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ABSTRACT. In this paper, we prove a nonlinear strong ergodic theorem for families of
asymptotically nonexpansive mappings from a compact convex subset of a strictly convex
Banach space into itself.

1. INTRODUCTION

The first nonlinear ergodic theorem for nonexpansive mappings with bounded domains in
a Hilbert space was proved by Baillon [3]. Baillon and Brezis [4] also proved the following
nonlinear ergodic theorem for nonexpansive semigroups in a Hilbert space : Let C' be a
nonempty closed convex subset of a Hilbert space and let S = {S(¢)|t > 0} be a nonexpan-
sive semigroup on C with F/(S) # 0. Then, for every x € C, % fot S(r)xdr converges weakly
to some y € F(S). Hirano and Takahashi [8] extended Baillon and Brezis’s theorem to
an asymptotically nonexpansive semigroup. Hirano and Takahashi’s theorem was extended
to a uniformly convex Banach space whose norm is Fréchet differentiable by Tan and Xu
[11]. On the other hand, Atsushiba and Takahashi [2] obtained a nonlinear ergodic theorem
for nonexpansive semigroups with compact domains in a Banach space which generalizes
Dafermos and Slemrod’s result [7] : Let C' be a nonempty compact convex subset of a
strictly convex Banach space and let S = {S(¢)|t > 0} be a nonexpansive semigroup on C.
Then, for every z € C, 1 fot S(7 4+ h)xdr converges strongly to some y € F(S) uniformly in
h > 0.

In this paper, we extend Atsushiba and Takahashi’s theorem to an asymptotically non-
expansive semigroup by using the methods employed in Atsushiba and Takahashi [1, 2],
Bruck [5, 6] and Shioji and Takahashi [10].

2. PRELIMINARIES AND LEMMAS

Throughout this paper, a Banach space is real and we denote by N and R*, the set of
all positive integers and the set of all nonnegative real numbers, respectively. We denote
by A™ the set {A = (A, X2,..., An) [ Ai >0, Y1, A; = 1} for n € N. Let E be a Banach
space and let r > 0. We denote by D, (z) the open ball in E with center x and radius
r. For a subset C of E, we denote by coC the convex hull of C. FE is said to be strictly
convex if M < 1for z,y € E with ||z|| = |ly|| = 1 and = # y. Let C be a subset
of E, let T be a mapping from C into itself and let € > 0. By F.(T'), we mean the set
{z € C|||xr —Tx| <e}. Let K > 0. We denote by Lip(C, K), the set of all mappings from
C into itself satisfying ||Tz — Ty[| < Kl|z — y|| for each z,y € C. We denote by I the set of
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all strictly increasing, continuous convex functions y:RT — R* with v(0) = 0. Let C be
a nonempty subset of E. C is said to satisfy the convex approximation property if for any
e > 0, there exists m € N such that coM C co,, M + D.(0) for every subset M of C, where
comM = {E:il i | T, € M, i >0, E:;l N = 1}
A family § = {S(¢) |t > 0} is said to be an asymptotically nonexpansive semigroup on C
with Lipschitz constants {k(¢) |t > 0} if

(i) for each t > 0, S(t) is a mapping from C into itself and ||S(t)z — S(t)y|| < k(t)||z —y||

for each z,y € C;

(ii) S(t + s)x = S(¢t)S(s)x for each t,s > 0 and z € C;

(iii) S(0)z = x for each z € C
(iv) for each z € C, the mapping ¢t — S(t)z is continuous.

(v) t+— k(t) is continuous mapping from the set of nonnegative real numbers into itself;
(vi)

lim sup,_, ., k(t) < 1.
S is said to be a nonexpansive semigroup on C if k(¢) = 1 for all ¢ > 0. We denote by F(S),
the set of common fixed points of S = {S(t) |t > 0}, i.e.,, Ny>o{z € C'|S(t)z = x}. The
following lemmas was obtained by Bruck [5, 6].

Lemma 2.1. Let C' be a nonempty compact convex subset of a strictly convex Banach
space. Then, there exists v € T" such that for each K > 0 and T € Lip(C, K),

1T + (1= M) = O + (1= )Tyl < Ky (Jle = ol = T2 = Tl

holds for every z,y € C' and X € [0, 1].

