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SOME INEQUALITIES FOR SUMS OF MATRICES
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Abstract. A group of inequalities for sums of Hermitian nonnegative de�nite matrices

are derived by using some generalized matrix versions of the Cauchy-Schwarz and

Frucht-Kantorovich inequalities.

In the recent decade, the well-known Cauchy-Schwarz and Frucht-Kantorovich inequali-

ties have been extended to various generalized versions for matrices. Two remarkable cases

were given by Marshall and Olkin (1990) as follows:

(X�AX)�1 � X�A�1X � (�1 + �n)
2

4�1�n
(X�AX)�1;(1)

where A is an n � n Hermitian positive de�nite matrix with eigenvalues �1 � �2 � ::: �
�n > 0, while the n � p complex matrix X and its conjugate transpose of X� satisfy

X�X = Ip. The L�owner partial orderingA � B means that A�B is Hermitian nonnegative

de�nite. After that, some other extensions of (1) are also presented in the literature (see,

e.g. [1, 3, 5, 6, 10, 12]). A generalization of (1) related to Moore-Penrose inverses of matrices

is

Lemma 1. Let A be an n � n nonnull Hermitian nonnegative de�nite matrix with rank

r � n and r positive eigenvalues �1 � �2 � ::: � �r > 0; and let X be an n � p complex

matrix. Then

X�PAX(X�AX)+X�PAX � X�A+X � (�1 + �r)
2

4�1�r
X�PAX(X�AX)+X�PAX;(2)

where PA = AA+ is the orthogonal projector on the range (column space) of A.

The left-hand inequality in (2) was �rst given by Baksalary and Puntanen (1991), the

right-hand inequality in (2) was recently established by Drury et al (2000, Theorem 1). The

left-hand side of (2) was later extended to a more general form by Pe�cari�c et al (1996) as

follows:

Lemma 2. Let A be an n� n nonnegative de�nite matrix; and let P and Q be n� p and

n� q matrices; respectively. Then

Q�AQ � Q�AP (P �AP )+P �AQ;(3)

and

rank [Q�AQ �Q�AP (P �AP )+P �AQ ] = rank [AP; AQ ] � rank (AP ):(4)

Moreover; the following three statements are equivalent:
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(a) The equality in (3) holds.

(b) range (AQ) � range (AP ); i.e.; there is Z such that APZ = AQ:

(c) AQ = AP (P �AP )+P �AQ:

Here we give a direct proof for (3). As A � 0, we have�
A A

A A

�
� 0;

and further �
In 0

0 P

�
�
�
A A

A A

� �
In 0

0 P

�
=

�
A AP

P �A P �AP

�
� 0:

In that case, the Schur complement A�AP (P �AP )+P �A of P �AP in the block matrix is

also nonnegative de�nite, i.e., A�AP (P �AP )+P �A � 0: Consequently

Q�[A �AP (P �AP )+P �A ]Q = Q�AQ �Q�AP (P �AP )+P �AQ � 0;

as required for (3). Next let

M =

�
P �AP P �AQ

Q�AP Q�AQ

�
;

and note that range (P �AQ) � range (P �AP ). Then

rank (M) = rank (PAP �) + rank [Q�AQ �Q�AP (PAP �)+P �AQ ];(5)

cf. Marsaglia and Styan (1974). On the other hand,M = [A1=2P; A1=2Q ]� [A1=2P; A1=2Q ]:

Thus

rank (M) = rank [A1=2P; A1=2Q ] = rank [AP; AQ ]:(6)

Combine (5) and (6) to yield

rank [Q�AQ �Q�AP (P �AP )+P �AQ ] = rank [AP; AQ ] � rank (AP ):

Thus Q�AP (PAP �)+P �AQ = Q�AQ holds if and only if range (AQ) � range (AP ). An-

other method to show (3) is simpler: Note that

[AQ �AP (P �AP )+P �AQ ]�A+[AQ �AP (P �AP )+P �AQ ] � 0:

Expanding it and simplying, we also get (3). Clearly the equality in (3) holds if and only if

AQ = AP (P �AP )+P �AQ:

Since P and Q are arbitrarily given in (3), one can derive from (3) various consequences.

One special case of (3) used in the sequel is

(NY )�A(NY ) � (X�ANY )�(X�AX)+(X�ANY );(7)

with equality if and only if range (ANY ) � range (AX).

