DIMENSION ESTIMATE FOR A SET OBTAINED FROM A THREE-DIMENSIONAL NON-PERIODIC SELF-AFFINE TILING

TAIZO SADAHIRO

Received August 3, 2000

ABSTRACT. Some computational results on the three-dimensional Pisot tiling generated by the roots of $x^4 - x^3 - x^2 - x - 1 = 0$ are shown. We show an upper bound of the Hausdorff dimension of the set which is a projection of the intersection of three-tiles to the plane.

1 Introduction A *tile* is a compact subset of \mathbb{R}^n which is equal to the closure of its interior. A set of tiles \mathcal{T} is a *tiling* of \mathbb{R}^n , if \mathcal{T} is a covering of \mathbb{R}^n such that the intersection of interiors of any two tiles in \mathcal{T} is empty. A tiling \mathcal{T} is called *self-affine*, if there is an affine map such that the image of a tile in \mathcal{T} is a union of tiles of \mathcal{T} .

Self-affine tilings are of special interest because of their relation to several topics of recent research, Markov partitions for toral automorphisms [11, 4, 1], wavelet theory [7, 10] and real quasi-crystal [8, 13]. There are numerous studies on self-affine tilings. All of the examples used there are about one or two-dimensional cases. Explicit examples of higher than or equal to three-dimensional cases have not been studied.

In this paper, we show some explicit computational results on the 3-dimensional nonperiodic self-affine tiling generated by the roots of the equation $x^4 - x^3 - x^2 - x - 1 = 0$. We construct a Mauldin-Williams graph [9] of intersection of three tiles. The tiling we treat here is a Pisot tiling. Here we do not give the precise and general definition of the Pisot tilings. For further details, see [2, 15, 14, 3]. The tiling is constructed as follows: The polynomial $x^4 - x^3 - x^2 - x - 1$ is irreducible over **Q** and has four distinct roots,

So β is a *Pisot* number, that is, β is an algebraic integer greater than 1 and all of its Galois conjugates over **Q** are strictly inside the unit circle. Let $w = d_{-l}d_{-l+1}\cdots d_{-1}$ be a word over $\{0,1\}$. A tile T(w) is defined as follows:

$$T(w) = \left\{ \left(\sum_{i=-l}^{\infty} a_i \alpha^i, \sum_{i=-l}^{\infty} a_i \gamma^i \right) : \begin{array}{l} a_i \in \{0,1\}, a_i \times a_{i+1} \times a_{i+2} \times a_{i+3} = 0, \\ a_{-l}a_{-l+1} \cdots a_{-1} = w \end{array} \right\},$$

which is a subset of $\mathbf{C} \times \mathbf{R} \simeq \mathbf{R}^3$. The *tiling* \mathcal{T} is defined by

 $\mathcal{T} := \{ T(w) : w \in \{0, 1\}^* \},\$

²⁰⁰⁰ Mathematics Subject Classification. 11A63, 37A45.

Key words and phrases. Pisot number, self-affine tiling, Hausdorff dimension.

T.SADAHIRO

where $\{0,1\}^*$ denotes the set of all of the words over $\{0,1\}$ (including the empty word ϵ).

An automaton is a (directed labeled) graph. For an automaton M, we denote by $\mathcal{V}(M)$ the vertex set of M and by $\mathcal{E}(M)$ the edge set of M. Every edge $e \in \mathcal{E}(M)$ has the starting point $s(e) \in \mathcal{V}(M)$ and the end point $t(e) \in \mathcal{V}(M)$, and carry a label $l(e) \in \Sigma(M)$ where $\Sigma(M)$ is a finite set called the *alphabet* of M. A sequence of edges $e_1 \cdots e_l$ is called a path of M if $t(e_i) = s(e_{i+1})$. An automaton has a special vertex i_M called the *initial state* of M. Σ^* denotes the set of all of the words over an alphabet Σ . A word $w = a_1 \cdots a_l \in \Sigma^*$ is accepted by M if there exists a path $p = e_1 \cdots e_l$ starting from i_M such that $l(e_1) \cdots l(e_l) = w$. An infinite word $(a_i)_{i\geq 0}$ over Σ is accepted by M if $a_0 \cdots a_h$ is accepted by M for all $h \geq 0$. We denote by L(M, i) the set of infinite words accepted by M with the initial state i.

