A NONLINEAR STRONG ERGODIC THEOREM FOR FAMILIES OF ASYMPTOTICALLY NONEXPANSIVE MAPPINGS WITH COMPACT DOMAINS

K. NAKAJO AND W. TAKAHASHI

Received December 29, 2000

ABSTRACT. In this paper, we prove a nonlinear strong ergodic theorem for families of asymptotically nonexpansive mappings from a compact convex subset of a strictly convex Banach space into itself.

1. INTRODUCTION

The first nonlinear ergodic theorem for nonexpansive mappings with bounded domains in a Hilbert space was proved by Baillon [3]. Baillon and Brezis [4] also proved the following nonlinear ergodic theorem for nonexpansive semigroups in a Hilbert space : Let C be a nonempty closed convex subset of a Hilbert space and let $S = \{S(t) | t \ge 0\}$ be a nonexpansive semigroup on C with $F(S) \neq \emptyset$. Then, for every $x \in C$, $\frac{1}{t} \int_0^t S(\tau) x d\tau$ converges weakly to some $y \in F(S)$. Hirano and Takahashi [8] extended Baillon and Brezis's theorem to an asymptotically nonexpansive semigroup. Hirano and Takahashi's theorem was extended to a uniformly convex Banach space whose norm is Fréchet differentiable by Tan and Xu [11]. On the other hand, Atsushiba and Takahashi [2] obtained a nonlinear ergodic theorem for nonexpansive semigroups with compact domains in a Banach space which generalizes Dafermos and Slemrod's result [7] : Let C be a nonempty compact convex subset of a strictly convex Banach space and let $S = \{S(t) | t \ge 0\}$ be a nonexpansive semigroup on C. Then, for every $x \in C$, $\frac{1}{t} \int_0^t S(\tau + h)xd\tau$ converges strongly to some $y \in F(S)$ uniformly in $h \ge 0$.

In this paper, we extend Atsushiba and Takahashi's theorem to an asymptotically nonexpansive semigroup by using the methods employed in Atsushiba and Takahashi [1, 2], Bruck [5, 6] and Shioji and Takahashi [10].

2. Preliminaries and Lemmas

Throughout this paper, a Banach space is real and we denote by N and R^+ , the set of all positive integers and the set of all nonnegative real numbers, respectively. We denote by Δ^n the set $\{\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n) | \lambda_i \ge 0, \sum_{i=1}^n \lambda_i = 1\}$ for $n \in \mathbb{N}$. Let E be a Banach space and let r > 0. We denote by $D_r(x)$ the open ball in E with center x and radius r. For a subset C of E, we denote by coC the convex hull of C. E is said to be strictly convex if $\frac{\|x+y\|}{2} < 1$ for $x, y \in E$ with $\|x\| = \|y\| = 1$ and $x \ne y$. Let C be a subset of E, let T be a mapping from C into itself and let $\varepsilon > 0$. By $F_{\varepsilon}(T)$, we mean the set $\{x \in C \mid \|x - Tx\| \le \varepsilon\}$. Let K > 0. We denote by Lip(C, K), the set of all mappings from C into itself satisfying $\|Tx - Ty\| \le K \|x - y\|$ for each $x, y \in C$. We denote by Γ the set of

²⁰⁰⁰ Mathematics Subject Classification. 47H09, 47H10, 47H20.

Key words and phrases. Nonlinear ergodic theorem, fixed point, asymptotically nonexpansive semigroup, convex approximation property.

all strictly increasing, continuous convex functions $\gamma: \mathbb{R}^+ \longmapsto \mathbb{R}^+$ with $\gamma(0) = 0$. Let C be a nonempty subset of E. C is said to satisfy the convex approximation property if for any $\varepsilon > 0$, there exists $m \in \mathbb{N}$ such that $coM \subset co_m M + D_{\varepsilon}(0)$ for every subset M of C, where $co_m M = \{\sum_{i=1}^m \lambda_i x_i \mid x_i \in M, \lambda_i \ge 0, \sum_{i=1}^m \lambda_i = 1\}.$

A family $S = \{S(t) | t \ge 0\}$ is said to be an asymptotically nonexpansive semigroup on C with Lipschitz constants $\{k(t) | t \ge 0\}$ if

- (i) for each $t \ge 0$, S(t) is a mapping from C into itself and $||S(t)x S(t)y|| \le k(t)||x y||$ for each $x, y \in C$;
- (ii) S(t+s)x = S(t)S(s)x for each $t, s \ge 0$ and $x \in C$;
- (iii) S(0)x = x for each $x \in C$;
- (iv) for each $x \in C$, the mapping $t \mapsto S(t)x$ is continuous.
- (v) $t \mapsto k(t)$ is continuous mapping from the set of nonnegative real numbers into itself; (vi) $\limsup_{t\to\infty} k(t) \leq 1$.

S is said to be a nonexpansive semigroup on C if k(t) = 1 for all $t \ge 0$. We denote by F(S), the set of common fixed points of $S = \{S(t) \mid t \ge 0\}$, i.e., $\cap_{t\ge 0}\{x \in C \mid S(t)x = x\}$. The following lemmas was obtained by Bruck [5, 6].