The inequalities in (2), (3) and (7) can be used to establish various inequalities for sums

of Hermitian nonnegative de�nite matrices. Our work in the note is to present some general

inequalities for sums of Hermitian nonnegative de�nite matrices, and to give various special

cases.
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Theorem 3. Let A1; A2; :::; Ak be n � n Hermitian nonnegative de�nite matrices; and

let N1; N2; :::; Nk be n� p complex matrices. Then

kX
i=1

N�

i AiNi �
 

kX
i=1

AiNi

!� 
kX

i=1

Ai

!+ 
kX

i=1

AiNi

!
;(8)

with equality if and only if there is Z such that AiZ = AiNi; i = 1; :::; k: Furthermore; let

X1; X2; :::; Xk be n� q complex matrices. Then

kX
i=1

N�

i
AiNi �

 
kX

i=1

X�

i
AiNi

!� 
kX

i=1

X�

i
AiXi

!+ 
kX

i=1

X�

i
AiNi

!
;(9)

with equality if and only if there is Z such that (AiXi)Z = AiNi; i = 1; :::; k:

Proof. Letting

A = diag(A1; A2; :::; Ak ); N = diag(N1; N2; :::; Nk );(10)

X� = [ In; In; :::; In ]; Y � = [ Ip; Ip; :::; Ip ](11)

in (7), we see that

(NY )�A(NY ) = N�

1A1N1 +N�

2A2N2 + :::+N�

k
AkNk;(12)

X�ANY = A1N1 +A2N2 + :::+AkNk; X�AX = A1 +A2 + :::+Ak:(13)

Putting (12) and (13) in (7) we obtain (8). Consequently, we let A, N and Y as in (10) and

(11), and set X� = [X�

1 ; X
�

2 ; :::; X
�

k
]: Then

X�AX = X�

1A1X1 +X�

2A2X2 + :::+X�

kAkXk;(14)

X�ANY = X�

1A1N1 +X�

2A2N2 + :::+X�

kAkNk:(15)

In that case, putting (12), (14) and (15) in (7) yields (9). 2

Take the replacements Ni  ! Xi; i = 1; :::; k in (9), we see that

kX
i=1

X�

i AiXi �
 

kX
i=1

N�

i AiXi

!� 
kX

i=1

N�

i AiNi

!+ 
kX

i=1

N�

i AiXi

!
;(16)

with equality if and only if there is Z such that (AiNi)Z = AiXi; i = 1; :::; k: This

inequality could be regarded as a dual inequality of (9) by taking Moore-Penrose inverses

of the both sides of (9) as conventional matrix inverse operations. The dual inequality of

(8) is

kX
i=1

Ai �
 

kX
i=1

AiNi

! 
kX

i=1

N�

i AiNi

!+ 
kX

i=1

AiNi

!�
;(17)

with equality if and only if there is Z such that AiNiZ = Ai; i = 1; :::; k:

Various special cases can be derived from (8) and (9) and their dual forms (16) and (17).

Let Ni = Ai; i = 1; :::; k in (8) and (17). Then we see that

kX
i=1

A3i �
 

kX
i=1

A2i

!� 
kX

i=1

Ai

!+ 
kX

i=1

A2i

!
;(18)
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with equality if and only if there is Z such that AiZ = A2
i
; i = 1; :::; k; and

kX
i=1

Ai �
 

kX
i=1

A2
i

!� 
kX

i=1

A3
i

!+ 
kX

i=1

A2
i

!
;(19)

with equality if and only if there is Z such that A2
i
Z = Ai; i = 1; :::; k.

Let Ni = At

i
; i = 1; :::; k in (8). Then we have

kX
i=1

A2t+1
i

�
 

kX
i=1

At+1

i

!� 
kX

i=1

Ai

!+ 
kX

i=1

At+1

i

!
;(20)

with equality if and only if there is Z such that AiZ = A
t+1

i
; i = 1; :::; k. Its dual

inequality by (17) is

kX
i=1

Ai �
 

kX
i=1

At+1

i

!� 
kX

i=1

A2t+1
i

!+ 
kX

i=1

At+1

i

!
;(21)

with equality if and only if there is Z such that At+1

i
Z = Ai; i = 1; :::; k.

If Ai is Hermitian positive de�nite and Ni = A�1
i
Bi; i = 1; :::; k, then (8) becomes

kX
i=1

B�

i
A�1
i
Bi �

 
kX

i=1

Bi

!� 
kX

i=1

Ai

!�1 
kX

i=1

Bi

!
;(22)

with equality if and only if A�11 B1 = ::: = A�1
k
Bk. Inequality (22) was recently established

by Nakamoto and Takahashi (1999, Theorem 5), see also Zhang (1999, Theorem 6.3). Its

dual inequality by (17) is

kX
i=1

Ai �
 

kX
i=1

Bi

! 
kX

i=1

B�

iA
�1

i
Bi

!+ 
kX

i=1

Bi

!�
;(23)

with equality if and only if there is Z such that BiZ = Ai i = 1; :::; k.