Example 1 The automaton shown in Figure 1 accepts the words over $\{0,1\}$ which does not include 11 as a subword.

Figure 1:

The intersection of tiles are determined by automata. See [12] for the proof of the following theorem.

Theorem 1 (Sadahiro) The intersection of tiles are represented by automata: For any n tiles $T(w_1), T(w_2), \ldots, T(w_n)$, there exists an automaton m with the following property.

$$\left(\sum_{i=-l}^{\infty} a_i \alpha^i, \sum_{i=-l}^{\infty} a_i \gamma^i\right) \in T(w_1) \cap T(w_2) \cap \dots \cap T(w_n)$$

if and only if $a_{-l} \cdots a_{-1} = w_1$ and $a_{-l}a_{-l+1} \cdots a_h$ is accepted by m for any $h \ge 0$.

An infinite word accepted by the automaton in the theorem above determines a point in the intersection. For example, the automaton which represents $T(0) \cap T(1) \cap T(11) \cap T(111)$ is shown in Figure 2, from which we can see $T(0) \cap T(1) \cap T(11) \cap T(111)$ consists of only one point $(-1, -1) \in \mathbf{C} \times \mathbf{R}$.

In fact, the following four presentations of (-1, -1) exist:

$$(-1, -1) = \left(\sum_{n=0}^{\infty} \alpha^{4n} (\alpha + \alpha^2 + \alpha^3), \sum_{n=0}^{\infty} \gamma^{4n} (\gamma + \gamma^2 + \gamma^3)\right) (\in T(0))$$

= $\left(\frac{1}{\alpha} + \sum_{n=0}^{\infty} \alpha^{4n} (\alpha + \alpha^2 + \alpha^4), \frac{1}{\gamma} + \sum_{n=0}^{\infty} \gamma^{4n} (\gamma + \gamma^2 + \gamma^4)\right) (\in T(1))$

Figure 2:

$$= \left(\frac{1}{\alpha^{2}} + \frac{1}{\alpha} + \sum_{n=0}^{\infty} \alpha^{4n} (\alpha + \alpha^{3} + \alpha^{4}), \\ \frac{1}{\gamma^{2}} + \frac{1}{\gamma} + \sum_{n=0}^{\infty} \gamma^{4n} (\gamma + \gamma^{3} + \gamma^{4})\right) (\in T(11))$$

$$= \left(\frac{1}{\alpha^{3}} + \frac{1}{\alpha^{2}} + \frac{1}{\alpha} + \sum_{n=0}^{\infty} \alpha^{4n} (\alpha^{2} + \alpha^{3} + \alpha^{4}), \\ \frac{1}{\gamma^{3}} + \frac{1}{\gamma^{2}} + \frac{1}{\gamma} + \sum_{n=0}^{\infty} \gamma^{4n} (\gamma^{2} + \gamma^{3} + \gamma^{4})\right) (\in T(111))$$

2 Dimension of $T(0) \cap T(1) \cap T(11)$ We will study the following set in C:

$$E = \left\{ \sum_{i=0}^{\infty} a_i \alpha^i : \left(\sum_{i=0}^{\infty} a_i \alpha^i, \sum_{i=0}^{\infty} a_i \gamma^i \right) \in T(0) \cap T(1) \cap T(11) \right\}.$$

Figure 3 shows E. The automaton which accepts words determining points in $T(0) \cap T(1) \cap T(1)$ is shown in the appendix.

A cycle is a directed graph H for which there is a closed path which passes into every vertex exactly once and such that every edge of H is an edge of this path. A directed graph H is strongly connected provided that whenever each of x and y is a vertex of H, then there is a path from x to y.

A strongly connected component of G is a maximal subgraph H of G such that H is strongly connected. It is clear that the strongly connected components of G are pairwise disjoint. A vertex is not considered to be strongly connected unless it is looped on itself.