Lemma 2.1. Let C be a nonempty compact convex subset of a strictly convex Banach space. Then, there exists $\gamma \in \Gamma$ such that for each K > 0 and $T \in Lip(C, K)$,

$$||T(\lambda x + (1 - \lambda)y) - (\lambda Tx + (1 - \lambda)Ty)|| \le K\gamma^{-1} \left(||x - y|| - \frac{1}{K} ||Tx - Ty|| \right)$$

holds for every $x, y \in C$ and $\lambda \in [0, 1]$.

Lemma 2.2. Let C be a nonempty compact convex subset of a strictly convex Banach space. Then, for each $p \in \mathbf{N}$, there exists $\gamma_p \in \Gamma$ such that for each K > 0 and $T \in Lip(C, K)$,

$$\left\| T\left(\sum_{i=1}^{p} \lambda_{i} x_{i}\right) - \sum_{i=1}^{p} \lambda_{i} T x_{i} \right\| \leq K \gamma_{p}^{-1} \left(\max_{1 \leq i, j \leq p} \left\{ \left\| x_{i} - x_{j} \right\| - \frac{1}{K} \left\| T x_{i} - T x_{j} \right\| \right\} \right)$$

holds for every x_1, x_2, \ldots, x_p in C and $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_p) \in \Delta^p$.

Following ideas in Atsushiba and Takahashi [1, 2], we can show the following lemma.

Lemma 2.3. Let *C* be a nonempty compact convex subset of a strictly convex Banach space and let $S = \{S(t) \mid t \ge 0\}$ be an asymptotically nonexpansive semigroup on *C*. Let $x \in C$ and t > 0. Then, for each $\varepsilon > 0$, there exist $l_0 = l_0(t, \varepsilon) \ge 0$ and $m_0 = m_0(t, \varepsilon) \ge 0$ such that

$$\left\| \frac{1}{t} \int_0^t S(l+m+\tau) x \, d\tau - S(l) \left(\frac{1}{t} \int_0^t S(m+\tau) x \, d\tau \right) \right\| < \varepsilon$$

for every $l \ge l_0$ and $m \ge m_0$.

Proof. Let $x \in C$, t > 0 and $\varepsilon > 0$. Let $\{k(t) | t \ge 0\}$ be Lipschitz constants of S. Put $\sup\{k(t) | t \ge 0\} = M_0$. Since $\{k(t) | t \ge 0\}$ is bounded, $M_0 < \infty$ holds. From the assumption of S, we have

$$\left\| \frac{1}{t} \int_{0}^{t} S(l+m+\tau) x \, d\tau - \frac{1}{n} \sum_{i=1}^{n} S\left(l+m+\frac{t}{n}i\right) x \right\|$$

$$\leq \frac{1}{t} \sum_{i=1}^{n} \int_{\frac{i-1}{n}t}^{\frac{i}{n}t} \left\| S(l+m+\tau) x - S\left(l+m+\frac{t}{n}i\right) x \right\| d\tau$$

732

$$\leq \frac{M_0}{t} \sum_{i=1}^n \int_{\frac{i-1}{n}t}^{\frac{i}{n}t} \left\| S(\tau)x - S\left(\frac{t}{n}i\right)x \right\| d\tau$$

$$\leq \frac{M_0}{t} \sum_{i=1}^n \left\{ M_0 \cdot \frac{t}{n} \left(\sup_{0 \leq \tau \leq \frac{t}{n}} \left\| S(\tau)x - S\left(\frac{t}{n}\right)x \right\| \right) \right\}$$

$$= M_0^2 \cdot \sup_{0 \leq \tau \leq \frac{t}{n}} \left\| S(\tau)x - S\left(\frac{t}{n}\right)x \right\| \longrightarrow 0 ,$$

as $n \to \infty$, uniformly in $l, m \ge 0$. Similarly, we have

$$\left\| S(l)\left(\frac{1}{t}\int_0^t S(m+\tau)x\,d\tau\right) - S(l)\left(\frac{1}{n}\sum_{i=1}^n S\left(m+\frac{t}{n}i\right)x\right) \right\| \longrightarrow 0\,,$$

as $n \to \infty$, uniformly in $l, m \ge 0$. So, there exists $N_1 \in \mathbf{N}$ such that

$$\left\| \frac{1}{t} \int_0^t S(l+m+\tau) x \, d\tau - \frac{1}{n} \sum_{i=1}^n S\left(l+m+\frac{t}{n}i\right) x \right\| < \frac{\varepsilon}{3}$$

 and

$$\left\| S(l)\left(\frac{1}{t}\int_0^t S(m+\tau)x\,d\tau\right) - S(l)\left(\frac{1}{n}\sum_{i=1}^n S\left(m+\frac{t}{n}i\right)x\right) \right\| < \frac{\varepsilon}{3}$$

