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ABSTRACT.
Let A be a left symmetric algebra over a real Lie algebra . A symmetric bilinear
form ( , ) of A is called of Hessian type if the following equality holds:

(zy,2) + (y,22) = (yz,2) + (2,92) (2,y,2 € A).

H. Shima studied the structures of left symmetric algebras with a positive definite
symmetric bilinear form of Hessian type ([S]).
Denote by h the bilinear form defined by

h(:l:, y) =Tr R(a:y),

where R(z) denotes the right multiplication on A by an element x. h is a symmetric

bilinear form of Hessian type.

It is called the canonical 2-form on A. A left symmetric algebra A = ( e, h) over

with a right identity e and the non degenerate canonical 2-form h is called regular.
In this paper, we shall study the structures of a regular algebra over a real reductive

Lie algebra and related topics.

1 Preliminaries.
[A] Let be a real Lie algebra of dimension n with a binomial product -. The algebra
A=(,-)is called an algebra over if

[a,b] =ab—ba (a,be ).
For an algebra A over , denote by R a trilinear mapping A x A x A into A defined by
R(a,b,c) = a(be) — b(ac) — [a,b] ¢

and call it the curvature of A.

An algebra A over with vanishing curvature is called left symmetric.

For an algebra A over , a symmetric bilinear form h on A is called of Hessian type ([S])
if the following equality holds:

h(ab,c) + h(b,ac) = h(ba,c) + h(a,bc) (a,b,c € A).

An algebra (A4,h) over with a form h of Hessian type is called projectively flat if the
following equality holds:

R(a,b,c) = —h(b,c)a+ h(a,c)b (a,b,c € A).
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[B] Let E™ be a real affine space of dimension n and p = (¢, 7) a Lie homomorphism of
into the Lie algebra aff(E) of all infinitesimal affine transformations on E, where ¢(a)
(resp. w(a)) denotes the linear (resp. translation) part of p(a).

A Lie homomorphism p is called an admissible affine representation of in E if wis a
linear isomorphism of onto E.

Let A be a left symmetric algebra over . Denote by L(a) (resp. R(a)) the left (resp.
right) multiplication of A by an element a. Then the mapping L of into aff(4) defined
by

L(a) = (L(a),a)

is an admissible affine representation of in A, which is called the left affine representation
of a left symmetric algebra A over
We can prove the following (cf. [S]):

Lemma 1. Let p = (p,7) be an admissible affine representation of in E. Define a
binomial product in by the formula

ab=1""(p(a)m(b)) (a,b€ ).

Then the algebra A = ( , p) with the above multiplication is a left symmetric algebra over

[C] For an element a = (a;j,a;) of aff (E), denote by @ a vector field on E(zy,z2,...,Zy)
defined by

_ 0
a = —Z(aija:j + al)a_l‘l

For an affine representation p = (p,7) of in E, denote by F,(z) (resp. F,(z)) a
polynomial on E(z1,...,z,) defined by

Fy(@)wo = p(an) A plaz) A+ A plan)  (resp. Fplwlwn = p(a1) A paz) A+ A plan))

where {a;} is a base of and wy denotes the tensor field on E(x1,...,z,) defined by

wo= (2NN (2N a2
0= 0z Oza 0x, )
The polynomial F,(z) (resp. F,(x)) is uniquely determined by ( ,p) (resp. ( ,¢)) up to a

constant multiple.
Denote this polynomial by F, = |p( )| (resp. F, = |¢( )|) and call it the polynomial for

(,p) (resp. (,¢)).
Let A be a left symmetric algebra over , and (y1,y2,--.,yn) the affine coordinate

system of A with respect to a base {a;} of A. The polynomial F(y) = ‘i( )‘ for the left
affine representation ( ,E) of A is called the polynomial for A.

Lemma 2. Let p = (¢, m) be an affine representation of in E, and F, (resp. F,) the
polynomial for ( ,p) (resp. ( ,¢)). Then we have (a € )

LBy = X(@F, (resp. LF, = x(@)F, ),

v(a)
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where L+ denotes the Lie differentiation with respect to a vector field X and x(a) denotes
an infinitesimal character on  defined by

x(a) = Trada — Tr p(a).

In fact, on the one hand, we have

~—

Ly (p@) n---npla) = Ypla) A Ap(lasad) A Aplas

= (Trada)p(ai) A--- A plan).
On the other hand, we have

Ly (Fpwo) = (LyFp)wo + F(Tr p(a) )wo.

(@)

Hence we obtain the desired result. a

For a left symmetric algebra A over , we have
L(a) — R(a) =ada (a€ ).

Thus we have the following,.

Corollary. Let F = ‘[N/( )‘ be the polynomial for a left symmetric algebra A over
Then we have

LmF: —(TrR(a))F (a€ ).