The automaton which represents $T(0) \cap T(1) \cap T(11)$ is decomposed into strongly connected components as is shown in Figure 4. Every strongly connected components except a special component X consists of one cycle. Figure 5 shows the component X. All of the infinite paths which do not remain in X end up in cycles and they are a countable set. The dimension of E is equal to the dimension of the set which consists of points determined by the infinite words accepted by X fixing a vertex as the initial state. Let \mathbf{a} , \mathbf{b} and \mathbf{c} be the states shown in Figure 5. Let $A = L(X, \mathbf{a})$, $B = L(X, \mathbf{b})$, $C = L(X, \mathbf{c})$ be the sets of the infinite words accepted by X with the initial states, \mathbf{a} , \mathbf{b} , \mathbf{c} , respectively. Then A, B, C satisfy the following set-equations, namely we obtain a graph iterated function system [5].

(1)
$$\begin{cases} A = f_1(A) \cup f_2(A) \cup f_3(B) \\ B = g_1(A) \cup g_2(B) \cup g_3(C) \\ C = h_1(A) \cup h_2(A) \cup h_3(C) \end{cases}$$

Figure 4: decomposition to strongly connected components

Figure 5: X

T.SADAHIRO

$$f_1(x) = \alpha^4 x + \alpha^2 + \alpha + 1$$

$$f_2(x) = \alpha^4 x + \alpha^2 + \alpha$$

$$f_3(x) = \alpha^5 x + \alpha^4 + \alpha^2 + \alpha$$

$$g_1(x) = \alpha^7 x + \alpha^5 + \alpha^4 + \alpha^3 + \alpha + 1$$

$$g_2(x) = \alpha^4 x + \alpha^3 + \alpha$$

$$g_3(x) = \alpha^5 x + \alpha^4 + \alpha^3 + \alpha$$

$$h_1(x) = \alpha^{10} x + \alpha^8 + \alpha^7 + \alpha^6 + \alpha^4 + \alpha^3 + \alpha^2 + 1$$

$$h_2(x) = \alpha^5 x + \alpha^3 + \alpha^2$$

The Mauldin-Williams graph G for this system is shown in Figure 6. The dimension s

Figure 6: Mauldin-Williams graph for E

associated to G is computed as follows [5, 9]:

(2)
$$\det \begin{pmatrix} 2|\alpha|^{4s} - 1 & |\alpha|^{5s} & 0\\ |\alpha|^{7s} & |\alpha|^{4s} - 1 & |\alpha|^{5s}\\ |\alpha|^{5s} + |\alpha|^{10s} & 0 & |\alpha|^{4s} - 1 \end{pmatrix} = 0.$$
$$|\alpha|^{20s} - |\alpha|^{16s} + |\alpha|^{15s} + 3|\alpha|^{12s} - 5|\alpha|^{8s} + 4|\alpha|^{4s} - 1 = 0.$$

Thus $|\alpha|^s$ can take the following four real values,

 $\begin{array}{l} -1, \\ -0.9704028248572908964456\cdots, \\ -0.8265233553562334820903\cdots, \\ 0.79254349837573255006271\cdots. \end{array}$

Since s > 0, we obtain $|\alpha|^s = 0.792543498375732550062 \cdots$ and $s = 1.15931959819470279575 \cdots$. By using the result of [5], this value is the upper bound of the Hausdorff dimension of A, B, C.

Theorem 2 E has the Hausdorff dimension smaller than or equal to $1.15931959819470279575\cdots$

From numerical experiments, the upper bound in the theorem above seems to be exactly equal to the Hausdorff dimension of E.

Conjecture 1 Each of the sets, $f_1(A) \cap f_2(A)$, $f_2(A) \cap f_3(B)$, $f_3(B) \cap f_1(A)$, $g_1(A) \cap g_2(B)$, $g_2(B) \cap g_3(C)$, $g_3(C) \cap g_1(A)$, $h_1(A) \cap h_2(A)$, $h_2(A) \cap h_3(C)$, $h_3(C) \cap h_1(A)$ consist of only one point.

