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Abstract. It is shown that if a topologically semisimple algebra A, which has at

least one closed maximal left (or right) ideal, is a locally pseudoconvex Waelbroeck

algebra, a locally A-pseudoconvex algebra, a locally pseudoconvex Fr�echet algebra, an

exponentially galbed algebra with bounded elements, or a Gelfand-Mazur algebra, for

which there exists at least one closed 2-sided ideal, which is maximal as left (or right)

ideal, then A is representable as a subalgebra of a section algebra.

1. Introduction

Let C be the �eld of complex numbers. A linear topological space (A; � ) over C is

called a topological algebra over C (shortly, a topological algebra) if there has been de�ned

an associative separately continuous multiplication such that A is an algebra. It means that

for each neighbourhood O of zero and each a 2 A there exists a neighbourhood U of zero

such that aU � O and Ua � O.

We say that A is a locally pseudoconvex algebra if A has a base of neighbourhoods of zero

consisting of balanced pseudoconvex sets. The set U is called pseudoconvex if U+U � �U for

some � > 0. A locally pseudoconvex algebra A is called a locally absorbingly pseudoconvex

algebra (shortly, a locally A-pseudoconvex algebra) if A has a base B of neighbourhoods of

zero consisting of balanced pseudoconvex sets which satis�es the following condition: for

each U 2 B and for each a 2 A there exists � = �(a;U) > 0 such that aU ;Ua � �U . We also

say that a topological algebraA is an exponentially galbed algebra if for each neighbourhood

O of zero of A there exists another neighbourhood U of zero such that

f

nX

k=0

ak

2k
: a0; :::; an 2 Ug � O

for each n 2 N (see [1], p. 65) and a Fr�echet algebra if A is complete and metrizable.

Let A be a topological algebra with unit eA, m(A) denote the set of all closed two-sided

ideals of A which are maximal as left (right) ideals. In case when the quotient algebra

A=M (in the quotient topology) is topologically isomorphic with C for each M 2 m(A),
then A is called a Gelfand-Mazur algebra. The term Gelfand-Mazur algebra is initially

applied, independently of each other, by Mati Abel ([2], [3]) and A. Mallios [7]. Since then

this terminology has been extensively employed.

An element a of a topological algebra A is called to be bounded in A if there exists a

number � 2 C nf0g such that the set f( a
�
)
n

: n 2 Ng is bounded in A and A is called to be

a topological algebra with bounded elements if every element of A is bounded in A.

�
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An element a 2 A is called quasi-invertible inA if there exists b 2 A such that a+b�ab =
a+ b� ba = �A (here �A is the zero element of A). A topological algebra A is a Q-algebra if

the set of all quasi- invertible elements QinvA is open in A. It is known that a topological

algebra A with unit eA is Q-algebra if and only if the set of its invertible elements InvA is

open inA (since QinvA = eA�InvA). A topological algebra with unit is called a Waelbroeck

algebra if it is both a Q-algebra and a topological algebra with continuous inversion (see [7],

p. 54).

Let M be a maximal regular left (right) ideal of an algebra A and let

P = fa 2 A : aA � Mg (P = fa 2 A : Aa � Mg respectively). Then we say that

P is a primitive ideal of A (with respect to M). Let now A be a topological algebra with

unit and let Z(A) = fz 2 A : za = az for each a 2 Ag be the center of A. An ideal

M 2 m(Z(A)) is called an extendible ideal in A if

I(M) = clAf

nX

k=1

�kmk : n 2 N; �1; �2; :::; �n 2 A; m1;m2; :::;mn 2 Mg 6= A:

(Here clA(U) stands for the closure of the set U in the topology of A.) We know (see [8], p.

169) that for every two-sided ideal I of A for which clA(I) 6= A the set clA(I) is a two-sided
ideal of A. So I(M) is also a two-sided ideal in A. Let me(Z(A)) = fM 2 m(Z(A)) :M
is an extendible ideal in Ag:

Let A be again a topological algebra. The set R =
T
fM : M is a closed maximal

regular left ideal of Ag =
T
fM :M is a closed maximal regular right ideal of Ag is called

the topological radical of the algebra A. The topological algebra A is said to be topologically

semisimple if its topological radical R = f�Ag.
Let nowB andX be topological spaces and � : B ! X a continuous and open surjection.