for every $n \ge N_1$ and $l, m \ge 0$. Hence we get

$$(1) \qquad \left\| \frac{1}{t} \int_{0}^{t} S(l+m+\tau) x \, d\tau - S(l) \left(\frac{1}{t} \int_{0}^{t} S(m+\tau) x \, d\tau \right) \right\| \\ \leq \left\| \frac{1}{t} \int_{0}^{t} S(l+m+\tau) x \, d\tau - \frac{1}{n} \sum_{i=1}^{n} S\left(l+m+\frac{t}{n}i \right) x \right\| \\ + \left\| \frac{1}{n} \sum_{i=1}^{n} S\left(l+m+\frac{t}{n}i \right) x - S(l) \left(\frac{1}{n} \sum_{i=1}^{n} S\left(m+\frac{t}{n}i \right) x \right) \right\| \\ + \left\| S(l) \left(\frac{1}{n} \sum_{i=1}^{n} S\left(m+\frac{t}{n}i \right) x \right) - S(l) \left(\frac{1}{t} \int_{0}^{t} S(m+\tau) x \, d\tau \right) \right\| \\ \leq \frac{2}{3} \varepsilon + \left\| \frac{1}{n} \sum_{i=1}^{n} S\left(l+m+\frac{t}{n}i \right) x - S(l) \left(\frac{1}{n} \sum_{i=1}^{n} S\left(m+\frac{t}{n}i \right) x \right) \right\|$$

for every $n \ge N_1$ and $l, m \ge 0$. Fix $n \in \mathbf{N}$ with $n \ge N_1$. Without loss of generality, we assume that k(l) > 0 for all $l \in \mathbb{R}^+$. From Lemma 2.2, there exists $\gamma_n \in \Gamma$ such that

(2)
$$\left\| \frac{1}{n} \sum_{i=1}^{n} S\left(l+m+\frac{t}{n}i\right)x - S\left(l\right)\left(\frac{1}{n} \sum_{i=1}^{n} S\left(m+\frac{t}{n}i\right)x\right) \right\|$$
$$\leq k(l)\gamma_{n}^{-1}\left(\max_{1\leq i,j\leq n}\left\{ \left\| S\left(m+\frac{t}{n}i\right)x - S\left(m+\frac{t}{n}j\right)x \right\| -\frac{1}{k(l)} \left\| S\left(l+m+\frac{t}{n}i\right)x - S\left(l+m+\frac{t}{n}j\right)x \right\| \right\}\right)$$

for every $l, m \geq 0$. ¿From $\gamma_n \in \Gamma$, there exists $\delta > 0$ such that

(3)
$$k(l)\gamma_n^{-1}(\delta) < \frac{\varepsilon}{3}$$

for every $l \ge 0$. For $1 \le i, j \le n$, we set $r_{i,j} = \inf_{m \ge 0} \left\| S\left(m + \frac{t}{n}i\right)x - S\left(m + \frac{t}{n}j\right)x \right\|$. There exists $m_1 \ge 0$ such that $\left\| S\left(m_1 + \frac{t}{n}i\right)x - S\left(m_1 + \frac{t}{n}j\right)x \right\| < r_{i,j} + \frac{\delta}{4}$. By $\limsup_{l \to \infty} k(l) \le 1$, there exists $l_1 > 0$ such that

$$k(l) \le \frac{r_{i,j} + \frac{\delta}{2}}{\|S(m_1 + \frac{t}{n}i)x - S(m_1 + \frac{t}{n}j)x\| + \frac{\delta}{4}}$$

for every $l \geq l_1$. So, we have

$$S\left(l+m_{1}+\frac{t}{n}i\right)x-S\left(l+m_{1}+\frac{t}{n}j\right)x\parallel$$

$$\leq k(l)\parallel S\left(m_{1}+\frac{t}{n}i\right)x-S\left(m_{1}+\frac{t}{n}j\right)x\parallel \leq r_{i,j}+\frac{\delta}{2}$$

for every $l \ge l_1$. Put $m_2 = m_2(i, j) = l_1 + m_1$. Then, there holds

$$\left\| S\left(m + \frac{t}{n}i\right)x - S\left(m + \frac{t}{n}j\right)x \right\| \le r_{i,j} + \frac{\delta}{2}$$

for every $m \ge m_2$. Similarly, there exists $l_2 = l_2(i, j) \ge 0$ such that

$$r_{i,j} - \frac{\delta}{2} \le \frac{1}{k(l)} \| S\left(l + m + \frac{t}{n}i\right)x - S\left(l + m + \frac{t}{n}j\right)x \|$$

for every $l \ge l_2$ and $m \ge m_2$. Let

 $l_0 = \max\{l_2(i,j) \mid 1 \le i, j \le n\}$ and $m_0 = \max\{m_2(i,j) \mid 1 \le i, j \le n\}.$

Then, we have

(4)
$$0 \leq \max_{1 \leq i,j \leq n} \left\{ \left\| S\left(m + \frac{t}{n}i\right)x - S\left(m + \frac{t}{n}j\right)x \right\| - \frac{1}{k(l)} \left\| S\left(l + m + \frac{t}{n}i\right)x - S\left(l + m + \frac{t}{n}j\right)x \right\| \right\} \leq \delta$$

for every $l \ge l_0$ and $m \ge m_0$. So, it follows from (1), (2), (3) and (4) that

$$\left| \frac{1}{t} \int_0^t S(l+m+\tau) x \, d\tau - S(l) \left(\frac{1}{t} \int_0^t S(m+\tau) x \, d\tau \right) \right|$$

$$\leq \frac{2}{3} \varepsilon + k(l) \gamma_n^{-1}(\delta) \leq \frac{2}{3} \varepsilon + \frac{\varepsilon}{3} = \varepsilon$$

for every $l \ge l_0$ and $m \ge m_0$.