Lemma 2.2. Let C' be a nonempty compact convex subset of a strictly convex Banach
space. Then, for each p € N, there exists 7, € ' such that for each K > 0 and T €
Lip(C, K),

H T (zp: )\imi) - 2”: NiTx;
i=1 i=1

holds for every z1,22,...,2, in C and A = (A1, A2,..., Ap) € AP,

1
<K—1( { - -——Ti—T-})
< Ko max lzi = z;ll = 2 IT@ ;|

Following ideas in Atsushiba and Takahashi [1, 2], we can show the following lemma.

Lemma 2.3. Let C' be a nonempty compact convex subset of a strictly convex Banach
space and let S = {S(t)|t > 0} be an asymptotically nonexpansive semigroup on C. Let
x € C and t > 0. Then, for each ¢ > 0, there exist lop = ly(t,€) > 0 and mo = mo(t,e) >0
such that

I 1 [

—/ S(l+m+7')de—S(l)(—/ S(m+7')md7) H<6
tJo t Jo

for every [ > lp and m > my.

Proof. Let x € C, t > 0 and € > 0. Let {k(¢)|t > 0} be Lipschitz constants of S.
Put sup{k(t)|t > 0} = Myp. Since {k(t)|t > 0} is bounded, My < oo holds. {From the
assumption of S, we have

t n
H%/OS(l+m+7')md7—%iz;5(l+m+%i)m
1 [7!
S;;/%t

S(l+m+r)m—5(l+m+%i)x“ dr
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My &~ [t t
— E — S(—z):r H dr

y izly n

=1 n

Pl i, Jsoe-sG)- )}

S(T)HZ—S(%)CE H—> 0,

IN

= M3 - sup
0<r<E

as n — oo, uniformly in [,;m > 0. Similarly, we have

H S(l)(%/OtS(m+T)mdr> —S(l)(%ii;S(m+%i)x> H—>0

as n — oo, uniformly in [,m > 0. So, there exists N1 € N such that

1/t5(1+ +T)zd —1is(l+ +1')
7 o m T)x AT ni:1 m n'Lm

<&
3
and

Js(z [ stn+niear) -s0 (3 S5+ 1) | <5

=1

for every n > N7 and [, m > 0. Hence we get

(1) H %/OtS(Hm+T)a:dT—S(Z)G/Ots(m”)”m) H

H%/OtS(l+m+7')a:dT—%i5(1+m+%i)x
1o t
+HE;S(l+m+Ez)x—S < ZS —z )H

4 H S(l)(%gS(m—k%i)m) —5(1)<¥/ S(m+T)a:dT> H
< §s+H%§:S(l+m+%i)x ( ZSm+—z )H

for every n > Ny and [,m > 0. Fix n € N with n > N;. Without loss of generality, we
assume that k(I) > 0 for all [ €RT. ;From Lemma 2.2, there exists «y, € I" such that

@) H %ans(z+m+%i)x—sa)(%zﬂ:s(m+%¢)x> H
i=1 i=1
|S(m+%i)x—5(m+%j)m H
—ﬁ HS(l+m+%i)m—5(l+m+%j)a:H})
for every I,m > 0. ;From =, €T, there exists § > 0 such that

3) kD)7 (0) < 2

< k0, max {

1<i,j<n
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t t
forevery [ > 0. For 1 <i,j <n, wesetr;; = inf H S(m+—i)x—5(m+—j)x H . There
n

t 0
exists mq > 0 such that H S(ml + —z)a: - S(ml + ]) H< rij + 1 By limsup k(l) < 1,
[—o0
there exists I; > 0 such that
rii+ u
k() < 2
O < 5t + Loz - S(mr + Ll + 3

for every [ > [;. So, we have
HSQ+WM+30x—SQ+WM+EQxH

t )
< HS(m1+—z)m—S(m1+ ]) H<n]+2
for every [ > ly. Put ma = m2(i,5) = l1 + m1. Then, there holds

t t 1)

H S(m+ —i)m—S(m+—j)x H <r;+ >

for every m > mso. Slmllarly, there exists ls = l2(i,7) > 0 such that
T T3 S R0

for every [ > I and m > ms. Let

H50+m+ﬂﬁ—s@+m+3)u

lo = max{ly(i,7) |1 <i,j <n} and mo = max{m2(i,j) |1 <i,j <n}.

