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ABSTRACT. In this paper, the relative version of subparacompactness is studied. We
start with definitions of relative subparacompactness and some examples to show the
relationships between those definitions. Then we give some characterizations of relative
subparacompactness. Finally, we talk about some basic properties of relative subpara-
compactness and the relationships between relative subparacompactness and some other
known relative topological properties.

1. INTRODUCTION

Throughout this paper, all spaces are reqular and T7; all mappings are continious and
onto. N will denote the set of all natural numbers and Y will always be a subspace of X.
You may refer to [4] and [3] for undefined notations and terminologies.

Let V and U be families of subsets of a space X, we say that V is a partial refinement of
U, if for any V in V there is a U in U such that V' C U; moreover, if in addition |V = U
is also satisfied, we will say that V is a refinement of U. Let U and X be the same as above,
Y a subspace of X, we say U is discrete at Y in X, if for each point y in Y there is an open
in X neighbourhood of y intersects at most one member of . U is locally finite at Y in X
may be defined in a similar way. Having the definitions above, we will have o-discrete at Y
in X, o-locally finite at Y in X naturally.

Definition 1.1. We say Y is 1-subparacompact in X, if for any open cover I/ of X, there
is a o-discrete in X closed in X partial refinement F of U/, such that [ JF D Y.

Definition 1.2. We say Y is 2-subparacompact in X, if for any open cover I/ of X, there
is a o-discrete at Y in X closed in X partial refinement F of U, such that [JF D Y.

Definition 1.3. We say Y is 1*-subparacompact in X, if for any open cover U of X, there
is a o-discrete at Y in X closed in X refinement F with | F = X.

Remark 1.4. When Y is equal to X, the three relative versions of subparacompactness
above obuviously coincide with the original version.

Proposition 1.5. Let X be a reqular space and Y a subspace of X, then

(1) Y is 1-subparacompact in X <= for any open cover U of X there is a o-discrete in
X closed in Y partial refinement F of U, such that JF =Y;

(2) Y is 2-subparacompact in X <= for any open cover U of X, there is a o-discrete
in'Y closed in'Y partial refinement F of U, such that JF =Y.

Proposition 1.6. IfY is 1-subparacompact in X and Z CY , then Z is 1-subparacompact
n X.
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Proposition 1.7. Let X,Y and Z be subspaces of a space W with Z CY C X C W and
Y 2-subparacompact in X, then Z is 2-subparacompact in W.

As to the relationship among the three relative versions of subparacompactness, we have
the following diagram:

1-subparacompact =—> 2-subparacompact <= 1*-subparacompact

The following two examples show that neither of the implication relations above can be
reversed; What’s more, there is not any implication relation between 1-subparacompactness
and 1*-subparacompactness.

Example 1.8. Let X be the set of all countable ordinals with the natural order topology
and Y the subset of all the isolated points in it. Then Y is 2-subparacompact in X and at
the same time 1*-subparacompact in X, but not 1-subparacompact in X.

Proof. That Y is 2-subparacompct and 1*-subparacompact in X is obvious, so we will only
show that Y is not 1-subparacompact in X.

Suppose that Y is 1-subparacompact in X, then by Theorem 2.1 on page 743, for the
open cover U = {[0,a] : @ € X} of X, there is a sequence {G, : n € N} of open (in
X) refinements of U satisfying the condition (6) of Theorem 2.1. Then, there should be
an uncountable subset Y; of Y and a natural number n € N such that, for all « € Y7,
Ord(a,G,) = 1. Consequently, we will have a sequence {«; : i € N} of distinct points
in Y7, such that, each G € G, contains at most one point of {a; : i € N}. But this will
contradict with the fact that X is countably compact and {G,} is a cover of X. O

Example 1.9. Let X be the space (w2 x w2) \ {(0,0)} with the topology generated by the
family of subsets, {Hy \ F': @ € wy \ {0}, F is a finite subset of X } [ J{Va \ F : @ € wy \ {0},
F' is a finite subset of X}. Where, H, = ws X {a} and V, = {a} X wy are defined for all
(A (0,&)2).