The following lemma was obtained by Atsushiba and Takahashi [1].

Lemma 2.4. Let C be a nonempty compact subset of a Banach space. Then, C satisfies the convex approximation property.

The following lemmas were obtained by Nakajo and Takahashi [9].

Lemma 2.5. Let C be a nonempty compact convex subset of a strictly convex Banach space. For each $\varepsilon > 0$, there exists $\delta > 0$ such that $\overline{co}F_{\delta}(T) \subset F_{\varepsilon}(T)$ holds for every $T \in Lip(C, 1 + \delta)$, where $\overline{co} A$ is the closure of the convex hull of A.

Lemma 2.6. Let C be a nonempty closed bounded convex subset of a Banach space. Let $\gamma \in \Gamma$, $L \geq 1$ and $T \in Lip(C, L)$ such that

$$||T(\lambda x + (1 - \lambda)y) - (\lambda Tx + (1 - \lambda)Ty)|| \le L\gamma^{-1} \left(||x - y|| - \frac{1}{L} ||Tx - Ty|| \right)$$

for all $x, y \in C$ and $\lambda \in [0, 1]$. Let $\{x_n\}$ and $\{y_n\}$ be sequences in C such that $\frac{1}{n} \sum_{i=1}^n ||x_{i+1} - x_{i+1}|| = 1$

 $Tx_i \| \leq a_n$ and $\frac{1}{n} \sum_{i=1}^n \|y_{i+1} - Ty_i\| \leq a_n$ for all $n \in \mathbb{N}$, where $\{a_n\}$ is a sequence in R^+ . Then, for each $n \in \mathbb{N}$ and $\lambda \in [0, 1]$,

$$\frac{1}{n}\sum_{i=1}^{n} \|\lambda x_{i+1} + (1-\lambda)y_{i+1} - T(\lambda x_i + (1-\lambda)y_i)\| \le L\gamma^{-1} \left(\frac{R}{n} + (L-1)R + 2a_n\right) + a_n,$$
where $R = diam C$

Lemma 2.7. Let *C* be a nonempty compact convex subset of a strictly convex Banach space. Then, for any $\varepsilon > 0$, there exist $\delta > 0$ and $N_0 \in \mathbf{N}$ such that for every $T \in Lip(C, 1 + \delta)$ and $\{x_n\}$ in *C* satisfying $||x_{n+1} - Tx_n|| \leq \delta$ for all $n \in \mathbf{N} \cup \{0\}$, there holds $\frac{1}{n} \sum_{i=0}^{n-1} x_i \in F_{\varepsilon}(T)$ for every $n \geq N_0$.

Lemma 2.8. Let *C* be a nonempty compact convex subset of a strictly convex Banach space. Then, for each $\varepsilon > 0$, there exist $\delta > 0$ and $N_0 \in \mathbf{N}$ such that for every $l \in \mathbf{N}$ and mapping *T* from *C* into itself satisfying $T^l \in Lip(C, 1 + \delta)$, there holds

$$\left\|\frac{1}{m}\sum_{i=0}^{m-1}T^{i}x - T^{l}\left(\frac{1}{m}\sum_{i=0}^{m-1}T^{i}x\right)\right\| \leq \varepsilon$$

for all $m \in \mathbf{N}$ with $m - 1 \ge lN_0$ and $x \in C$.

As in the proof of [10], we have the following lemma. However, for the sake of completeness, we give the proof.

Corollary 2.9. Let C be a nonempty compact convex subset of a strictly convex Banach space and let $S = \{S(t) \mid t \ge 0\}$ be an asymptotically nonexpansive semigroup on C. Then,

$$\limsup_{l \to \infty} \limsup_{t \to \infty} \sup_{x \in C} \left\| \frac{1}{t} \int_0^t S(\tau) x \, d\tau - S(l) \left(\frac{1}{t} \int_0^t S(\tau) x \, d\tau \right) \right\| = 0$$

Proof. Let $\{k(t) \mid t \ge 0\}$ be Lipschitz constants of S. Let $\varepsilon > 0$. There exist $\delta > 0$ and $N_0 \in \mathbf{N}$ which satisfy the condition in Lemma 2.8. From $\limsup_{l\to\infty} k(l) \le 1$, there exists $l_0 \ge 0$ such that $k(l) < 1 + \delta$ for every $l \ge l_0$. Let $l > l_0$. Then, there exists $t_l > 0$ such that $\frac{1}{N_0} \ge \frac{l}{t}$ for all $t \ge t_l$. Let $t \ge t_l$. For each $n \in \mathbf{N}$, let j_n be the nonnegative integer which satisfies $t \cdot \frac{j_n}{n} \le l < t \cdot \frac{j_n+1}{n}$. Then, $n \ge j_n N_0$ for every $n \in \mathbf{N}$ and by $l > l_0$, there exists $n_0 \in \mathbf{N}$ such that $t \cdot \frac{j_n}{n} \ge l_0$ for all $n \ge n_0$. Hence, from Lemma 2.8 we get