Then the complex (B;�;X) is called a �ber bundle. The mapping f : X ! B is said to be

a section of the �ber bundle (B;�;X) (shortly, a section of �) if and only if �f(x) = x for

every x 2 X. Let (B;�;X) be a �ber bundle for which the �bers

Bx = fb 2 B : �(b) = xg

are topological algebras, for every x 2 X. Then the set of all continuous sections of � is

denoted by �(�). De�ning algebraic operations in �(�) point-wise and topology by giving

the subbase of f0 2 �(�) by

B(f0) = fUO(f0) : O 2 B(�P )g;

where B(�P ) is a base of neighbourhoods of zero of the algebra

P =
Y

x2X

Bx

in the product topology and UO(f0) = ff 2 �(�) : ((f � f0)(x))
x2X

2 Og, we see that �(�)
is a topological algebra which is called a section algebra.

Let now f be a representation of a topological algebra A in another topological algebra

B, that is f is a continuous homomorphism from A into B. In case when B is a section

algebra, then f is called a sectional representation of A. The aim of this paper is to

generalize sectional representations of Banach algebras with unit given in [4] to the case of

topological algebras and �nd the possible general conditions for a topological algebra with

unit to be representable as a subalgebra of a section algebra.

I would like to thank Professor A. Mallios for valuable comments and suggestions. I am

also indebted to the referee for constructive criticism.
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2. Properties of the quotient algebra and its center

To describe properties of a quotient algebra and its center, we need the following results.

Theorem 1. Let A be a topological algebra and I a two-sided ideal of A. If A is a Gelfand-

Mazur algebra for which m(A) 6= ;, then there exists such a topology � on A that A=I in

the quotient topology (de�ned by �) and Z(A=I) in the subspace topology are exponentially

galbed algebras with bounded elements.

Proof. It is known (see [2], p. 123, Theorem 2) that any topological algebra for which

m(A) 6= ; is a Gelfand-Mazur algebra i� there exists a topology � on A such that (A; � ) is
an exponentially galbed algebra with bounded elements.

Let �I be the quotient topology onA=I and � : A ! A=I the canonical homomorphism.

Then �Z = fT 0
T
Z(A=I) : T

0 2 �Ig is the topology on Z(A=I) generated by �I.

Let O0 be a neighbourhood of zero in (A=I; �I). Since � is a continuous open mapping

(see [6], p 104), then O = �
�1(O0) is a neighbourhood of zero in (A; � ). Now we can �nd a

neighbourhood of zero U in (A; � ) such that

f

nX

k=0

ak

2k
: a0; :::; an 2 Ug � O

for every n 2 N. Taking V 0 = �(U), we can see that

f

nX

k=0

xk

2k
: x0; x1; :::; xn 2 V

0g � O0

for every n 2 N which implies that A=I is exponentially galbed.

Every neighbourhood of zero in Z(A=I) is representable in the form

O00 = O0
T
Z(A=I) where O0 is a neighbourhood of zero in A=I. As above we can �nd the

neighborhood V 0 of zero. Taking now V 00 = V 0
T
Z(A=I), we can see that

f

nX

k=0

yk

2k
: y0; y1; :::; yn 2 V

00g � O00

for every n 2 N which implies that Z(A=I) is also exponentially galbed.

It is easy to see that the elements of A=I and Z(A=I) are bounded.

Corollary 1. Let A be a topological algebra and I a two-sided ideal of A. If A is a

Gelfand-Mazur algebra for which m(A) 6= ;, then A=I is a Gelfand-Mazur algebra. If

hereby m(A=I) 6= ; then Z(A=I) is a Gelfand-Mazur algebra too.

Lemma 1. Let A be a locally pseudoconvex (a locally A-pseudoconvex) algebra and I
a two-sided ideal of A. Then A=I and Z(A=I) are also locally pseudoconvex (locally A-

pseudoconvex) algebras.

Proof. Since A is a locally pseudoconvex algebra, we can �nd a base B of neighbourhoods

of zero of A consisting of balanced pseudoconvex neighbourhoods of zero. It is easy to see

that B0 = �(B) and

B00 = fU 0
\
Z(A=I) : U 0 2 B0g

are suitable bases of neighbourhoods of zero for A=I and Z(A=I) respectively.

Lemma 2. Let A be a Fr�echet (a unital locally pseudoconvex Fr�echet) algebra and I a

closed two-sided ideal. Then A=I and Z(A=I) are also Fr�echet (unital locally pseudoconvex

Fr�echet) algebras.
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Proof. According to our hypothesis (see also [6], p. 138, Theorem 2), A=I is a Fr�echet

algebra. Since Z(A=I) is a closed linear subspace of A=I, then Z(A=I) is also complete

and metrizable, that is, a Fr�echet algebra too.

