebra I'(w).
Proof. Since A is a one-to-one representation of A in I'(7), we can consider A as a

subalgebras of T'(r).

vvvv
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