$$\left\| \frac{1}{n+1} \sum_{i=0}^{n} S\left(\frac{t}{n}i\right) x - S\left(\frac{t}{n}j_{n}\right) \left(\frac{1}{n+1} \sum_{i=0}^{n} S\left(\frac{t}{n}i\right) x\right) \right\| < \varepsilon$$

for every $n \ge n_0$ and $x \in C$. So, we have

$$\left\| \frac{1}{t} \int_0^t S(\tau) x \, d\tau - S(l) \left(\frac{1}{t} \int_0^t S(\tau) x \, d\tau \right) \right\|$$

$$\leq \quad \left\| \frac{1}{t} \int_0^t S(\tau) x \, d\tau - \frac{1}{n+1} \sum_{i=0}^n S\left(\frac{t}{n}i\right) x \right\|$$

K. NAKAJO AND W. TAKAHASHI

$$+ \left\| \frac{1}{n+1} \sum_{i=0}^{n} S\left(\frac{t}{n}i\right) x - S\left(\frac{t}{n}j_{n}\right) \left(\frac{1}{n+1} \sum_{i=0}^{n} S\left(\frac{t}{n}i\right) x\right) \right\|$$

$$+ \left\| S\left(\frac{t}{n}j_{n}\right) \left(\frac{1}{n+1} \sum_{i=0}^{n} S\left(\frac{t}{n}i\right) x\right) - S\left(\frac{t}{n}j_{n}\right) \left(\frac{1}{t} \int_{0}^{t} S(\tau) x \, d\tau\right) \right\|$$

$$+ \left\| S\left(\frac{t}{n}j_{n}\right) \left(\frac{1}{t} \int_{0}^{t} S(\tau) x \, d\tau\right) - S(l) \left(\frac{1}{t} \int_{0}^{t} S(\tau) x \, d\tau\right) \right\|$$

$$\leq (2+\delta) \left\| \frac{1}{t} \int_{0}^{t} S(\tau) x \, d\tau - \frac{1}{n+1} \sum_{i=0}^{n} S\left(\frac{t}{n}i\right) x \right\|$$

$$+ \varepsilon + \left\| S\left(\frac{t}{n}j_{n}\right) \left(\frac{1}{t} \int_{0}^{t} S(\tau) x \, d\tau\right) - S(l) \left(\frac{1}{t} \int_{0}^{t} S(\tau) x \, d\tau\right) \right\|$$

for every $n \ge n_0$ and $x \in C$. Tending n to infinity, we get

$$\left\| \frac{1}{t} \int_0^t S(\tau) x \, d\tau - S(l) \left(\frac{1}{t} \int_0^t S(\tau) x \, d\tau \right) \right\| \le \varepsilon$$

for every $x \in C$. So, we have

$$\limsup_{l \to \infty} \limsup_{t \to \infty} \sup_{x \in C} \left\| \frac{1}{t} \int_0^t S(\tau) x \, d\tau - S(l) \left(\frac{1}{t} \int_0^t S(\tau) x \, d\tau \right) \right\| \le \varepsilon$$

Since $\varepsilon > 0$ is arbitrary, we obtain the conclusion.

Remark. We can obtain $F(S) \neq \emptyset$. In fact, let $x \in C$ and put $x_t = \frac{1}{t} \int_0^t S(\tau) x d\tau$ for every t > 0. Since C is compact, there exists a subnet $\{x_{t_\alpha}\}$ of $\{x_t\}$ such that x_{t_α} converges strongly to some x_0 in C. So, we have

$$0 = \limsup_{l \to \infty} \limsup_{t \to \infty} \|x_t - S(l)x_t\|$$

=
$$\limsup_{l \to \infty} \limsup_{\alpha} \|x_{t_{\alpha}} - S(l)x_{t_{\alpha}}\| = \limsup_{l \to \infty} \|x_0 - S(l)x_0\|$$

and hence

$$\begin{aligned} \|x_0 - S(s)x_0\| &\leq \limsup_{l \to \infty} \|x_0 - S(l)x_0\| + \limsup_{l \to \infty} \|S(l)x_0 - S(s)x_0\| \\ &\leq 0 + k(s) \cdot 0 = 0 \end{aligned}$$

for every $s \geq 0$. Therefore $x_0 \in F(\mathcal{S})$.

3. Strong ergodic theorem

The following is crucial to prove our theorem.

Lemma 3.1. Let *C* be a nonempty compact convex subset of a strictly convex Banach space and let $S = \{S(t) \mid t \ge 0\}$ be an asymptotically nonexpansive semigroup on *C*. Let $x \in C$. Then, there exists a net $\{i_t\}_{t\ge 0} \subset R^+$ such that $\lim_{t\to\infty} \left\| \frac{1}{t} \int_0^t S(\tau + i_t) x \, d\tau - z \right\|$ exists for every $z \in F(S)$.