Setting Ni = A+
i
; i = 1; :::; k, in (8) yields

kX
i=1

A+
i
�
 

kX
i=1

PAi

! 
kX

i=1

Ai

!+ 
kX

i=1

PAi

!
;(24)

with equality if and only if there is Z such that AiZ = PAi
; i = 1; :::; k.

Let Ni = A+
i
Xi; i = 1; :::; k in (9), we have

kX
i=1

X�

i
A+
i
Xi �

 
kX

i=1

X�

i
PAi

Xi

! 
kX

i=1

X�

i
AiXi

!+ 
kX

i=1

X�

i
PAi

Xi

!
;(25)

with equality if and only if there is Z such that (AiXi)Z = AiA
+

i
Xi; i = 1; :::; k:

If we set Xi =
p
wiIn; i = 1; :::; k in (25) with

Pk

i=1
wi = 1; then

kX
i=1

wiA
+

i
�
 

kX
i=1

wiPAi

! 
kX

i=1

wiAi

!+ 
kX

i=1

wiPAi

!
;(26)
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with equality if and only if there is Z such that AiZ = AiA
+

i
; i = 1; :::; k: In particular,

w1A
�1

1 + w2A
�1

2 + :::+ wkA
�1

k
� (w1A1 + w2A2 + :::+ wkAk )

�1;(27)

with equality if and only if A1 = ::: = Ak: This inequality is well known (see, e.g., [2, 4, 9]).

When all Ai's are positive de�nite in (25), we have

kX
i=1

X�

i
A�1
i
Xi �

 
kX

i=1

X�

i
Xi

! 
kX

i=1

X�

i
AiXi

!+ 
kX

i=1

X�

i
Xi

!
;(28)

with equality if and only if there is Z such that (AiXi)Z = Xi; i = 1; :::; k. Equivalently,

(28) can be written as

kX
i=1

X�

i AiXi �
 

kX
i=1

X�

i Xi

! 
kX

i=1

X�

i A
�1

i
Xi

!+ 
kX

i=1

X�

i Xi

!
;(29)

with equality if and only if there is Z such that XiZ = AiXi; i = 1; :::; k. This result was

�rst established by Kiefer (1959, Lemma 3.2).

Another inequality for the sum
Pk

i=1
A+
i
can be derived from the right-hand side of (2).

Theorem 4. Let A1; A2; :::; Ak be n�n nonnull Hermitian nonnegative de�nite matrices.

Then

kX
i=1

A+
i
� (m+M)2

4mM

 
kX

i=1

PAi

! 
kX

i=1

Ai

!+ 
kX

i=1

PAi

!
;(30)

where M and m are; respectively; the maximum and minimum positive eigenvalues of

A1; A2; :::; Ak.

In fact, letting A = diag(A1; A2; :::; Ak ) and X = [ In; In; :::; In ], we have X
�PAX =

PA1
+ PA2

+ :::+ PAk
; X�AX = A1 +A2 + :::+Ak, and X

�A+X = A+
1
+A+

2
+ :::+ A+

k
:

In that case, the right-hand side of (2) becomes (30).

Combining (24) and (30), we can get a two-side inequality for the sum
Pk

i=1
A+
i

S

 
kX

i=1

Ai

!+
S �

kX
i=1

A+
i
� (m+M)2

4mM
S

 
kX

i=1

Ai

!+
S;(31)

where S =
Pk

i=1
PAi

. Replacing Ai by A
+

i
; i = 1; :::; k in (31), we also have

S

 
kX

i=1

A+
i

!+
S �

kX
i=1

Ai �
(m+M)2

4mM
S

 
kX

i=1

A+
i

!+
S:(32)

We call the �rst inequality in (31) the Cauchy-Schwarz part, and the second the Frucht-

Kantorovich part.