Let Y be the subspace (({0} x w2) J(wa x {0})) (X . Then, Y is 1-subparacompact in
X and of course 2-subparacompact in X, but not 1*-subparacompact in X.

Proof. We will only show that Y is not 1*-subparacompact in X. Suppose for the open cover
U={Va,Hy:a € (0,ws)} of X, there is a refinement P = |J;° P, such that P, is discrete
(or even locally finite) at ¥V in X. Let H,, = {P € P, : P C H, for some a € (0,ws)},
Vo ={P €P,:P CV,forsomeac (0,w)}, An = UHn, Bn =UVa, A =U; 4, and
B =U%® B,.
Obviously, for any a € (0,ws), both AV, and B() H, are countable. It is then not
difficult to see that A|JB # X.
O

2. MAIN RESULTS

Theorem 2.1. Let Y be a subspace of a space X, then the following are equivalent:

(1) Y is I-subparacompact in X ;

(2) For any open cover U of X, there is a o-locally finite in X closed in X partial refine-
ment F of U, such that JF D Y;

(3) For any open cover U of X, there is a o-closure preserving closed in X partial refine-
ment F of U, such that | JF D Y;

(4) For any open cover U of X, there is a o-cushioned partial refinement F of U, such
that UF DY,

(5) For any open cover U of X, there is a sequence {G,}3° of open refinements such that
for any y € Y, there is some n € N with St(y,G,) CU for some U € U;
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(6) For any open cover U of X, there is a sequence {G,}$° of open refinements such that
for any y € Y, there is some n € N with Ord(y,G,) = 1.

Proof. (6) = (5) and (1) = (2) = (3) = (4) are trivial. We will show (1) = (6), (5) = (4)
and (4) = (1) consequently.

(1) = (6): Let U be any open cover of X, by (1), there is a closed in X partial refinement
F =" Fn such that JF DY and F, is discrete in X for alln € N. For each n € N, put
E, = Fn. Foreach F € F,, pick U(F) € Y with F CU(F). Let G(F) =U(F)\(E,\F),
and G, = {G(F) : F € F,} U{U\ E, : U € U}. It’s routine to check that {G,}5° is the
desired sequence of open refinements in (6).

(5) = (4): Suppose U = {U, : a € A} is an open cover of X, and {G,}° is the
sequence of open refinements as described in (5). For each n € N and each a € A, define
Cla,n) ={r € X : St(z,Gn) C Ua} and C, = {C(a,n) : a € A}

Then C = |J;° C, is a partial refinement of U, satisfying [JC D Y.

To see C,, is cushioned in i/ for all n € N, suppose there is some A* C A and some point
2z € (X \ Usca- Ua), then as for any o € A* and any y € C(a,n), we have St(y,G,) C Ua,
we will have z ¢ St(y,G,). Consequently, y ¢ St(z,G,). We have shown z € St(z,G,) C
X\ Uaen- Cla,n). The fact that St(z,G,) is a neighbourhood of z finishes our proof.

(4) = (1):

Notation: for any n,k € N and any sequence s = (iy,42,...,i;) € N¥, denote by s ®n
the sequence (iy,i2,...,ik,n) € N¥L,

Suppose (4) is true and U = {U, : @ € A} is an open cover of X with A well-ordered.

For each k € N and each s € N*, we define (by induction on k) an open refinement G(s)
of U and a corresponding o-cushioned partial refinement F(s) of G(s) with the condition
that (JF(s) DY as follows:

(i) For each t € N (as a sequence of length 1), Let V,(t) = W,(t) = U, for all a € A.
Define G(t) = {V,(t) : a € A} U{Wa(t) : a € A}.
(ii) Assume G(s), an open refinement of I/, has been defined for s € N* where G(s) has the

form G(s) = {Va(s) : a € A} U{Wa(s) : @ € A}. Where, V,(s) | Wa(s)(denoted as G(s)) C

Ua.
Let F(s) be a o-cushioned partial refinement of G(s) such that | J F(s) DY, where
F(s) has the form

F(s)={Ha(s®n):a € A,n € N}
J{Ka(s®n):a € A,ne N},

where, for each n € N, {H,(s ® n) : a € A} is cushioned in {V,(s) : @« € A} and
{Ky(s®n):a € A} is cushioned in {Wy(s) : a € A}.