Proof. We use the methods employed in Atsushiba and Takahashi [1, 2]. ¿From Lemma 2.3, there exist nets $\{i_t\}_{t\geq 0}$ in R^+ and $\{l_t\}_{t\geq 0}$ in R^+ such that

(5)
$$\left\| \frac{1}{t} \int_0^t S(l+i+\tau) x \, d\tau - S(l) \left(\frac{1}{t} \int_0^t S(i+\tau) x \, d\tau \right) \right\| < \frac{1}{t}$$

for every $t > 0, i \ge i_t$ and $l \ge l_t$. Let $z \in F(\mathcal{S})$. For every s, t > 0, consider

$$\begin{split} I &= \left\| \frac{1}{s} \int_{0}^{s} S(i_{s} + i_{t} + \tau) x \, d\tau - z \right\| \\ &= \left\| \frac{1}{s} \int_{0}^{s} \left(\frac{1}{t} \int_{0}^{t} S(\tau + \sigma + i_{s} + i_{t}) x \, d\sigma \right) d\tau \\ &+ \frac{1}{st} \int_{0}^{t} (t - \tau) \{ S(\tau + i_{s} + i_{t}) x - S(s + \tau + i_{s} + i_{t}) x \} \, d\tau - z \, \right\|, \\ I_{1} &= \left\| \frac{1}{st} \int_{0}^{t} (t - \tau) \{ S(\tau + i_{s} + i_{t}) x - S(s + \tau + i_{s} + i_{t}) x \} \, d\tau \, \right\|, \\ I_{2} &= \left\| \frac{1}{s} \int_{0}^{s} \left(\frac{1}{t} \int_{0}^{t} S(\tau + \sigma + i_{s} + i_{t}) x \, d\sigma \right) d\tau \\ &- \frac{1}{s} \int_{0}^{s} S(\tau + i_{s}) \left(\frac{1}{t} \int_{0}^{t} S(\sigma + i_{t}) x \, d\sigma \right) d\tau \, \right\| \end{split}$$

 and

$$I_3 = \left\| \frac{1}{s} \int_0^s S(\tau + i_s) \left(\frac{1}{t} \int_0^t S(\sigma + i_t) x \, d\sigma \right) d\tau - z \right\|.$$

Then, we have $I \leq I_1 + I_2 + I_3$. Fix t > 0 and put $R = \operatorname{diam} C$. We have

$$I_1 \le \frac{1}{st} \int_0^t (t-\tau) R \, d\tau = \frac{t}{2s} R$$

for every s > 0. It follows from (5) that

$$I_2 \leq \frac{1}{s} \int_0^s \left\| \frac{1}{t} \int_0^t S(\tau + \sigma + i_s + i_t) x \, d\sigma - S(\tau + i_s) \left(\frac{1}{t} \int_0^t S(\sigma + i_t) x \, d\sigma \right) \right\| d\tau$$

$$\leq \frac{1}{s} \int_0^s \frac{1}{t} \, d\tau = \frac{1}{t}$$

for every s > 0 with $i_s \ge l_t$. By $z \in F(\mathcal{S})$, we obtain

$$I_{3} \leq \frac{1}{s} \int_{0}^{s} \left\| S(\tau + i_{s}) \left(\frac{1}{t} \int_{0}^{t} S(\sigma + i_{t}) x \, d\sigma \right) - z \right\| d\tau$$

$$\leq \frac{1}{s} \int_{0}^{s} k(\tau + i_{s}) \left\| \frac{1}{t} \int_{0}^{t} S(\sigma + i_{t}) x \, d\sigma - z \right\| d\tau$$

$$= \left\{ \frac{1}{s} \int_{0}^{s} k(\tau + i_{s}) \, d\tau \right\} \cdot \left\| \frac{1}{t} \int_{0}^{t} S(\sigma + i_{t}) x \, d\sigma - z \right\|$$

for every s > 0, where $\{k(t) | t \ge 0\}$ is Lipschitz constants of S. Therefore, since $\lim_{s \to \infty} I_1 = 0$ and $\{k(t) | t \ge 0\}$ is Lipschitz constants of S, we have

$$\begin{split} \limsup_{s \to \infty} \left\| \frac{1}{s} \int_0^s S(\tau + i_s) x \, d\tau - z \right\| \\ &= \limsup_{s \to \infty} \left\| \frac{1}{s} \int_0^s S(\tau + i_s + i_t) x \, d\tau - z \right\| \\ &= \limsup_{s \to \infty} I \le \limsup_{s \to \infty} (I_1 + I_2 + I_3) \\ &\le \frac{1}{t} + \left\| \frac{1}{t} \int_0^t S(\sigma + i_t) x \, d\sigma - z \right\| \cdot \limsup_{s \to \infty} \frac{1}{s} \int_0^s k(\tau + i_s) \, d\tau \end{split}$$

$$\leq \quad \frac{1}{t} + \left\| \begin{array}{c} \frac{1}{t} \int_0^t S(\sigma + i_t) x \, d\sigma - z \end{array} \right|$$

for every t > 0. So, we get

$$\lim_{s \to \infty} \sup_{s \to \infty} \left\| \frac{1}{s} \int_0^s S(\tau + i_s) x \, d\tau - z \right\| \le \liminf_{t \to \infty} \left\| \frac{1}{t} \int_0^t S(\sigma + i_t) x \, d\sigma - z \right\|$$

Hence,
$$\lim_{t \to \infty} \left\| \frac{1}{t} \int_0^t S(\tau + i_t) x \, d\tau - z \right\|$$
 exists.