A, B and C has the same Hausdorff dimension s, and each of the s-dimensional Hausdorff measure of A, B, C is positive and finite. (See the first half of the proof of Corollary 3.5 in [6].) Regarding this conjecture to be true, we have

$$\mathcal{H}^{s}(A) = \mathcal{H}^{s}(f_{1}(A)) + \mathcal{H}^{s}(f_{2}(A)) + \mathcal{H}^{s}(f_{3}(B))$$

$$= |\alpha|^{4s} \mathcal{H}^{s}(A) + |\alpha|^{4s} \mathcal{H}^{s}(A) + |\alpha|^{5s} \mathcal{H}^{s}(B).$$

where $\mathcal{H}^{s}(A)$ denotes the s-dimensional Hausdorff measure of A. In the same way, we obtain

$$\begin{pmatrix} \mathcal{H}^s(A)\\ \mathcal{H}^s(B)\\ \mathcal{H}^s(C) \end{pmatrix} = \begin{pmatrix} 2|\alpha|^{4s} & |\alpha|^{5s} & 0\\ |\alpha|^{7s} & |\alpha|^{4s} & |\alpha|^{5s}\\ |\alpha|^{5s} + |\alpha|^{10s} & 0 & |\alpha|^{4s} \end{pmatrix} \begin{pmatrix} \mathcal{H}^s(A)\\ \mathcal{H}^s(B)\\ \mathcal{H}^s(C) \end{pmatrix}$$

and we have (2).

Figure 7 shows the points $\{z : (z, w) \in T(0) \cap T \cap T', T, T' \in \mathcal{T}\}$, which seems to have the same dimension as that of $T(0) \cap T(1) \cap T(11)$.

3 Appendix The transision function of the automaton M are shown below. The notation

means that there are edges from the state m, one to the state n labeled by 0, one to l labeled by 0, and one to k labeled by 1.

T.SADAHIRO

1	18	40	65
= 0 => 2	=1 => 19	=1 => 41	= 0 => 66
= 0 => 106	19	41	66
= 0 => 109	= 0 => 16	=1 => 5	= 1 => 67
= 0 => 111	20	42	67
= 1 => 114	=1 => 21	= 0 => 43	= 0 => 68
2	=1 => 27	43	68
= 0 => 3	21	=1 => 44	= 1 => 69
= 0 => 99	= 0 => 22	44	69
= 0 => 100	22	=1 => 24	= 0 => 70
= 1 => 103	=1 => 23	45	70
= 1 => 104	23	= 0 => 46	= 1 => 67
3	=1 => 24	= 0 => 52	71
= 1 => 4	24	46	= 0 => 72
4	= 0 => 25	=1 => 47	72
= 1 => 5	25	47	= 1 => 73
5	= 0 => 26	=1 => 48	73
= 0 => 6	26	48	= 0 => 74
6	= 1 => 23	= 0 => 49	74
= 0 => 3	27	49	= 1 => 75
= 0 => 7	= 0 => 28	= 0 => 50	75
= 0 => 80	28	50	= 0 => 76
= 1 => 93	= 1 => 29	= 1 => 51	76
= 1 => 96	29	51	= 1 => 73
1 / 00	= 1 => 30	= 1 => 48	77
7	30	52	= 1 => 78
= 0 => 8	= 0 => 31	= 1 => 53	78
= 0 = > 0 = 1 = > 14	= 0 => 31 = 1 => 33	53	= 0 => 79
8	= 1 => 42	= 1 => 54	79
= 1 = > 9	= 1 => 12 = 1 => 45	54	= 1 => 17
9	= 1 => 58	= 0 => 55	80
= 0 => 10	31	- 0 -> 00 55	= 0 => 81
10	= 0 => 32	= 0 => 56	= 1 => 87
= 1 => 11	32	56	81
11	= 1 => 29	= 1 => 57	= 1 => 82
= 1 => 12	33	57	82
12	= 0 => 34	= 1 => 54	= 0 => 83
= 0 => 13	= 0 => 40	58	83
13	34	= 0 => 59	= 1 => 84
= 0 => 10	= 1 => 35	_ 0 _> 00	84
14	35	= 1 => 60	= 1 => 85
= 1 => 15	= 1 => 36	60	85
15	36	= 1 => 30	= 0 => 86
-0 -> 16	-0 -> 37	61	86
16	37	= 1 => 62	= 0 => 83
-1 - > 17	-0 -> 38	62	- 0 -> 00 87
17	38	-0 -> 63	-1 -> 88
= 0 => 18	= 1 => 39	= 0 = 200	- 1 - 2 00 88
= 0 => 20	39	= 1 = > 11	= 0 = > 80
0 = 20 = 0 = > 61	= 1 => 36	64	89
= 1 = > 64	1 -> 00	= 1 = > 65	= 1 = > 00
-1 -> 77		= 1 = 200 = 1 = 271	30
/ //		— I — / II	