(iii) To complete the induction, define Vo(s@n) = Ga(s)\ Clx(Uppa(Ha(s®n)UKs(s &
1))y Wals & 1) = Gals) N(Us>aGa(s) \ Clx(Upeq(Hals © 1) U Ka(s & n))) and
Gsdn) ={Vals®n) : a € A} U{Wa(s®n) : « € A}. Then, G(s ® n) covers
X. In fact, for each x € X, if ¢ |J,c Va(s © n), we can pick the smallest v € A
such that « € G,(s). Thereby, x ¢ Clx(Us,(Hps(s ® n) JKs(s dn))) and = €
Clx(Ups~ (Hp(s ®@n)J Ks(s & n))) imply that z € W, (s & n).

Finally, for s € N¥ n € N, and a € A, let To(s ®n) = Clx(Ha(s ®n)) \ Upsa Va(s).

Then, {T,(s®n) : a € A}is a discrete collection of closed subsets in X and T, (s@®n) C U,
for all @ € A. So we are through if we show T = {T.(s®n):a € A,n € N,s € U,—, N¥}
covers Y.

To show that, let y be any point in ¥ and 6 = min{8 € A : y € Hg(s)|JK3(s),s €
Ures N*}. Then there is some t € |J;—, N* and some n € N, such that y € Hs(t &
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n)|J Ks(t®n). Consequently we will have y ¢ Vo (t @n) (for a # §) and y ¢ W, (t®n) (for
a > 0). Let m € N,o € A (the existence of such m and o is trivial), such that y € H, (¢t ®
ndm)|J K, (tdndm) C V,(tdn) | W, (t®n). Then, y € Hs(t®dndm) | Ks(tdndm) and
y & Ws(t®n@®m). In a similar way, we can also show y ¢ V,(t ®n®m) for all a # §, and
andy € Hs(tenedm k) JKs(tdnedmae k) (for some k € N). Therefore,

yeHstondmak)\ UVg(t@nEBm)CTa(t@nEBm@k)
B#S

Theorem 2.2. LetY be a subspace of a space X, then the following are equivalent:
(1) Y is 2-subparacompact in X ;
(2) For any open coverU of X, there is a sequence {G,, }5° of open in X partial refinements
such that |G, DY, and for any y € Y, there is some n € N with Ord(y,G,) = 1.

To prove the above theorem, we use the following easy propositions, the proof of which
is omitted.

Proposition 2.3. The condition (2) of Theorem 2.2 is equivalent to the following condi-
tion:
(2'): for every open cover of X, there is a sequence {G,}5>, of open in'Y partial refine-
ments such that |JG, =Y for all n, and for each y € Y there is some n € N with
Ord(y,G,) = 1.

Proof of Theorem 2.2. (1) = (2): For any open cover U of X, by Proposition 1.5, we will
have a o-discrete in Y closed in Y partial refinement F of i/, with [JF =Y. In a similar
way to that in the proof of the implication (1) = (6) of Theorem 2.1, we can get a sequence
of open in Y covers of Y satisfying the condition (2') of Proposition 2.3.

2) = (1): Let U be any open cover of X, by Proposition 2.3, there is a sequence {G, }5°,
of open in Y covers of YV satisfying the condition (2') of Proposition 2.3. For each n € N,
let Y, = {y € Y : Ord(y,G,) = 1}. Obviously, J;—, ¥V, =Y.