Notice that S =
Pk

i=1
PAi

is Hermitian. It follows that SS+ = S+S. On the other

hand, it is easy to verify that for nonnegative de�nite matrices A1; A2; :::; Ak

range

 
kX

i=1

PAi

!
= range

 
kX

i=1

Ai

!
= range

 
kX

i=1

A+
i

!
:
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Thus

SS+

 
kX

i=1

Ai

!
=

 
kX

i=1

Ai

!
S+S =

kX
i=1

Ai; SS+

 
kX

i=1

A+
i

!
=

 
kX

i=1

A+
i

!
S+S =

kX
i=1

Ai:

Now pre- and post-multiplying SS+ = SS+ to the inequalities (31) and (32), we get two

equivalent inequalities as follows

4mM

(m+M)2

kX
i=1

S+AiS
+ �

 
kX

i=1

A+
i

!+
�

kX
i=1

S+AiS
+;(33)

4mM

(m+M)2

kX
i=1

S+A+
i
S+ �

 
kX

i=1

Ai

!+
�

kX
i=1

S+A+
i
S+:(34)

If A1; A2; :::; Ak are Hermitian positive de�nite, then (31) reduces to

k2

 
kX

i=1

Ai

!�1
�

kX
i=1

A�1
i
� k2

(m+M)2

4mM

 
kX

i=1

Ai

!�1
:(35)

In particular, when k = 2, (35) becomes

4(A +B )�1 � A�1 +B�1 � (m+M)2

mM
(A +B )�1;(36)

or equivalently,

4A(A +B )�1B � A +B � (m+M)2

mM
A(A +B )�1B;(37)

where M and m are, respectively, the maximum and minimum positive eigenvalues of A

and B. This result was presented by Zhang (1999, Sec. 6.2).

The product A(A + B )�1B is well known in the literature (see, e.g., Rao and Mitra

(1971)) as the parallel sum of A and B. Thus (37) are in fact two inequalities for sum and

parallel sum of two Hermitian positive de�nite matrices.

Some related work can further be considered, for example, how to �nd, just as what

have been done in (31) and (32), the Frucht-Kantorovich counterparts for the inequalities

(8) and (9), or in particular, for (18){(23) and (25){(28).

Aknowledgements. The author is grateful to Professor George P. H. Styan for helpful

suggestions and insightful discussions. The research of the author was supported in part by

the Natural Sciences and Engineering Research Council of Canada.

References

[1] J. K. Baksalary and S. Puntanen, Generalized matrix versions of the Cauchy-Schwarz and

Kantorovich inequalities, Aequationes Math. 41 (1991), 103{110.

[2] C. Davis, Notions generalizing convexity for functions de�ned on spaces of matrices, in Con-

vexity edited by V. Klee, Sympos. Pure Math., Vol. VII, Providence Amer. Math. Soc. 1963,

pp. 187{201.

[3] S. W. Drury, S. Liu, C. Lu, S. Puntanen and G. P. H. Styan, Some comments on several matrix

inequalities with applications to canonical correlations, preprint, 2000.



SOME INEQUALITIES FOR SUMS OF MATRICES 783

[4] A. Kargan and P. J. Smith, Multivariate normal distributions, Fisher information and matrix

inequalities, Int. J. Math. Edu. Sci. Technol. 32 (2001), 91{96.

[5] S. Liu and H. Neudecker, Several matrix Kantorovich-type inequalities, J. Math. Anal. Appl.

197 (1996), 23{26

[6] S. Liu, W. Polasek and H. Neudecker, Equality conditions for matrix Kantorovich-type in-

equalities, J. Math. Anal. Appl. 212 (1997), 517{528.

[7] J. Kie�er, Optimum experimental design, Journal of Royal Statistical Society, Ser. B 21 (1959),

272{319.

[8] G. Marsaglia, G. P. H. Styan, Equalities and inequalities for ranks of matrices, Linear and

Multilinear Algebra 2 (1974), 269{292.

[9] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications,

Academic Press, New York, 1979.

[10] A. W. Marshall and I. Olkin, Matrix versions of the Cauchy and Kantorovich inequalities,

Aequationes Math. 40 (1990), 89{93.

[11] R. Nakamoto and S. Takahashi, Generalizations of an inequality of Marcus, Math. Japon. 50

(1999), 35{39.

[12] J. E. Pe�cari�c, S. Puntanen and G. P. H. Styan, Some further matrix extensions of the Cauchy{

Schwarz and Kantorovich inequalities, with some statistical applications, Linear Algebra Appl.

296 (1996), 455{476.

[13] C. R. Rao and S. K. Mitra, Generalized Inverse of Matrices and Its Applications, Wiely, New

York, 1971.

[14] F. Zhang, Matrix Theory, Basic results and Techniques, Sringer-Verlag, New York, 1999.

Department of Mathematics and Statistics

Queen's University

Kingston, Ontario, Canada K7L 3N6

e-mail:ytian@mast.queensu.ca


