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Abstract. In this paper, the relative version of subparacompactness is studied. We

start with de�nitions of relative subparacompactness and some examples to show the

relationships between those de�nitions. Then we give some characterizations of relative

subparacompactness. Finally, we talk about some basic properties of relative subpara-

compactness and the relationships between relative subparacompactness and some other

known relative topological properties.

1. Introduction

Throughout this paper, all spaces are regular and T1; all mappings are continious and

onto. N will denote the set of all natural numbers and Y will always be a subspace of X .

You may refer to [4] and [3] for unde�ned notations and terminologies.

Let V and U be families of subsets of a space X , we say that V is a partial re�nement of

U , if for any V in V there is a U in U such that V � U ; moreover, if in addition
S
V =

S
U

is also satis�ed, we will say that V is a re�nement of U . Let U and X be the same as above,

Y a subspace of X , we say U is discrete at Y in X , if for each point y in Y there is an open

in X neighbourhood of y intersects at most one member of U . U is locally �nite at Y in X

may be de�ned in a similar way. Having the de�nitions above, we will have �-discrete at Y

in X, �-locally �nite at Y in X naturally.

De�nition 1.1. We say Y is 1-subparacompact in X , if for any open cover U of X , there

is a �-discrete in X closed in X partial re�nement F of U , such that
S
F � Y .

De�nition 1.2. We say Y is 2-subparacompact in X , if for any open cover U of X , there

is a �-discrete at Y in X closed in X partial re�nement F of U , such that
S
F � Y .

De�nition 1.3. We say Y is 1�-subparacompact in X , if for any open cover U of X , there

is a �-discrete at Y in X closed in X re�nement F with
S
F = X .

Remark 1.4. When Y is equal to X, the three relative versions of subparacompactness

above obviously coincide with the original version.

Proposition 1.5. Let X be a regular space and Y a subspace of X, then

(1) Y is 1-subparacompact in X () for any open cover U of X there is a �-discrete in

X closed in Y partial re�nement F of U , such that
S
F = Y ;

(2) Y is 2-subparacompact in X () for any open cover U of X, there is a �-discrete

in Y closed in Y partial re�nement F of U , such that
S
F = Y .

Proposition 1.6. If Y is 1-subparacompact in X and Z � Y , then Z is 1-subparacompact

in X.
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Proposition 1.7. Let X;Y and Z be subspaces of a space W with Z � Y � X � W and

Y 2-subparacompact in X, then Z is 2-subparacompact in W .

As to the relationship among the three relative versions of subparacompactness, we have

the following diagram:

1-subparacompact =) 2-subparacompact (= 1�-subparacompact

The following two examples show that neither of the implication relations above can be

reversed; What's more, there is not any implication relation between 1-subparacompactness

and 1�-subparacompactness.

Example 1.8. Let X be the set of all countable ordinals with the natural order topology

and Y the subset of all the isolated points in it. Then Y is 2-subparacompact in X and at

the same time 1�-subparacompact in X , but not 1-subparacompact in X .

Proof. That Y is 2-subparacompct and 1�-subparacompact in X is obvious, so we will only

show that Y is not 1-subparacompact in X .

Suppose that Y is 1-subparacompact in X , then by Theorem 2.1 on page 743, for the

open cover U = f[0; �] : � 2 Xg of X , there is a sequence fGn : n 2 Ng of open (in

X) re�nements of U satisfying the condition (6) of Theorem 2.1. Then, there should be

an uncountable subset Y1 of Y and a natural number n 2 N such that, for all � 2 Y1,

Ord(�;Gn) = 1. Consequently, we will have a sequence f�i : i 2 Ng of distinct points

in Y1, such that, each G 2 Gn contains at most one point of f�i : i 2 Ng. But this will

contradict with the fact that X is countably compact and fGng is a cover of X .

Example 1.9. Let X be the space (!2� !2) n f(0; 0)g with the topology generated by the

family of subsets, fH� nF : � 2 !2 n f0g, F is a �nite subset of Xg
S
fV� nF : � 2 !2 n f0g,

F is a �nite subset of Xg. Where, H� = !2 � f�g and V� = f�g � !2 are de�ned for all

� 2 (0; !2).