For every y € Y, let G(y) be the unique open set in G, with y € G(y). Let F, =
{G(y)NYn : y € Y,}, then F, is a closed and discrete collection in the space Y. And
F =U,~, F is the desired collection satisfying the condition described in (2) of Proposition
1.5. O

3. APPLICATIONS
The condition (3) of Theorem 2.1 yields the following

Theorem 3.1. IfY is 1-subparacompact in X and f: X — X* is closed and onto with
fY)=Y*, then Y* is I-subparacompact in X*.

Theorem 3.2. If f : X — X* is perfect onto and Y* is 1-subparacompact in X* with
Y = f71(Y™), then Y is 1-subparacompact in X.

Proof. The proof of this theorem is routine, so we omit it.

O
Theorem 3.3. Countable union of 1-subparacompact in X subspaces is 1-subparacompact
n X.
Proof. Omitted. U

Theorem 3.4. Let X be a space and Y a F,-set in X (we may write Y asY = J{V, :
n € N}, where Y, is closed in X ), then the following are equivalent:
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Y is I-subparacompact in X ;

Y is 2-subparacompact in X ;

Y,, is 1-subparacompact in X for alln € N;
Y,, is 2-subparacompact in X for alln € N;
Y is subparacompact.

4

)
)
)
)
5)

—~ —~

Proof. Obvious. Check, e.g., the following loop:
1)—=3)—=(5)—=(2) = (4) = (1). O

Let Y be a subspace of a space X, recall that Y is compact in X, if every open cover of
X has a finite subfamily cover Y; Y is said to be Lindelof in X, if for any open cover of
X there is a countable subfamily cover Y. Then clearly, both Y is compact in X and Y is
Lindeldf in X imply that Y is 1-subparacompact in X.

Recall that a subspace Y of a space X is said to be a-paracompact in X if every cover
of Y by open subsets of X has a partial refinement by open subsets of X, locally finite in
X, which covers Y [2].

Theorem 3.5. [6, 7] Let X be a regular space and E a subspace of X. Then the following
conditions are equivalent:

a) E is a-paracompact in X.

b) 1) Ewvery cover U of E by open subsets of X has a refinement V by open subsets of

X, o-locally finite in X, which covers E, and
2) Ewvery open subset U of X with E C U has an open subset V' such that E CV C
Vcu.

c) Every cover U of E by open subsets of X has a refinement A = {A;}scs by arbitrary
sets of X, locally finite in X, such that E C (U,cq As)° (denotes the interior of
Uses As).

d) Every cover U of E by open subsets of X has a refinement F = {F;};es by closed
subsets of X, locally finite in X, such that E C (U, s F;)°.

The above Theorem and Theorem 2.1 yield

Theorem 3.6. Let X be a regular space and Y a subspace of X. If Y is a-paracompact in
X, then'Y is 1-subparacompact in X.

Let Y be a subset of X. in [1], the following definitions were given:

Definition 3.7. [1] A symmetric d on (Y, X) is a nonnegative real valued function d defined
on X x X which satisfies the following two conditions for all x in X and y in Y:

sl) d(z,y) =0 if and only if z = y;

52) d(z,y) = d(y,z).
Definition 3.8. [1] A symmetric d on (Y, X) defines Y in X if the following three conditions
are satisfied:

ol) for every closed subset P of X, and each y € Y\ P, d(y, P) > 0;

02) if ACY and d(z,A) > 0 for each € X \ A4, then A is closed in X; and

03) for every closed subset P of X, and for each point  in X \ P, d(z,P(\Y) > 0.

Moreover, we say a symmetric d on (Y, X) properly defines Y in X, or that it is a proper
symmetric on (Y, X) [1], if d satisfies condition ol), 02), 03), and the next condition
o4) If y € Y and A C X with d(y, A) > 0, then y is not in the closure of A.
Definition 3.9. [1] A symmetric p on (Y, X) is called a metric on (Y, X), if p(y,z) <

p(y,x) + p(z, 2), for every y,z in Y and z in X. A subspace Y of a space X is metrizable
in X, if there is a symmetric p on (Y, X)) which defines Y in X and is a metric on (Y, X).
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We say that Y is properly metrizable in X [1], if there is a metric p on (Y, X) properly
defining Y in X.