766

90	99	108
= 0 => 91	= 0 => 8	= 1 => 24
91	= 1 => 14	109
=1 => 92	100	= 0 => 110
92	= 0 => 101	110
= 0 => 89	= 1 => 102	= 1 => 57
93	101	107
=1 => 94	= 1 => 82	= 1 => 108
94	102	112
=1 => 95	= 1 => 88	= 1 => 113
95	103	113
= 0 => 37	= 1 => 94	= 1 => 30
96	104	114
=1 => 97	= 1 => 105	= 0 => 3
97	105	111
=1 => 98	= 1 => 98	= 0 => 112
98	106	
= 0 => 6	= 0 => 107	

References

- R. Adler and B. Weiss. Entoropy is a complete metric invariant for automorphisms of the torus. Proc. Nat. Acad. Sci., 57:6:1573-1576, 1967.
- [2] Shigeki Akiyama. Self affine tiling and Pisot numeration system. In K. Györy, editor, Number Theory and its Applications, pages 7–17, Kyoto, 1999. Kluwer.
- [3] S. Akiyama and T. Sadahiro. A self-similar tiling generated by the minimal pisot number. Acta Mathematica et informatica Universitatis Ostraviensis, 6:9-26, 1998.
- [4] R. Bowen. Equilibrium states and the ergodic theory of anosov diffeomorphisms. Springer Lecture Notes in Math, 470:78-104, 1975.
- [5] G. A. Edger and Jeffrey Golds. A fractal dimension estimate for graph directed set of nonsimilarities. Indiana Univ. Math. J., 48:429-448, 1999.
- [6] K. Falconer. Techniques in Fractal Geometry. Cambridge University Press, 1998.
- [7] K. Gröchnig and W.R. Madych. Multiresolution analysis, haar bases, and self-similar tilngs of \mathbf{R}^{n} . *IEEE Transactions on Information Theory*, 38:556–568, 1992.
- [8] J. Lagarias. Geometric models for quasicrystals I. Discrete and Computational Geometry, 21:161-191, 1999.
- R.D. Mauldin & S.C. Williams. Hausdorff dimension in graph directed constructions. Trans. Amer. Math. Soc, 309:811-829, 1988.
- [10] H.L. Resnikoff and R.O. Wells. Wavelet analysis. Springer, 1998.
- [11] R. Kenyon and A. Vershik. Arithmetic construction of sofic partition of hyperbolic toral automorphisms. Ergodic Theory and Dynamical Systems, 18:357-372, 1998.
- [12] T. Sadahiro. Coloring solitaire tilings. to appear in Yokohama mathematical journal, 2000.
- [13] M. Senechal. Quasicrystal and Geometry. Cambridge U. P., 1995.
- [14] B Solomyak. Dynamics of the self-similar tilings. Ergodic Theory and Dynamical Systems, 17:695-738, 1997.
- [15] W.P. Thurston. Groups, tilings and finite state automata. AMS Colloquium lectures, 1989.

DEPARTMENT OF ADMINISTRATION, PREFECTURAL UNIVERSITY OF KUMAMOTO, TSUKIDE 3-1-100, KUMAMOTO, JAPAN 862-8502

E-mail; sadahiro@pu-kumamoto.ac.jp