Let Y be the subspace ((f0g � !2)
S
(!2 � f0g))

T
X . Then, Y is 1-subparacompact in

X and of course 2-subparacompact in X , but not 1�-subparacompact in X .

Proof. We will only show that Y is not 1�-subparacompact inX . Suppose for the open cover

U = fV�; H� : � 2 (0; !2)g of X , there is a re�nement P =
S
1

1
Pn such that Pn is discrete

(or even locally �nite) at Y in X . Let Hn = fP 2 Pn : P � H� for some � 2 (0; !2)g,

Vn = fP 2 Pn : P � V� for some � 2 (0; !2)g, An =
S
Hn, Bn =

S
Vn, A =

S
1

1
An and

B =
S
1

1
Bn.

Obviously, for any � 2 (0; !2), both A
T
V� and B

T
H� are countable. It is then not

diÆcult to see that A
S
B 6= X .

2. Main results

Theorem 2.1. Let Y be a subspace of a space X, then the following are equivalent:

(1) Y is 1-subparacompact in X;

(2) For any open cover U of X, there is a �-locally �nite in X closed in X partial re�ne-

ment F of U , such that
S
F � Y ;

(3) For any open cover U of X, there is a �-closure preserving closed in X partial re�ne-

ment F of U , such that
S
F � Y ;

(4) For any open cover U of X, there is a �-cushioned partial re�nement F of U , such

that
S
F � Y ;

(5) For any open cover U of X, there is a sequence fGng
1

1
of open re�nements such that

for any y 2 Y , there is some n 2 N with St(y;Gn) � U for some U 2 U ;
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(6) For any open cover U of X, there is a sequence fGng
1

1
of open re�nements such that

for any y 2 Y , there is some n 2 N with Ord(y;Gn) = 1.

Proof. (6)) (5) and (1)) (2)) (3)) (4) are trivial. We will show (1)) (6), (5)) (4)

and (4)) (1) consequently.

(1)) (6): Let U be any open cover of X , by (1), there is a closed in X partial re�nement

F =
S
1

1
Fn such that

S
F � Y and Fn is discrete in X for all n 2 N . For each n 2 N , put

En =
S
Fn. For each F 2 Fn, pick U(F ) 2 U with F � U(F ). Let G(F ) = U(F )n(EnnF ),

and Gn = fG(F ) : F 2 Fng
S
fU n En : U 2 Ug. It's routine to check that fGng

1

1
is the

desired sequence of open re�nements in (6).

(5) ) (4): Suppose U = fU� : � 2 �g is an open cover of X , and fGng
1

1
is the

sequence of open re�nements as described in (5). For each n 2 N and each � 2 �, de�ne

C(�; n) = fx 2 X : St(x;Gn) � U�g and Cn = fC(�; n) : � 2 �g

Then C =
S
1

1
Cn is a partial re�nement of U , satisfying

S
C � Y .

To see Cn is cushioned in U for all n 2 N , suppose there is some �� � � and some point

z 2 (X n
S
�2��

U�), then as for any � 2 �� and any y 2 C(�; n), we have St(y;Gn) � U�,

we will have z =2 St(y;Gn). Consequently, y =2 St(z;Gn). We have shown z 2 St(z;Gn) �

X n
S
�2��

C(�; n). The fact that St(z;Gn) is a neighbourhood of z �nishes our proof.

(4)) (1):

Notation: for any n; k 2 N and any sequence s = (i1; i2; : : : ; ik) 2 Nk, denote by s � n

the sequence (i1; i2; : : : ; ik; n) 2 Nk+1.

Suppose (4) is true and U = fU� : � 2 �g is an open cover of X with � well-ordered.

For each k 2 N and each s 2 Nk, we de�ne (by induction on k) an open re�nement G(s)

of U and a corresponding �-cushioned partial re�nement F(s) of G(s) with the condition

that
S
F(s) � Y as follows:

(i) For each t 2 N (as a sequence of length 1), Let V�(t) = W�(t) = U� for all � 2 �.

De�ne G(t) = fV�(t) : � 2 �g
S
fW�(t) : � 2 �g.

(ii) Assume G(s), an open re�nement of U , has been de�ned for s 2 Nk where G(s) has the

form G(s) = fV�(s) : � 2 �g
S
fW�(s) : � 2 �g. Where, V�(s)

S
W�(s)(denoted as G�(s)) �

U�.

