DIMENSION ESTIMATE FOR A SET OBTAINED FROM A THREE-DIMENSIONAL NON-PERIODIC SELF-AFFINE TILING

Taizo Sadahiro

Received August 3, 2000

Abstract

Some computational results on the three-dimensional Pisot tiling generated by the roots of $x^{4}-x^{3}-x^{2}-x-1=0$ are shown. We show an upper bound of the Hausdorff dimension of the set which is a projection of the intersection of three-tiles to the plane.

1 Introduction A tile is a compact subset of \mathbf{R}^{n} which is equal to the closure of its interior. A set of tiles \mathcal{T} is a tiling of \mathbf{R}^{n}, if \mathcal{T} is a covering of \mathbf{R}^{n} such that the intersection of interiors of any two tiles in \mathcal{T} is empty. A tiling \mathcal{T} is called self-affine, if there is an affine map such that the image of a tile in \mathcal{T} is a union of tiles of \mathcal{T}.

Self-affine tilings are of special interest because of their relation to several topics of recent research, Markov partitions for toral automorphisms [11, 4, 1], wavelet theory [7, 10] and real quasi-crystal [8, 13]. There are numerous studies on self-affine tilings. All of the examples used there are about one or two-dimensional cases. Explicit examples of higher than or equal to three-dimensional cases have not been studied.

In this paper, we show some explicit computational results on the 3 -dimensional nonperiodic self-affine tiling generated by the roots of the equation $x^{4}-x^{3}-x^{2}-x-1=0$. We construct a Mauldin-Williams graph [9] of intersection of three tiles. The tiling we treat here is a Pisot tiling. Here we do not give the precise and general definition of the Pisot tilings. For further details, see $[2,15,14,3]$. The tiling is constructed as follows: The polynomial $x^{4}-x^{3}-x^{2}-x-1$ is irreducible over \mathbf{Q} and has four distinct roots,

$$
\begin{aligned}
\beta & =1.927561975482925304261905 \cdots \\
\gamma & =-0.7748041132154338540924032 \cdots \\
\alpha & =-0.07637893113374572508475 \cdots-0.8147036471703865268416 \cdots i \\
\bar{\alpha} & =-0.07637893113374572508475 \cdots+0.8147036471703865268416 \cdots i
\end{aligned}
$$

So β is a Pisot number, that is, β is an algebraic integer greater than 1 and all of its Galois conjugates over \mathbf{Q} are strictly inside the unit circle. Let $w=d_{-l} d_{-l+1} \cdots d_{-1}$ be a word over $\{0,1\}$. A tile $T(w)$ is defined as follows:

$$
T(w)=\left\{\left(\sum_{i=-l}^{\infty} a_{i} \alpha^{i}, \sum_{i=-l}^{\infty} a_{i} \gamma^{i}\right): \begin{array}{l}
a_{i} \in\{0,1\}, a_{i} \times a_{i+1} \times a_{i+2} \times a_{i+3}=0 \\
a_{-l} a_{-l+1} \cdots a_{-1}=w
\end{array}\right\}
$$

which is a subset of $\mathbf{C} \times \mathbf{R} \simeq \mathbf{R}^{3}$. The tiling \mathcal{T} is defined by

$$
\mathcal{T}:=\left\{T(w): w \in\{0,1\}^{*}\right\}
$$

2000 Mathematics Subject Classification. 11A63, 37A45.
Key words and phrases. Pisot number, self-affine tiling, Hausdorff dimension.
where $\{0,1\}^{*}$ denotes the set of all of the words over $\{0,1\}$ (including the empty word ϵ).
An automaton is a (directed labeled) graph. For an automaton M, we denote by $\mathcal{V}(M)$ the vertex set of M and by $\mathcal{E}(M)$ the edge set of M. Every edge $e \in \mathcal{E}(M)$ has the starting point $s(e) \in \mathcal{V}(M)$ and the end point $t(e) \in \mathcal{V}(M)$, and carry a label $l(e) \in \Sigma(M)$ where $\Sigma(M)$ is a finite set called the alphabet of M. A sequence of edges $e_{1} \cdots e_{l}$ is called a path of M if $t\left(e_{i}\right)=s\left(e_{i+1}\right)$. An automaton has a special vertex i_{M} called the initial state of $M . \Sigma^{*}$ denotes the set of all of the words over an alphabet Σ. A word $w=a_{1} \cdots a_{l} \in \Sigma^{*}$ is accepted by M if there exists a path $p=e_{1} \cdots e_{l}$ starting from i_{M} such that $l\left(e_{1}\right) \cdots l\left(e_{l}\right)=w$. An infinite word $\left(a_{i}\right)_{i \geq 0}$ over Σ is accepted by M if $a_{0} \cdots a_{h}$ is accepted by M for all $h \geq 0$. We denote by $L(M, i)$ the set of infinite words accepted by M with the initial state i.