Using Lemmas 1 and 3, we can get the following.

Lemma 3. Let A be a (locally pseudoconvex) Waelbroeck algebra with unit and I a closed

two-sided ideal. Then A=I and Z(A=I) are also (locally pseudoconvex) Waelbroeck algebras

with unit.

Proof. It is shown in [11] that A=I is a Waelbroeck algebra with unit. This implies that

InvA=I is an open set in A=I. Since InvZ(A=I) = = InvA=I
T
Z(A=I), then InvZ(A=I)

is an open set in Z(A). We can see that the inversion is continuous in Z(A=I) (because
InvZ(A=I) is a subset of InvA=I). Hence, Z(A=I) is a Waelbroeck algebra too.

Using [2], p. 120-122 (Theorem 1 and Corollary 1), see also [3], the following result can

be proved:

Lemma 4. Let A be a topological division algebra for which at least one of the following

statements holds:

a) there exists a topology � on A such that (A; �) is a locally pseudoconvex Hausdor�

algebra with continuous inversion;

b) A is a locally A-pseudoconvex Hausdor� algebra;

c) A is a locally pseudoconvex Fr�echet algebra;

d) there exists a topology � on A such that (A; �) is an exponentially galbed Hausdor�

algebra with bounded elements.

Then A is topologically isomorphic to C .

Theorem 3. Let A be a topological algebra with unit, P a closed primitive ideal of it and

let one of the following statements be true:

a) A is a locally pseudoconvex Waelbroeck algebra;

b) A is a locally A-pseudoconvex algebra;

c) A is a locally pseudoconvex Fr�echet algebra;

d) A is an exponentially galbed algebra with bounded elements;

e) A is a Gelfand-Mazur algebra for which m(A) 6= ;.

Then Z(A=P) is topologically isomorphic to C .

Proof. Since P is a primitive ideal of A then Z(A=P) is a �eld (see [5], p. 136 (Proposition
9) and [9], p. 61 (Corollary 2.4.5)). Thus Z(A=P) is a division Hausdor� algebra.

In case a) we obtain from Lemma 3 that Z(A=P) is a locally pseudoconvex Waelbroeck

algebra. Since every Waelbroeck algebra is an algebra with continuous inversion, then

Z(A=P) satis�es condition a) of Lemma 4.In case b) we obtain from Lemma 1 that Z(A=P)
is a locally A-pseudoconvex algebra and thus satis�es the condition b) of Lemma 4. In case

c) we obtain from Lemma 2 that Z(A=P) satis�es the condition c) of Lemma 4. In cases

d) and e) we obtain from Theorem 1 that Z(A=P) has a topology in which Z(A=P) is
an exponentially galbed algebra with bounded elements and thus satis�es condition d) of

Lemma 4.

Corollary 2. Let A be a topological algebra with unit and M be a closed maximal left

(right) ideal of A. If at least one of the statements a) - e) of the Theorem 3 is true, then

the following statements are also true:

1) every b 2 Z(A) de�nes such � 2 C that b� �eA 2 M;

2) M
T
Z(A) 2 me(Z(A)).

Proof. 1) Let b 2 Z(A), P be a primitive ideal in A with respect to M and � : A ! A=P
the canonical homomorphism. Then Z(A=P) is topologically isomorphic to C , according

Theorem 3. We will denote this isomorphism by �. Since �(b) 2 Z(A=P), we can �nd

� 2 C such that �(�(b)) = � = �(�(�eA)). Therefore �(b) = �(�eA) which implies that

b � �eA 2 P �M.
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2) Let MZ = M
T
Z(A). Then MZ is a closed linear subspace of A because M and

Z(A) were closed subsets of A. Since eA 62 M then MZ 6= Z(A). Let now z 2 MZ .

Then z 2 M which implies za 2 M for every a 2 A. Hence za 2 MZ for every a 2 Z(A)
which implies that MZ is a closed ideal of Z(A). Let now I be an ideal of Z(A) such that

MZ � I. If I 6=MZ then there exists b 2 InMZ and according to 1) there exists � 2 C

such that b� �eA 2 MZ . Since b 62 MZ we see that � 6= 0 and therefore there exists ��1.

Since b��eA 2 MZ � I we have eA = �
�1[b� (b��eA)] 2 I and therefore I = Z(A). So

MZ 2 m(Z(A)). Since MZ � M and M is a closed subset, we have I(MZ) � M 6= A.
Hence MZ 2 me(Z(A)).