Let F(s) be a �-cushioned partial re�nement of G(s) such that
S
F(s) � Y , where

F(s) has the form

F(s) = fH�(s� n) : � 2 �; n 2 Ng
[
fK�(s� n) : � 2 �; n 2 Ng;

where, for each n 2 N , fH�(s � n) : � 2 �g is cushioned in fV�(s) : � 2 �g and

fK�(s� n) : � 2 �g is cushioned in fW�(s) : � 2 �g.

(iii) To complete the induction, de�ne V�(s�n) = G�(s)nClX(
S
� 6=�

(H�(s�n)[K�(s�

n))), W�(s � n) = G�(s)
T
([�>�G�(s)) n ClX(

S
�<�

(H�(s � n) [ K�(s � n))) and

G(s � n) = fV�(s � n) : � 2 �g
S
fW�(s � n) : � 2 �g. Then, G(s � n) covers

X . In fact, for each x 2 X , if x =2
S
�2�

V�(s � n), we can pick the smallest  2 �

such that x 2 G(s). Thereby, x =2 ClX(
S
�<

(H�(s � n)
S
K�(s � n))) and x 2

ClX(
S
�>

(H�(s� n)
S
K�(s� n))) imply that x 2 W(s� n).

Finally, for s 2 Nk; n 2 N , and � 2 �, let T�(s� n) = ClX(H�(s� n)) n
S
� 6=�

V�(s).

Then, fT�(s�n) : � 2 �g is a discrete collection of closed subsets inX and T�(s�n) � U�
for all � 2 �. So we are through if we show T = fT�(s� n) : � 2 �; n 2 N; s 2

S
1

k=1
Nkg

covers Y .

To show that, let y be any point in Y and Æ = minf� 2 � : y 2 H�(s)
S
K�(s); s 2S

1

k=2
Nkg. Then there is some t 2

S
1

k=1
Nk and some n 2 N , such that y 2 HÆ(t �
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n)
S
KÆ(t�n). Consequently we will have y =2 V�(t�n) (for � 6= Æ) and y =2W�(t�n) (for

� > Æ). Let m 2 N; � 2 � (the existence of such m and � is trivial), such that y 2 H�(t�

n�m)
S
K�(t�n�m) � V�(t�n)

S
W�(t�n). Then, y 2 HÆ(t�n�m)

S
KÆ(t�n�m) and

y =2 WÆ(t�n�m). In a similar way, we can also show y =2 V�(t�n�m) for all � 6= Æ, and

and y 2 HÆ(t� n�m� k)
S
KÆ(t� n�m� k) (for some k 2 N). Therefore,

y 2 HÆ(t� n�m� k) n
[

� 6=Æ

V�(t� n�m) � TÆ(t� n�m� k)

Theorem 2.2. Let Y be a subspace of a space X, then the following are equivalent:

(1) Y is 2-subparacompact in X;

(2) For any open cover U of X, there is a sequence fGng
1

1
of open in X partial re�nements

such that
S
Gn � Y , and for any y 2 Y , there is some n 2 N with Ord(y;Gn) = 1.

To prove the above theorem, we use the following easy propositions, the proof of which

is omitted.

Proposition 2.3. The condition (2) of Theorem 2.2 is equivalent to the following condi-

tion:

(20): for every open cover of X, there is a sequence fGng
1

n=1
of open in Y partial re�ne-

ments such that
S
Gn = Y for all n, and for each y 2 Y there is some n 2 N with

Ord(y;Gn) = 1.

Proof of Theorem 2.2. (1) ) (2): For any open cover U of X , by Proposition 1.5, we will

have a �-discrete in Y closed in Y partial re�nement F of U , with
S
F = Y . In a similar

way to that in the proof of the implication (1)) (6) of Theorem 2.1, we can get a sequence

of open in Y covers of Y satisfying the condition (20) of Proposition 2.3.

2)) (1): Let U be any open cover of X , by Proposition 2.3, there is a sequence fGng
1

n=1

of open in Y covers of Y satisfying the condition (20) of Proposition 2.3. For each n 2 N ,

let Yn = fy 2 Y : Ord(y;Gn) = 1g. Obviously,
S
1

n=1
Yn = Y .