Example 1 The automaton shown in Figure 1 accepts the words over $\{0,1\}$ which does not include 11 as a subword.

Figure 1:

The intersection of tiles are determined by automata. See [12] for the proof of the following theorem.

Theorem 1 (Sadahiro) The intersection of tiles are represented by automata: For any n tiles $T\left(w_{1}\right), T\left(w_{2}\right), \ldots, T\left(w_{n}\right)$, there exists an automaton m with the following property.

$$
\left(\sum_{i=-l}^{\infty} a_{i} \alpha^{i}, \sum_{i=-l}^{\infty} a_{i} \gamma^{i}\right) \in T\left(w_{1}\right) \cap T\left(w_{2}\right) \cap \cdots \cap T\left(w_{n}\right)
$$

if and only if $a_{-l} \cdots a_{-1}=w_{1}$ and $a_{-l} a_{-l+1} \cdots a_{h}$ is accepted by m for any $h \geq 0$.
An infinite word accepted by the automaton in the theorem above determines a point in the intersection. For example, the automaton which represents $T(0) \cap T(1) \cap T(11) \cap T(111)$ is shown in Figure 2, from which we can see $T(0) \cap T(1) \cap T(11) \cap T(111)$ consists of only one point $(-1,-1) \in \mathbf{C} \times \mathbf{R}$.

In fact, the following four presentations of $(-1,-1)$ exist:

$$
\begin{aligned}
(-1,-1) & =\left(\sum_{n=0}^{\infty} \alpha^{4 n}\left(\alpha+\alpha^{2}+\alpha^{3}\right), \sum_{n=0}^{\infty} \gamma^{4 n}\left(\gamma+\gamma^{2}+\gamma^{3}\right)\right)(\in T(0)) \\
& =\left(\frac{1}{\alpha}+\sum_{n=0}^{\infty} \alpha^{4 n}\left(\alpha+\alpha^{2}+\alpha^{4}\right), \frac{1}{\gamma}+\sum_{n=0}^{\infty} \gamma^{4 n}\left(\gamma+\gamma^{2}+\gamma^{4}\right)\right)(\in T(1))
\end{aligned}
$$

Figure 2:

$$
\begin{aligned}
& =\left(\frac{1}{\alpha^{2}}+\frac{1}{\alpha}+\sum_{n=0}^{\infty} \alpha^{4 n}\left(\alpha+\alpha^{3}+\alpha^{4}\right),\right. \\
& \\
& =\left(\frac{1}{\gamma^{2}}+\frac{1}{\gamma}+\sum_{n=0}^{\infty} \gamma^{4 n}\left(\gamma+\gamma^{3}+\gamma^{4}\right)\right)(\in T(11)) \\
& \alpha^{3}+\frac{1}{\alpha^{2}}+\frac{1}{\alpha}+\sum_{n=0}^{\infty} \alpha^{4 n}\left(\alpha^{2}+\alpha^{3}+\alpha^{4}\right), \\
& \\
& \left.\frac{1}{\gamma^{3}}+\frac{1}{\gamma^{2}}+\frac{1}{\gamma}+\sum_{n=0}^{\infty} \gamma^{4 n}\left(\gamma^{2}+\gamma^{3}+\gamma^{4}\right)\right)(\in T(111)) .
\end{aligned}
$$

2 Dimension of $T(0) \cap T(1) \cap T(11)$ We will study the following set in \mathbf{C} :

$$
E=\left\{\sum_{i=0}^{\infty} a_{i} \alpha^{i}:\left(\sum_{i=0}^{\infty} a_{i} \alpha^{i}, \sum_{i=0}^{\infty} a_{i} \gamma^{i}\right) \in T(0) \cap T(1) \cap T(11)\right\} .
$$

Figure 3 shows E. The automaton which accepts words determining points in $T(0) \cap T(1) \cap$ $T(11)$ is shown in the appendix.