Remark. In Lemma 3.1, take a net $\{i'_t\}_{t\geq 0}$ in R^+ such that $i'_t \geq i_t$ for every $t \geq 0$. Then, we can get

$$\lim_{t \to \infty} \left\| \frac{1}{t} \int_0^t S(\tau + i_t) x \, d\tau - z \right\| = \lim_{t \to \infty} \left\| \frac{1}{t} \int_0^t S(\tau + i'_t) x \, d\tau - z \right\|$$

for every $z \in F(\mathcal{S})$.

Theorem 3.2. Let C be a nonempty compact convex subset of a strictly convex Banach space and let $S = \{S(t) \mid t \ge 0\}$ be an asymptotically nonexpansive semigroup on C. Let $x \in C$. Then, $\frac{1}{t} \int_0^t S(\tau + h)x \, d\tau$ converges strongly to a common fixed point of S uniformly in $h \ge 0$. In this case, if $Qx = \lim_{t\to\infty} \frac{1}{t} \int_0^t S(\tau)x \, d\tau$ for every $x \in C$, then Q is a nonexpansive mapping from C onto F(S) such that QS(t) = S(t)Q = Q for every $t \ge 0$ and $Qx \in \overline{co}\{S(t)x \mid t \ge 0\}$ for every $x \in C$.

Proof. ¿From Lemma 3.1, there exists a net $\{i_t\}_{t>0}$ in \mathbb{R}^+ such that

(6)
$$\lim_{t \to \infty} \left\| \frac{1}{t} \int_0^t S(\tau + i_t) x \, d\tau - z \right\|$$

exists for every $z \in F(S)$. Set $\Phi_t = \frac{1}{t} \int_0^t S(\tau + i_t) x \, d\tau$. As in the Remark of Corollary 2.9, there exists a subnet $\{\Phi_{t_\alpha}\}$ of $\{\Phi_t\}$ such that Φ_{t_α} converges strongly to a common fixed point y_0 of S. So it follows from (6) that

$$\lim_{t \to \infty} \|\Phi_t - y_0\| = \lim_{\alpha} \|\Phi_{t_{\alpha}} - y_0\| = 0.$$

This implies that $\Phi_t \longrightarrow y_0$. Next we prove that $\frac{1}{t} \int_0^t S(\tau + i_t + h) x \, d\tau$ converges strongly to $y_0 \in F(S)$ uniformly in $h \ge 0$. Take a net $\{i'_t\}_{t\ge 0}$ in R^+ such that $i'_t \ge i_t$ for every $t \ge 0$. Then, from Remark of Lemma 3.1, we have $\frac{1}{t} \int_0^t S(\tau + i'_t) x \, d\tau \longrightarrow y_0 \in F(S)$. Since $\{i'_t\}_{t\ge 0}$ is any net in R^+ such that $i'_t \ge i_t$ for every $t \ge 0$, it follows that $\frac{1}{t} \int_0^t S(\tau + i_t + h) x \, d\tau$ converges strongly to y_0 uniformly in h > 0. Let $\varepsilon > 0$. Then, there exists $t_0 > 0$ such that

verges strongly to
$$y_0$$
 uniformly in $h \ge 0$. Let $\varepsilon > 0$. Then, there exists $t_0 \ge 0$ so
$$\left\| \frac{1}{t} \int_0^t S(\tau + i_t + h) x \, d\tau - y_0 \right\| < \varepsilon$$

for every $t \ge t_0$ and $h \ge 0$. So, we have

$$\left\| \frac{1}{t} \int_0^t S(\tau+h) x \, d\tau - y_0 \right\|$$
$$= \left\| \frac{1}{t} \int_0^t \left(\frac{1}{s} \int_0^s S(\tau+h+\sigma) x \, d\sigma \right) d\tau \right\|$$