For every y 2 Yn, let G(y) be the unique open set in Gn with y 2 G(y). Let Fn =

fG(y)
T
Yn : y 2 Yng, then Fn is a closed and discrete collection in the space Y . And

F =
S
1

n=1
Fn is the desired collection satisfying the condition described in (2) of Proposition

1.5.

3. Applications

The condition (3) of Theorem 2.1 yields the following

Theorem 3.1. If Y is 1-subparacompact in X and f : X �! X�
is closed and onto with

f(Y ) = Y �
, then Y � is 1-subparacompact in X�

.

Theorem 3.2. If f : X �! X�
is perfect onto and Y � is 1-subparacompact in X�

with

Y = f�1(Y �), then Y is 1-subparacompact in X.

Proof. The proof of this theorem is routine, so we omit it.

Theorem 3.3. Countable union of 1-subparacompact in X subspaces is 1-subparacompact

in X.

Proof. Omitted.

Theorem 3.4. Let X be a space and Y a F�-set in X (we may write Y as Y =
S
fYn :

n 2 Ng, where Yn is closed in X), then the following are equivalent:
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(1) Y is 1-subparacompact in X;

(2) Y is 2-subparacompact in X;

(3) Yn is 1-subparacompact in X for all n 2 N ;

(4) Yn is 2-subparacompact in X for all n 2 N ;

(5) Y is subparacompact.

Proof. Obvious. Check, e.g., the following loop:

(1)! (3)! (5)! (2)! (4)! (1).

Let Y be a subspace of a space X , recall that Y is compact in X , if every open cover of

X has a �nite subfamily cover Y ; Y is said to be Lindel�of in X , if for any open cover of

X there is a countable subfamily cover Y . Then clearly, both Y is compact in X and Y is

Lindel�of in X imply that Y is 1-subparacompact in X .

Recall that a subspace Y of a space X is said to be �-paracompact in X if every cover

of Y by open subsets of X has a partial re�nement by open subsets of X , locally �nite in

X , which covers Y [2].

Theorem 3.5. [6, 7] Let X be a regular space and E a subspace of X. Then the following

conditions are equivalent:

a) E is �-paracompact in X.

b) 1) Every cover U of E by open subsets of X has a re�nement V by open subsets of

X, �-locally �nite in X, which covers E, and

2) Every open subset U of X with E � U has an open subset V such that E � V �

V � U .

c) Every cover U of E by open subsets of X has a re�nement A = fAsgs2S by arbitrary

sets of X, locally �nite in X, such that E � (
S
s2S

As)
0
(denotes the interior ofS

s2S
As).

d) Every cover U of E by open subsets of X has a re�nement F = fFjgj2J by closed

subsets of X, locally �nite in X, such that E � (
S
j2J

Fj)
0
.

The above Theorem and Theorem 2.1 yield

Theorem 3.6. Let X be a regular space and Y a subspace of X. If Y is �-paracompact in

X, then Y is 1-subparacompact in X.

Let Y be a subset of X . in [1], the following de�nitions were given:

De�nition 3.7. [1] A symmetric d on (Y;X) is a nonnegative real valued function d de�ned

on X �X which satis�es the following two conditions for all x in X and y in Y :

s1) d(x; y) = 0 if and only if x = y;

s2) d(x; y) = d(y; x).

De�nition 3.8. [1] A symmetric d on (Y;X) de�nes Y inX if the following three conditions

are satis�ed:

o1) for every closed subset P of X , and each y 2 Y n P , d(y; P ) > 0;

o2) if A � Y and d(x;A) > 0 for each x 2 X nA, then A is closed in X ; and

o3) for every closed subset P of X , and for each point x in X n P , d(x; P
T
Y ) > 0.

Moreover, we say a symmetric d on (Y;X) properly de�nes Y in X , or that it is a proper

symmetric on (Y;X) [1], if d satis�es condition o1), o2), o3), and the next condition

o4) If y 2 Y and A � X with d(y;A) > 0, then y is not in the closure of A.