A cycle is a directed graph H for which there is a closed path which passes into every vertex exactly once and such that every edge of H is an edge of this path. A directed graph H is strongly connected provided that whenever each of x and y is a vertex of H, then there is a path from x to y.

A strongly connected component of G is a maximal subgraph H of G such that H is strongly connected. It is clear that the strongly connected components of G are pairwise disjoint. A vertex is not considered to be strongly connected unless it is looped on itself.

The automaton which represents $T(0) \cap T(1) \cap T(11)$ is decomposed into strongly connected components as is shown in Figure 4. Every strongly connected components except a special component X consists of one cycle. Figure 5 shows the component X. All of the infinite paths which do not remain in X end up in cycles and they are a countable set. The dimension of E is equal to the dimension of the set which consists of points determined by the infinite words accepted by X fixing a vertex as the initial state. Let a, b and c be the states shown in Figure 5. Let $A=L(X, \mathrm{a}), B=L(X, \mathrm{~b}), C=L(X, \mathrm{c})$ be the sets of the infinite words accepted by X with the initial satetes, $\mathrm{a}, \mathrm{b}, \mathrm{c}$, respectively. Then A, B, C satisfy the following set-equations, namely we obtain a graph iterated function system [5].

$$
\left\{\begin{array}{l}
A=f_{1}(A) \cup f_{2}(A) \cup f_{3}(B) \tag{1}\\
B=g_{1}(A) \cup g_{2}(B) \cup g_{3}(C) \\
C=h_{1}(A) \cup h_{2}(A) \cup h_{3}(C)
\end{array} .\right.
$$

Figure 4: decomposition to strongly connected components

Figure 5: X

$$
\begin{aligned}
& f_{1}(x)=\alpha^{4} x+\alpha^{2}+\alpha+1 \\
& f_{2}(x)=\alpha^{4} x+\alpha^{2}+\alpha \\
& f_{3}(x)=\alpha^{5} x+\alpha^{4}+\alpha^{2}+\alpha \\
& g_{1}(x)=\alpha^{7} x+\alpha^{5}+\alpha^{4}+\alpha^{3}+\alpha+1 \\
& g_{2}(x)=\alpha^{4} x+\alpha^{3}+\alpha \\
& g_{3}(x)=\alpha^{5} x+\alpha^{4}+\alpha^{3}+\alpha \\
& h_{1}(x)=\alpha^{10} x+\alpha^{8}+\alpha^{7}+\alpha^{6}+\alpha^{4}+\alpha^{3}+\alpha^{2}+1 \\
& h_{2}(x)=\alpha^{5} x+\alpha^{3}+\alpha^{2}+1 \\
& h_{3}(x)=\alpha^{4} x+\alpha^{3}+\alpha^{2}
\end{aligned}
$$

The Mauldin-Williams graph G for this system is shown in Figure 6. The dimension s

Figure 6: Mauldin-Williams graph for E
associated to G is computed as follows [5, 9]:

$$
\begin{gather*}
\operatorname{det}\left(\begin{array}{ccc}
2|\alpha|^{4 s}-1 & |\alpha|^{5 s} & 0 \\
|\alpha|^{7 s} & |\alpha|^{4 s}-1 & |\alpha|^{5 s} \\
|\alpha|^{5 s}+|\alpha|^{10 s} & 0 & |\alpha|^{4 s}-1
\end{array}\right)=0 \tag{2}\\
|\alpha|^{20 s}-|\alpha|^{16 s}+|\alpha|^{15 s}+3|\alpha|^{12 s}-5|\alpha|^{8 s}+4|\alpha|^{4 s}-1=0 .
\end{gather*}
$$

Thus $|\alpha|^{s}$ can take the following four real values,
-1 ,
$-0.9704028248572908964456 \cdots$,
$-0.8265233553562334820903 \cdots$,
$0.79254349837573255006271 \cdots$.

Since $s>0$, we obtain $|\alpha|^{s}=0.792543498375732550062 \cdots$ and $s=1.15931959819470279575$ \cdots. By using the result of [5], this value is the upper bound of the Hausdorff dimension of A, B, C.

Theorem 2 E has the Hausdorff dimension smaller than or equal to $1.15931959819470279575 \cdots$.

From numerical experiments, the upper bound in the theorem above seems to be exactly equal to the Hausdorff dimension of E.