3. Sectional representations

Let A be a topological algebra with unit for which at least one of the conditions a) -

e) of Theorem 3 is true and which has at least one closed left (right) maximal ideal. Then

Z(A) is a (commutative) Gelfand-Mazur algebra by Theorem 1 and Lemmas 1, 2 and 3

(see also [2], p. 125-126, Corollaries 2 and 3) and me(Z(A)) 6= ;, by Corollary 2.

For every M 2 me(Z(A)) let AM = A=I(M) and �M : A ! AM the canonical

homomorphism, a^(M) = �M(a) for every M2 me(Z(A)) and

B =
[

M2me(Z(A))

AM:

Then a^ maps me(Z(A)) into B.
Let now � : B ! me(Z(A)) be such mapping, which will assign to every b 2 B such

ideal M 2 me(Z(A)) that b 2 AM i.e. b = �M(a) for some a 2 A. It is easy to see that �

is well de�ned. Indeed, if b = �M1
(a1) (i.e. �(b) =M1) and b = �M2

(a2) (i.e. �(b) =M2),

then a1 + I(M1) = b = a2 + I(M2): Since a1 = a1 + �A 2 a1 + I(M1) = a2 + I(M2), we

can �nd d2 2 I(M2) such that a1 = a2 + d2 or a1 � a2 = d2 2 I(M2).

Let c1 2 I(M1) be an arbitrary element. Then

a1 + c1 2 a1 + I(M1) = a2 + I(M2)

and we can �nd c2 2 I(M2) such that a1 + c1 = a2 + c2. Since a1 � a2 2 I(M2) and

c2 2 I(M2) then c1 = c2 � (a1 � a2) 2 I(M2), so that I(M1) � I(M2). Analogously we

get that I(M2) � I(M1). Hence I(M1) = I(M2) and

M1 = I(M1)
\
Z(A) = I(M2)

\
Z(A) =M2:

The last result proves that � is well de�ned andAM1
\AM2

6= ; if and only ifM1 =M2.

The set me(Z(A)) is endowed with the topology � , a subbase of neighbourhoods of

M0 2 me(Z(A)) of which consists of sets

O(M0) = fM 2 me(Z(A)) : j ('M � 'M0
)(z) j < �g

where � > 0 and z 2 Z(A) vary, while 'M denotes such nontrivial homomorphism Z(A)!
C for which ker'M = M. On the algebras AM we shall consider quotient topologies �M
and on B the topology �B = f��1(U) : U 2 �g. Then (B; �;me(Z(A))) is a �ber bundle

and a^2 �(�) for every a 2 A.
Next we de�ne a mapping A : A ! �(�), such that A(a) = a^ for every a 2 A. It is

easy to see that A is a continuous homomorphism. Hence, A is a sectional representation

of the topological algebra A.
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Lemma 5. Let A be a topological algebra with unit, which satis�es at least one of the

conditions a) - e) of the Theorem 3 and I be a closed maximal left (right) ideal of A. Then
we can �nd such M 2 me(Z(A)) that �M(I) = fx^(M) : x 2 Ig is a left (right) ideal of

AM.

Proof. See [4], p. 197-198 (Theorem 2.8 (iii)).

Theorem 4. Let A be a topological algebra with unit, which satis�es at least one of the

conditions a) - e) of the Theorem 3 and I a closed maximal left (right) ideal of A. Then

I = �M

�1(J ) = fa 2 A : a^ (M) 2 J g for some M 2 me(Z(A)) and for some closed

maximal left (right) ideal J of AM.

Proof. Let I be a closed maximal left (right) ideal of A.
According to Lemma 5, we can �nd M 2 me(Z(A)) such that J = fa^(M); a 2 Ig is

a left (right) ideal of AM. Next we can �nd a maximal left (right) ideal IM of AM such

that J � IM. If there exists j 2 IMnJ , then it is possible to �nd b 2 AnI such that

b^(M) = j. Hence �M

�1(IM) � fbg
S
I � I. Let c 2 A and d 2 �M

�1(IM). Then

�M(cd) = �M(c)�M(d) 2 IM which implies that cd 2 �M

�1(IM) (dc 2 �M

�1(IM) for a

right ideal). Analogously, we get c+ d; �c 2 �M

�1(IM). Since I is a maximal left (right)

ideal of A, we have �M
�1(IM) = A which implies that a^(M) 2 IM for every a 2 A.