Theorem 3.10. Let X be a reqular space and Y a subspace of X. If Y is properly metrizable
in X, then Y is 2-subparacompact in X.

Proof. Recall that Y is strictly Aull-paracompact in X, if for every family v of open subsets
of X with Y C |J~ there is a family p of open subsets of X locally finite and o-discrete in
X at all points of Y and also satisfying the following conditions: Y C |, and p partially

refines 7.[1].
Then this theorem follows directly from Theorem 7 of [1] which says: If Y is properly
metrizable in X then Y is stictly Aull-paracompact in X. o

Definition 3.11. [1] A symmetric p on (Y, X) will be called a 2-metric, or an Aull-metric,
on (Y, X), if whenever any two out of the three points in the triangle inequality are in Y,
the inequality holds. We shall say that Y is 2-metrizable, or Aull-metrizable,in X, if there
is an Aull-metric p on (Y, X), which satisfies the conditions 01), 02), and 03).

As Y is 2-metrizable in X implies that Y is metrizable in X, we have the following
corollary:

Corollary 3.12. IfY is properly 2-metrizable (defined similarly to that of properly metriz-
able) in X, then Y is 2-subparacompact in X.

Definition 3.13. [1] We say that p is a l-metric on X, if p is a symmetric on X, and
whenever z,y, z are three points in X, at least one of which belongs to Y, then the triangle
inequality holds: p(z,z) < p(z,y) + p(y, 2)-

Definition 3.14. [1] A symmetric d on X strictly defines Y in X or strictly symmetrizes
Y in X, if conditions ol) and 03) are satisfied, as well as the next condition 0#2), which
strengthens condition 02):

0#2) If A is a subset of X concentrated on Y (i.e., A C A(\Y) such that d(x, A) > 0, for
each z € X \ A4, then A is closed in X.

Theorem 3.15. [1] If X is regular, and p is a I-metric on (Y, X) strictly defining Y in
X, then p metrizes the subspace Y, that is, the restriction of p to Y generates the original
topology of Y.

The above theorem and Proposition 1.6 yield

Theorem 3.16. If X is regular, and Y is strictly 1-metrizable in X (i.e., there is p, a
I-metric on (Y, X) strictly defining Y in X ), then Y is 1-subparacompact in X .

4. OPEN QUESTIONS

The characterization of 1-subparacompactness, Theorem 2.1 is beautiful. Unfortunately,
we don’t know whether the analogous characterization of 2-subparacompactness is true.

Questions 4.1. Let X be a regqular space and Y its subspace . Are the following equivalent?:

(1) Y is 2-subparacompact in X .
(2) For any open cover of X, there is a partial refinement F of closed subsets of X which
is o-locally-finite at Y in X and satisfies the condition: |JF D Y.

Having Theorem 3.1 and Theorem 3.2, it’s then natural to ask the following questions:
Questions 4.2. Is 2-subparacompactness preserved under closed mappings?

Questions 4.3. Is 2-subparacompactness an inverse invariant of perfect mappings?
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Suppose X is a space and Y a subspace of X. The following definitions are due to
Gordienko [5]. The subspace Y is said to be 1-paracompact in X provided every open cover
of X has an open refinement locally finite at Y in X. The subspace Y is 2-paracompact in
X provided every open cover of X has an open partial refinement cover Y and locally finite
at Y in X. The subspace Y is 3-paracompact in X provided every open cover of X has a
partial refinement cover Y, consisting of sets open in Y and locally finite in Y.

Then we have the following question:

Questions 4.4. Let X be a regular space and Y its subspace. Then
(1) If Y is I-paracompact in X, is Y 1-subparacompact in X ¢
(2) If Y is 2-paracompact (or 3-paracompact) in X, is Y 2-subparacompact in X ?

Remark 4.5. It is easy to see that Y is 2-paracompact in X does not imply that Y is
1-subparacompact. (see e.g., Example 1.8)
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