Conjecture 1 Each of the sets, $f_{1}(A) \cap f_{2}(A), f_{2}(A) \cap f_{3}(B), f_{3}(B) \cap f_{1}(A), g_{1}(A) \cap g_{2}(B), g_{2}(B) \cap$ $g_{3}(C), g_{3}(C) \cap g_{1}(A), h_{1}(A) \cap h_{2}(A), h_{2}(A) \cap h_{3}(C), h_{3}(C) \cap h_{1}(A)$ consits of only one point.
A, B and C has the same Hausdorff dimension s, and each of the s-dimensional Hausdorff measure of A, B, C is positive and finite. (See the first half of the proof of Corollary 3.5 in [6].) Regarding this conjecture to be true, we have

$$
\begin{aligned}
\mathcal{H}^{s}(A) & =\mathcal{H}^{s}\left(f_{1}(A)\right)+\mathcal{H}^{s}\left(f_{2}(A)\right)+\mathcal{H}^{s}\left(f_{3}(B)\right) \\
& =|\alpha|^{4 s} \mathcal{H}^{s}(A)+|\alpha|^{4 s} \mathcal{H}^{s}(A)+|\alpha|^{5 s} \mathcal{H}^{s}(B)
\end{aligned}
$$

where $\mathcal{H}^{s}(A)$ denotes the s-dimensional Hausdorff measure of A. In the same way, we obtain

$$
\left(\begin{array}{c}
\mathcal{H}^{s}(A) \\
\mathcal{H}^{s}(B) \\
\mathcal{H}^{s}(C)
\end{array}\right)=\left(\begin{array}{ccc}
2|\alpha|^{4 s} & |\alpha|^{5 s} & 0 \\
|\alpha|^{7 s} & |\alpha|^{4 s} & |\alpha|^{5 s} \\
|\alpha|^{5 s}+|\alpha|^{10 s} & 0 & |\alpha|^{4 s}
\end{array}\right)\left(\begin{array}{c}
\mathcal{H}^{s}(A) \\
\mathcal{H}^{s}(B) \\
\mathcal{H}^{s}(C)
\end{array}\right)
$$

and we have (2).
Figure 7 shows the points $\left\{z:(z, w) \in T(0) \cap T \cap T^{\prime}, T, T^{\prime} \in \mathcal{T}\right\}$, which seems to have the same dimension as that of $T(0) \cap T(1) \cap T(11)$.

3 Appendix The transision function of the automaton M are shown below. The notation

$$
\begin{aligned}
& \mathrm{m} \\
& =0=>\mathrm{n} \\
& =0=>1 \\
& =1=>\mathrm{k}
\end{aligned}
$$

means that there are edges from the state m, one to the state n labeled by 0 , one to l labeled by 0 , and one to k labeled by 1 .

$$
\begin{aligned}
& 1 \\
& =0=>2 \\
& =0=>106 \\
& =0=>109 \\
& =0=>111 \\
& =1=>114 \\
& 2 \\
& =0=>3 \\
& =0=>99 \\
& =0=>100 \\
& =1=>103 \\
& =1=>104 \\
& 3 \\
& =1=>4 \\
& 4 \\
& =1=>5 \\
& 5 \\
& =0=>6 \\
& 6 \\
& =0=>3 \\
& =0=>7 \\
& =0=>80 \\
& =1=>93 \\
& =1=>96 \\
& 7 \\
& =0=>8 \\
& =1=>14 \\
& 8 \\
& =1=>9 \\
& 9 \\
& =0=>10 \\
& 10 \\
& =1=>11 \\
& 11 \\
& =1=>12 \\
& 12 \\
& =0=>13 \\
& 13 \\
& =0=>10 \\
& 14 \\
& =1=>15 \\
& 15 \\
& =0=>16 \\
& 16 \\
& =1=>17 \\
& 17 \\
& =0=>18 \\
& =0=>20 \\
& =0=>61 \\
& =1=>64 \\
& =1=>77
\end{aligned}
$$

18
$=1=>19$
19
$=0=>16$
20
$=1=>21$
$=1=>27$
21
$=0=>22$
22
$=1=>23$
23
$=1=>24$
24
$=0=>25$
25
$=0=>26$
26
$=1=>23$
27
$=0=>28$
28
$=1=>29$
29
$=1=>30$
30
$=0=>31$
$=1=>33$
$=1=>42$
$=1=>45$
$=1=>58$
31
$=0=>32$
32
$=1=>29$
33
$=0=>34$
$=0=>40$
34
$=1=>35$
35
$=1=>36$
36
$=0=>37$
37
$=0=>38$
38
$=1=>39$
39
$=1=>36$