Then, we have

4) 0 < max {
1<i,j<n

|S(m+%i)m—5(m+%j)x“

—ﬁ HS(l+m+%i)m—5(1+m+%j)x“}§6

for every I > lp and m > myg. So, it follows from (1), (2), (3) and (4) that

H %/OtS(l+m+T)a:dT—S(l)(%/OtS(m+T)de> H

2 2 €
< = “IH <Ze4 = =
< 35+k(l)'yn (0) < 36+ 3 €

for every [ > lp and m > my. O

The following lemma was obtained by Atsushiba and Takahashi [1].

Lemma 2.4. Let C' be a nonempty compact subset of a Banach space. Then, C satisfies
the convex approximation property.

The following lemmas were obtained by Nakajo and Takahashi [9].

Lemma 2.5. Let C' be a nonempty compact convex subset of a strictly convex Banach
space. For each € > 0, there exists § > 0 such that ¢oF5(T) C F.(T) holds for every
T € Lip(C,1 + ), where o A is the closure of the convex hull of A.

Lemma 2.6. Let C be a nonempty closed bounded convex subset of a Banach space. Let
veT,L>1and T € Lip(C, L) such that

1T + (1= N)y) — (W + (1= N Tyl < Iy (lle =l - 2172~ Tyl
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1 n
forall z,y € C and A € [0,1]. Let {z,,} and {y,} be sequences in C such that — Z |21 —
n

i=1

1 n
Tz;|| < a, and — E lyiv1 — Tyi|| < an for all n € N, where {a,} is a sequence in RT.
n
i=1

Then, for each n € N and \ € [0, 1],
1 — (R
- Z Aziy1 + (1 = Nyir1 — T(Azi + (1 = Nys)|| < Ly (E +(L-1R+ 20/11) + an,
i1
where R = diam C.

Lemma 2.7. Let C' be a nonempty compact convex subset of a strictly convex Banach
space. Then, for any ¢ > 0, there exist § > 0 and Ny € N such that for every T €
Lip(C,1+ 0) and {z,} in C satisfying ||x,+1 — Tx,|| < 0 for all n € N U {0}, there holds

n—1
1
- E xz; € F.(T) for every n > Nj.
n

i=0

Lemma 2.8. Let C' be a nonempty compact convex subset of a strictly convex Banach
space. Then, for each € > 0, there exist § > 0 and Ny € N such that for every I € N and
mapping T from C into itself satisfying T' € Lip(C, 1 + §), there holds

m—1 m—1
1 . 1 .
=N Ta-T (= T <
H m i=0 . <m i=0 x) H_E
for all m € N with m —1 >IN and z € C.

As in the proof of [10], we have the following lemma. However, for the sake of complete-
ness, we give the proof.

Corollary 2.9. Let C' be a nonempty compact convex subset of a strictly convex Banach
space and let § = {S(t) |t > 0} be an asymptotically nonexpansive semigroup on C. Then,
lim sup lim sup sup

m sup lim sup sup %/OtS(T)I’dT - S(l)(% /OtS(T):rdT>

Proof. Let {k(t)|t > 0} be Lipschitz constants of S. Let € > 0. There exist § > 0 and
No € N which satisfy the condition in Lemma 2.8. ;From limsup k(l) < 1, there exists

=0

lo > 0 such that k() < 1+ ¢ for every | > ly. Let [ > lp. Then, there exists t; > 0 such

=0.

1 [
that A > 7 for all t > t;. Let t > t;. For each n € N, let j, be the nonnegative integer

0

. _—

which satisfies ¢ - 2 <l<t- In t
n o on

. Then, n > j, Ny for every n € N and by [ > [y, there

exists ng € N such that ¢ - In > lp for all n > ng. Hence, from Lemma 2.8 we get
n

S S e

for every n > ng and x € C. So, we have

%/Ot S(r)zdr - S(D(% /OtS(T)de> H

n

1" 1 t
< H;/O S(T)wdT—n—HZZ;S(Ez)w
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| S s (- s(Ei) (Fr s ()e) |