$$\begin{split} &+ \frac{1}{ts} \int_{0}^{s} (s-\tau) \{ S(\tau+h)x - S(t+\tau+h)x \} d\tau - y_{0} \ \bigg| \\ &\leq \ \frac{1}{t} \left\| \int_{0}^{t} \Big\{ \frac{1}{s} \int_{0}^{s} S(\tau+h+\sigma)x \, d\sigma - y_{0} \Big\} d\tau \right\| \\ &+ \frac{1}{ts} \int_{0}^{s} (s-\tau) \| S(\tau+h)x - S(t+\tau+h)x \| \, d\tau \\ &= \ \frac{1}{t} \left\| \int_{0}^{i_{s}} \Big\{ \frac{1}{s} \int_{0}^{s} S(\tau+h+\sigma)x \, d\sigma - y_{0} \Big\} \, d\tau \\ &+ \int_{i_{s}}^{t} \Big\{ \frac{1}{s} \int_{0}^{s} S(\tau+h+\sigma)x \, d\sigma - y_{0} \Big\} \, d\tau \\ &+ \frac{1}{ts} \int_{0}^{s} (s-\tau) \| S(\tau+h)x - S(t+\tau+h)x \| \, d\tau \\ &\leq \ \frac{1}{t} \int_{0}^{i_{s}} \left\| \frac{1}{s} \int_{0}^{s} S(\tau+h+\sigma)x \, d\sigma - y_{0} \right\| \, d\tau \\ &+ \frac{1}{ts} \int_{0}^{t-i_{s}} \left\| \frac{1}{s} \int_{0}^{s} S(\tau+h+\sigma)x \, d\sigma - y_{0} \right\| \, d\tau \\ &+ \frac{1}{ts} \int_{0}^{t-i_{s}} \| \frac{1}{s} \int_{0}^{s} S(\tau+h+\sigma)x \, d\sigma - y_{0} \| \, d\tau \\ &+ \frac{1}{ts} \int_{0}^{s} (s-\tau) \| S(\tau+h)x - S(t+\tau+h)x \| \, d\tau \\ &\leq \ \frac{i_{s}}{t} R + \frac{t-i_{s}}{t} \varepsilon + \frac{s}{2t} R \end{split}$$

for every $s \ge t_0$, $t \ge i_s$ and $h \ge 0$, where $R = \operatorname{diam} C$. Since $\varepsilon > 0$ is arbitrary, it follows that $\frac{1}{t} \int_0^t S(\tau + h) x \, d\tau$ converges strongly to $y_0 \in F(S)$ uniformly in $h \ge 0$. If $Qx = \lim_{t \to \infty} \frac{1}{t} \int_0^t S(\tau) x \, d\tau$ for every $x \in C$, then Q is a nonexpansive mapping from C onto

F(S). In fact, let $\{k(t) \mid t \ge 0\}$ be Lipschitz constants of S. Then, we get

$$\left\| \frac{1}{t} \int_0^t S(\tau) x \, d\tau - \frac{1}{t} \int_0^t S(\tau) y \, d\tau \right\| \le \|x - y\| \cdot \frac{1}{t} \int_0^t k(\tau) \, d\tau \,,$$

which implies $||Qx - Qy|| \le ||x - y||$ for every $x, y \in C$. Moreover, we have QS(t) = S(t)Q = Q for every $t \ge 0$ and $Qx \in \overline{co}\{S(t)x \mid t \ge 0\}$ for every $x \in C$.

References

- S.Atsushiba and W.Takahashi, A nonlinear strong ergodic theorem for nonexpansive mappings with compact domains, Math. Japonica, 52(2000), 183-195.
- [2] S.Atsushiba and W.Takahashi, Strong convergence theorems for one-parameter nonexpansive semigroups with compact domains, to appear.
- [3] J.B.Baillon, Un théorème de type ergodique pour les contractions non linéaires dans un espace de Hilbert, C. R. Acad. Sci. Paris Sér.A-B, 280(1975), 1511-1514.
- [4] J.B.Baillon and H.Brezis, Une remarque sur le comportement asymptotique des semigroupes non lineaires, Houston J. Math., 2(1976), 5-7.
- [5] R.E.Bruck, A simple proof of the mean ergodic theorem for nonlinear contractions in Banach spaces, Israel J. Math., 32(1979), 107-116.
- [6] R.E.Bruck, On the convex approximation property and the asymptotic behavior of nonlinear contractions in Banach spaces, Israel J. Math., 38(1981), 304-314.
- [7] C.M.Dafermos and M.Slemrod, Asymptotic behavior of nonlinear contraction semigroups, J. Funct. Anal., 13(1973), 97-106.
- [8] N.Hirano and W.Takahashi, Nonlinear ergodic theorems for nonexpansive mappings in Hilbert spaces, Kodai Math. J., 2(1979), 11-25.

- [9] K.Nakajo and W.Takahashi, A nonlinear strong ergodic theorem for asymptotically nonexpansive mappings with compact domains, to appear.
- [10] N.Shioji and W.Takahashi, Strong convergence theorems for continuous semigroups in Banach spaces, Math. Japonica, 50(1999), 57-66.
- [11] K.K.Tan and H.K.Xu, An ergodic theorem for nonlinear semigroups of Lipschitzian mappings in Banach spaces, Nonlinear Anal. 19(1992), 805-813.

(K. NAKAJO) DEPARTMENT OF MATHEMATICAL AND COMPUTING SCIENCES, TOKYO INSTITUTE OF TECHNOLOGY, OH-OKAYAMA, MEGURO-KU, TOKYO, 152-8552, JAPAN E-mail address: nakajo@is.titech.ac.jp

(W. TAKAHASHI) DEPARTMENT OF MATHEMATICAL AND COMPUTING SCIENCES, TOKYO INSTITUTE OF TECHNOLOGY, OH-OKAYAMA, MEGURO-KU, TOKYO, 152-8552, JAPAN

 $E\text{-}mail \ address: \texttt{wataruQis.titech.ac.jp}$