40
$=1=>41$
41
$=1=>5$
42
$=0=>43$
43
$=1=>44$
44
$=1=>24$
45
$=0=>46$
$=0=>52$
46
$=1=>47$
47
$=1=>48$
48
$=0=>49$
49
$=0=>50$
50
$=1=>51$
51
$=1=>48$
52
$=1=>53$
53
$=1=>54$
54
$=0=>55$
55
$=0=>56$
56
$=1=>57$
57
$=1=>54$
58
$=0=>59$
59
$=1=>60$
60
$=1=>30$
61
$=1=>62$
62
$=0=>63$
63
$=1=>11$
64
$=1=>65$
$=1=>71$

65
$=0=>66$
66
$=1=>67$
67
$=0=>68$
68
$=1=>69$
69
$=0=>70$
70
$=1=>67$
71
$=0=>72$
72
$=1=>73$
73
$=0=>74$
74
$=1=>75$
75
$=0=>76$
76
$=1=>73$
77
$=1=>78$
78
$=0=>79$
79
$=1=>17$
80
$=0=>81$
$=1=>87$
81
$=1=>82$
82
$=0=>83$
83
$=1=>84$
84
$=1=>85$
85
$=0=>86$
86
$=0=>83$
87
$=1=>88$
88
$=0=>89$
89
$=1=>90$

90	99 $=0=>91$	108 $=1=>14$ 91
$=1=>92$	100	109
92	$=0=>101$	$=0=>110$
$=0=>89$	$=1=>102$	110
93	101	$=1=>57$
$=1=>94$	$=1=>82$	107
94	102	$=1=>108$
$=1=>95$	$=1=>88$	112
95	103	$=1=>113$
$=0=>37$	$=1=>94$	113
96	104	$=1=>30$
$=1=>97$	$=1=>105$	114
97	105	$=0=>3$
$=1=>98$	$=1=>98$	111
98	106	$=0=>112$
$=0=>6$	$=0=>107$	

References

[1] R. Adler and B. Weiss. Entoropy is a complete metric invariant for automorphisms of the torus. Proc. Nat. Acad. Sci., 57:6:1573-1576, 1967.
[2] Shigeki Akiyama. Self affine tiling and Pisot numeration system. In K. Györy, editor, Number Theory and its Applications, pages 7-17, Kyoto, 1999. Kluwer.
[3] S. Akiyama and T. Sadahiro. A self-similar tiling generated by the minimal pisot number. Acta Mathematica et informatica Universitatis Ostraviensis, 6:9-26, 1998.
[4] R. Bowen. Equilibrium states and the ergodic theory of anosov diffeomorphisms. Springer Lecture Notes in Math, 470:78-104, 1975.
[5] G. A. Edger and Jeffrey Golds. A fractal dimension estimate for graph directed set of nonsimilarities. Indiana Univ. Math. J., 48:429-448, 1999.
[6] K. Falconer. Techniques in Fractal Geometry. Cambridge University Press, 1998.
[7] K. Gröchnig and W.R. Madych. Multiresolution analysis, haar bases, and self-similar tilngs of \mathbf{R}^{n}. IEEE Transactions on Information Theory, 38:556-568, 1992.
[8] J. Lagarias. Geometric models for quasicrystals I. Discrete and Computational Geometry, 21:161-191, 1999.
[9] R.D. Mauldin \& S.C. Williams. Hausdorff dimension in graph directed constructions. Trans. Amer. Math. Soc, 309:811-829, 1988.
[10] H.L. Resnikoff and R.O. Wells. Wavelet analysis. Springer, 1998.
[11] R. Kenyon and A. Vershik. Arithmetic construction of sofic partition of hyperbolic toral automorphisms. Ergodic Theory and Dynamical Systems, 18:357-372, 1998.
[12] T. Sadahiro. Coloring solitaire tilings. to appear in Yokohama mathematical journal, 2000.
[13] M. Senechal. Quasicrystal and Geometry. Cambridge U. P., 1995.
[14] B Solomyak. Dynamics of the self-similar tilings. Ergodic Theory and Dynamical Systems, 17:695-738, 1997.
[15] W.P. Thurston. Groups, tilings and finite state automata. AMS Colloquium lectures, 1989.

Department of Administration,
Prefectural University of Kumamoto, Tsukide 3-1-100, Kumamoto,
Japan 862-8502
E-mail; sadahiro@pu-kumamoto.ac.jp