+ S(%jn) (niligs(%z)x> = % ( / S(r mdr) H
+ S(%jn) (%/tS(T)wdT> — (t/ a:d7'> H

t n

< (2+96) H S(r xdT——Zs(f
=0

)z
T H S(ﬁjn) (;/0 S(T)rdf> - 5( (% wdT) H

for every n > ng and « € C. Tending n to infinity, we get

©fsomr-sof [ sora) | <

for every x € C'. So,we have
I I
—/ S(T)xdT—S(l)(—/ S(T)mdr) HSS.
t Jo t Jo

Since € > 0 is arbitrary, we obtain the conclusion. O

lim sup lim sup sup
l— o0 t—oo zeC

1 t
Remark. We can obtain F(S) # 0. In fact, let z € C and put z; = ;/ S(r)z dr for

0
every t > 0. Since C' is compact, there exists a subnet {z;_ } of {z;} such that x;  converges
strongly to some z( in C. So, we have

0 = limsuplimsup ||z; — S(1)x||
l— o0 t—o0

= limsuplimsup |z, — S()z:, || = limsup ||zo — S(I)xo]|
l—o0 a l—o0

and hence

[lzo — S(s)zo|| < limsup||lzo — S(I)wol| + lign sup ||S(l)zo — S(s)zo|
—» 00

[— o0

< 0+k(s)-0=0

for every s > 0. Therefore zg € F(S).

3. STRONG ERGODIC THEOREM
The following is crucial to prove our theorem.

Lemma 3.1. Let C' be a nonempty compact convex subset of a strictly convex Banach
space and let § = {S(¢) |t > 0} be an asymptotically nonexpansive semigroup on C. Let

1 t
—/ S(r +i)zdr — z
t Jo

x € C. Then, there exists a net {i;};>0 C R such that tlim
- — 00

exists for every z € F(S).

Proof. We use the methods employed in Atsushiba and Takahashi [1, 2]. ;From Lemma
2.3, there exist nets {i;};>0 in R and {l;};>¢ in R™ such that

(5) H %/OtS(l+i+T)de—S(l)<%/OtS(i+T)de> H<%
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for every t > 0,4 > i, and I > I;. Let z € F(S). For every s,t > 0, consider

I = 1/ S(is +ir+m)xdr — 2z
s Jo
IS o
- g/0 (2/0 S(T+U+zs+zt)mda)d7'
t
+$/(t—T){S(T—f-is—f-it)l‘—S(S-l-T-l-is‘f‘it)m}dT_Z ;
0
1 st
L = E/(t—T){S(T+is+it)1'_s(5+7+is+it)$}d7- ’
0
L1 [t S
I, = ;/0 (;/0 S(T+0+Zs+lt)l°d0)dT
1 [® N .
_g/o S(T+ZS)(¥/0 S(U—l—zt)wda) dr
and ‘
1 /° ! .
I, = g/0 S(T+ZS)(¥/0 S(U+zt)wda)dr—z

Then, we have I < Iy + I + I3. Fix t > 0 and put R = diam C. We have

1t ¢
L<— | (t—-7)Rdr=—R
st Jo 2s

for every s > 0. It follows from (5) that

1 S
I, < —/
s Jo
1 /%1 1
_/_dT:_
sJo T t

for every s > 0 with i; > l;. By z € F(S), we obtain

1 El
I _/
s Jo
1 [® 1/t
—/ k(T +is) —/S(a+it)mda—z
0 tJo

S

s t
{1/ k(’l'-l-is)d’l'}-H 1/ S(o +iy)rdo — z
s .Jo t Jo

IN

IN

S(T-l—is)(% /OtS(a-Fit)a:da) —z H dr

IN

dr

1/t 1 [t
_/ S(T-f-a-f-is—l-it)mda—S(T—l—is)(—/ S(U+it)xda) H dr
tJo t Jo

737

for every s > 0, where {k(t) |t > 0} is Lipschitz constants of S. Therefore, since lim I; =0
§—00

and {k(t) |t > 0} is Lipschitz constants of S, we have

1 s
lim sup H —/ S(r+is)rdr —z
§Jo

8§—00
1 El
= limsup || — / S(t+is +i)xdr — 2z
s—00 S Jo
= limsup I <limsup(l; + Ir + I3)
S§— 00 8§—00