Hence AM = IM which is not possible. So we have shown that J is a maximal left (right)

ideal of AM. According to the de�nition of J , it is clear that I = �M

�1(J ).
Next we show that J is closed. If clAM(J ) 6= AM then clAM

(J ) is also an ideal

in AM (see [8], p. 169) and J = clAM
(J ). Let us suppose that clAM(J ) = AM and

let O0 be a neighbourhood of zero in A. Then �M(O0) = O is a neighbourhood of zero

in AM. Since �M(eA) 2 clAM
(J ), then there exists a family (i�)

�2�
2 I such that

�M(i�)
�2�

! �M(eA). Now we can �nd such a � 2 � that �M(i� � eA) 2 O for every

� > �. If �0 > � then i�0
� eA 2 �M

�1(�M(O0)) = I(M) + O0 � I + O0 (because
M = I

T
Z(A), see proof of Theorem 2.8 (iii) in [4]) and therefore

eA = (eA � i�0
) + i�0

2 I +O0 + I � I +O0:

Hence

eA 2
\
fI +O0 : O0 is a neighbourhood of a base of zero in Ag = clAM

I = I

(see [10], p. 13). Thus I = A which is not possible. Therefore, J is a closed maximal left

(right) ideal.

It is easy to verify that the following statement holds.

Lemma 6. Let A be a topological algebra with unit, M 2 me(Z(A)) and J be an arbitrary

closed left (right) ideal of AM. Then �M

�1(J ) is a left (right) ideal of A.
Lemma 7. Let A be a topological algebra with unit for which at least one of the conditions

a) - e) of Theorem 3 holds. Suppose that there exists a closed maximal left (right) ideal in

A. If we denote the topological radicals of the algebras A and AM, where M2 me(Z(A)),
by R and RM respectively, then

R =
\
f�M

�1(RM) :M2 ml(Z(A))g:

Proof. Suppose that x 2
T
f�M

�1(RM) : M 2 me(Z(A))g and I is an arbitrary closed

maximal left (right) ideal of A. According to Theorem 4, we can �ndM2 me(Z(A)) and a
closed maximal left (right) ideal J of AM such that I = �M

�1(J ). Since �M(x) 2 RM �
J then x 2 I, for any closed maximal left (right) ideal I of A. Therefore, x 2 R such that

R �
\
f�M

�1(RM) :M2 me(Z(A))g:
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Suppose now that y 2 R and M 2 me(Z(A)). If J is an arbitrary closed maximal left

(right) ideal of AM, then �M
�1(J ) is a closed left (right) ideal of A by Lemma 6. It is clear

that I(M) � �M

�1(J ). Suppose that �M
�1(J ) � H for a left (right) ideal H of A. Then

J � �M(H). If �M(H) = AM then we can �nd such a h 2 H that �M(h) = eAM
(here eAM

denotes the unit element of AM). But this means that h � eA 2 I(M) � �M

�1(J ) � H,
which implies eA 2 H. Hence H = A which contradicts the assumption that H is an ideal of

A. Since J is a maximal left (right) ideal of AM then J = �M(H), that is, H = �M

�1(J ).

Hence, �M
�1(J ) is a closed maximal left (right) ideal of A and �M(y) 2 J for every closed

maximal left (right) ideal J of AM. Therefore �M(y) 2 RM if M 2 me(Z(A)), so that

R �
\
f�M

�1(RM) :M2 me(Z(A))g

which completes the proof.

Corollary 3. Let A be a topologically semisimple algebra, which satis�es the conditions of

Lemma 7. Then the mapping A is one-to-one.

Proof. Since A is topologically semisimple, its topological radical R = f�Ag. Hence from

ker A =
\
f�M

�1(�M) :M 2 me(Z(A))g �

�
\
f�M

�1(RM) :M 2 me(Z(A))g = R = f�Ag

one obtains that A is one-to-one.

Now we formulate the main result of this paper.

Theorem 5. Let A be a topologically semisimple algebra with unit, having at least one

closed maximal left (right) ideal. If one of the following statements is true

a) A is a locally pseudoconvex Waelbroeck algebra;

b) A is a locally A-pseudoconvex algebra;

c) A is a locally pseudoconvex Fr�echet algebra;

d) A is an exponentially galbed algebra with bounded elements;

e) A is a Gelfand-Mazur algebra for which m(A) 6= ;,
then A can be considered as a subalgebra of the section algebra �(�).

Proof. Since A is a one-to-one representation of A in �(�), we can consider A as a

subalgebras of �(�).
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