De�nition 3.9. [1] A symmetric � on (Y;X) is called a metric on (Y;X), if �(y; z) �

�(y; x) + �(x; z), for every y; z in Y and x in X . A subspace Y of a space X is metrizable

in X , if there is a symmetric � on (Y;X) which de�nes Y in X and is a metric on (Y;X).
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We say that Y is properly metrizable in X [1], if there is a metric � on (Y;X) properly

de�ning Y in X .

Theorem 3.10. Let X be a regular space and Y a subspace of X. If Y is properly metrizable

in X, then Y is 2-subparacompact in X.

Proof. Recall that Y is strictly Aull-paracompact in X , if for every family  of open subsets

of X with Y �
S
 there is a family � of open subsets of X locally �nite and �-discrete in

X at all points of Y and also satisfying the following conditions: Y �
S
�, and � partially

re�nes .[1].

Then this theorem follows directly from Theorem 7 of [1] which says: If Y is properly

metrizable in X then Y is stictly Aull-paracompact in X .

De�nition 3.11. [1] A symmetric � on (Y;X) will be called a 2-metric, or an Aull-metric,

on (Y;X), if whenever any two out of the three points in the triangle inequality are in Y ,

the inequality holds. We shall say that Y is 2-metrizable, or Aull-metrizable,in X , if there

is an Aull-metric � on (Y;X), which satis�es the conditions o1), o2), and o3).

As Y is 2-metrizable in X implies that Y is metrizable in X , we have the following

corollary:

Corollary 3.12. If Y is properly 2-metrizable (de�ned similarly to that of properly metriz-

able) in X, then Y is 2-subparacompact in X.

De�nition 3.13. [1] We say that � is a 1-metric on X , if � is a symmetric on X , and

whenever x; y; z are three points in X , at least one of which belongs to Y , then the triangle

inequality holds: �(x; z) � �(x; y) + �(y; z).

De�nition 3.14. [1] A symmetric d on X strictly de�nes Y in X , or strictly symmetrizes

Y in X , if conditions o1) and o3) are satis�ed, as well as the next condition o#2), which

strengthens condition o2):

o#2) If A is a subset of X concentrated on Y (i.e., A � A
T
Y ) such that d(x;A) > 0, for

each x 2 X nA, then A is closed in X .

Theorem 3.15. [1] If X is regular, and � is a 1-metric on (Y;X) strictly de�ning Y in

X, then � metrizes the subspace Y , that is, the restriction of � to Y generates the original

topology of Y .

The above theorem and Proposition 1.6 yield

Theorem 3.16. If X is regular, and Y is strictly 1-metrizable in X (i.e., there is �, a

1-metric on (Y;X) strictly de�ning Y in X), then Y is 1-subparacompact in X.

4. Open questions

The characterization of 1-subparacompactness, Theorem 2.1 is beautiful. Unfortunately,

we don't know whether the analogous characterization of 2-subparacompactness is true.

Questions 4.1. Let X be a regular space and Y its subspace . Are the following equivalent?:

(1) Y is 2-subparacompact in X.

(2) For any open cover of X, there is a partial re�nement F of closed subsets of X which

is �-locally-�nite at Y in X and satis�es the condition:
S
F � Y .

Having Theorem 3.1 and Theorem 3.2, it's then natural to ask the following questions:

Questions 4.2. Is 2-subparacompactness preserved under closed mappings?

Questions 4.3. Is 2-subparacompactness an inverse invariant of perfect mappings?
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Suppose X is a space and Y a subspace of X . The following de�nitions are due to

Gordienko [5]. The subspace Y is said to be 1-paracompact in X provided every open cover

of X has an open re�nement locally �nite at Y in X . The subspace Y is 2-paracompact in

X provided every open cover of X has an open partial re�nement cover Y and locally �nite

at Y in X . The subspace Y is 3-paracompact in X provided every open cover of X has a

partial re�nement cover Y , consisting of sets open in Y and locally �nite in Y .

Then we have the following question:

Questions 4.4. Let X be a regular space and Y its subspace. Then

(1) If Y is 1-paracompact in X, is Y 1-subparacompact in X?

(2) If Y is 2-paracompact (or 3-paracompact) in X, is Y 2-subparacompact in X?

Remark 4.5. It is easy to see that Y is 2-paracompact in X does not imply that Y is

1-subparacompact. (see e.g., Example 1.8)
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