IR ,
—+ —/ S(o +iy)xdo —z
t |t/

1 s
-limsup—/ k(r +is)dr
0

s—o0 S
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I ,
< -+ |-/ Slo+i)xrdo—=
t ot

for every t > 0. So, we get

1 s
—/ S(r+is)xdr —z
5 Jo

lim sup

§—00

1 t
—/ S(oc+i)xdo —z
t Jo

< lim inf
t—oo

1 t
Hence, lim H —/ S(r +iy)xdr — z || exists. O
t—oo t 0

Remark. In Lemma 3.1, take a net {i}};>o in R™ such that i} > i; for every ¢t > 0. Then,
we can get

t— oo

1 t
lim H Z/ S(r+iyzdr —z
0

1 t
= lim H ;/ S(r+iyzdr —z
0

for every z € F(S).

Theorem 3.2. Let C' be a nonempty compact convex subset of a strictly convex Banach
space and let S = {S(¢)|¢t > 0} be an asymptotically nonexpansive semigroup on C.

1t
Let x € C. Then, z/ S(t 4+ h)xzdr converges strongly to a common fixed point of S
0

1 t
uniformly in h > 0. In this case, if Qx = tlim ;/ S(r)x dr for every x € C, then @ is
— 00 0

a nonexpansive mapping from C onto F(S) such that QS(t) = S(t)Q = Q for every t > 0
and Qz € co{S(t)x |t > 0} for every z € C.

Proof. ;From Lemma 3.1, there exists a net {i;};>o in R such that

t
(6) lim H %/ S(r+i)rdr —z
0

t—oo

1t
exists for every z € F(S). Set &, = n / S(t+i¢)xdr. Asin the Remark of Corollary 2.9,

0
there exists a subnet {®;_ } of {®;} such that ®, converges strongly to a common fixed
point yo of S. So it follows from (6) that

lim |®; — yol| = lim ||, — yoll = 0.
t—o0 o

1 t

This implies that &, — yo. Next we prove that n / S(T 4 it + h)x dr converges strongly
0

to yo € F(S) uniformly in h > 0. Take a net {i}}¢>o in R" such that i} > i, for every ¢ > 0.

1 t
Then, from Remark of Lemma 3.1, we have n / S(r+iy)xdr — yo € F(S). Since {i}}i>0
0

1 t
is any net in Rt such that i} > i; for every ¢t > 0, it follows that z/ S(t + iy + h)xdr

0
converges strongly to yo uniformly in h > 0. Let € > 0. Then, there exists tg > 0 such that

1 t
H ;/ S(T 4+ i+ h)xdr — yo
0

for every t >ty and h > 0. So, we have

1 t
H —/ S(t+ h)zdr —yo
t Jo

AN W
= Hg/o(g/o S(T-{—h-{—a)mda)dr

<e
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—/ (s=m){S(r+h)z —S({t+7+h)z}dr —yo

< H/ /ST+h+a)mda—y0}d
—/ (s = DIS(r + h)z — S(t + 7 + Bz dr
= H/ /ST+h+U)de—y0}dT
/{ /ST+h+U)a:da—y0}d7'
/ (s =)||S(r+ h)x — S(t+ 7+ h)z|| dr
1
< —/ —/ S(t+h+o)rdo —yo H dr
t Jo 5 Jo
1 t—1ig 1 s ]
—|—¥ - S(T+zs+h+a)xda—yg H dr
/ (s =|IS(r+ h)x — S(t+ 7+ h)z|| dr
< ety R

t
for every s > tg, t > is and h > 0, Where R = diam C. Since ¢ > 0 is arbitrary, it
t

1
follows that z/ S(t + h)xzdr converges strongly to yo € F(S) uniformly in h > 0. If
0

1 t
Qr = tlim n / S(r)x dr for every z € C, then @) is a nonexpansive mapping from C onto
— 00

F(S). In fact, let {k(t) |t > 0} be Lipschitz constants of S. Then, we get

1/t 1 [t 1 [t
H —/ S(T)xdT——/ S(r)ydr || < ||:U—y||—/ k(r)dr,
tJo tJo tJo

which implies ||Qz — Qy|| < ||z —y]|| for every x,y € C. Moreover, we have QS(t) = S(t)Q =
Q for every t > 0 and Qz € co{S(t)xz |t > 0} for every z € C. O
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