Remark. Let A be a left symmetric algebra over and D the characteristic polynomial
of A ([H]).

Then D coincides with the polynomial ‘E( )‘ of an algebra A over , up to a constant
multiple.

In fact, let {a;} be a base of A. Then, for an element y = Zyiai of A, we have

L(ay)y = ary + ar = the k-th row of the matrix (R(y) + I),

where I denotes the unit matrix.
Therefore we have

= a 0 0
—L = the k-th f th i — e, — I).
(ar) = the k-th row of the matrix (6y1’ s ’3yn> (R(y) + 1)

Thus we have D(y) = ‘f,( )

, up to a constant multiple.
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[D] Let p = (¢, 7) be an admissible affine representation of in E. A point P of E is called
a fized point of ( ,p) if P satisfies the following:

pla)P = p(a)P +m(a) =0 (a€ ).
We can easily prove the following.

Lemma 3. Let A = (,p) be a left symmetric algebra over  corresponding to an
admissible affine representation p = (p,w) of in E. Then the following statements are
mutually equivalent:

(1) A has a right identity e,
(2) ( ,p) has a fized point P.

In fact, if A has a right identity e, then P = 7w(—e) is a fixed point of ( ,p), and
conversely.
O

Let = @  be areal reductive Lie algebra where (resp. ) denotes the center
(resp. the semi simple ideal) of

Lemma 4.  Let p be an admissible affine representation of a real reductive Lie algebra
= @ in E. Assume that deg(p| )=dim . Then there exists a fized point of ( ,p).

In fact, since 7 is a g-cocycle, that is,

p(a)m(b) — p(b)r(a) =7 ([a,b]) (a,b€ ),

there exists a point P of E ([J]) such that

Moreover, since  is the center of , for any element cin and sin , we have
o(s) (m(c) = p(c)P) = p(s)m(c) — p(c)m(s) =7 ([s,c]) = 0.
Since deg(¢| )=dim E, —P is a fixed point of ( , p). O

[E] Let p = (¢, 7) be an admissible affine representation of in E. Denote by A = ( ,p)
the left symmetric algebra over  corresponding to p, F, (resp. F,) the polynomial for
(,p) (resp. ( ,¢)). Denote by 2, a subset of E defined by

Q, ={z € E; F,(z) #0}.

Put
o={ae LmF=0}.
Then  is an ideal of containing [ , .
An algebra A is called complete if one of the following equivalent conditions holds ([K1],
[K2], [Se]):
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(2) Qp =FE,
(3) F, is a non zero constant.

In the sequel, we assume that # .
Under the assumption, there exists an element £ of such that = ,® R{{} (as a linear

space).
Denote by g a tensor field on 2, of type (0,2) defined by

82
gij = (M) log |F,|.

Lemma 5. Fora,be , we have

9 (5@, 20) = 7 (L o) -

p

Proof. For the sake of simplicity, put

oF 0?
g T O ’ (61‘161‘]> ol

Set

m = —Z(a”% +ai;)=— Z 3562
m = —Z(bux] + b;) Z 3562

Then, by Lemma 2, we have

a)F =Y A'F;, x(b)F=> B'F,.

Therefore we have

X(@)X(O)F = Logs(LoyF) = Loy F + Y BIA'F, ;.

Hence we obtain

— 1\ ini 1
1 (1@.50) = (§) SAB (FasF = FiF) = Lyt

Now, denote by ( , ) a symmetric bilinear form on  defined by

(@b =g (p@, )| _ (abe),

=

and call it the 2-form defined by F' = F,.
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Lemma 6. The symmetric bilinear form ( , ) on defined by F, is of Hessian type on

A=(,p).
Proof. Denote by 7’ an endomorphism of aff(E) defined by
' (p(a)) = (0,7(a)).
Then it is clear that
(1) @'(p(ab)) = 7' (p(a)p(b)),

2) L F| = L F

p(a)p(0)” |g = T (p(a)p(b)” |o”
Therefore we have, for a,b,c € ,
<ab) C> + <b7 ac> - <ba7 C> - <a7 bc>

= (¢, ab) + (b,ac) — (¢, ba) — (a, be)

- Lp(c

= (Lp(c)p(ab> + Lot o) Lp(a)p(bc)) F ‘0'

On the one hand, the m-component of
p(c)p(ab) + p(b)p(ac) — p(c)p(ba) — p(a)p(be)

is equal to
7 ([e, [a,0]]) -

On the other hand, it is clear that [c, [a,b]] € . Thus, by (2), we obtain the desired result.
O

A symmetric bilinear form h on A of Hessian type defined by
h(a,b) = Tr R(ab) (a,b € A)

is called the canonical 2-form on A.
Denote by ( , ) the 2-form on A defined by the polynomial F' = ‘E( )‘ for a left

symmetric algebra A. Then, by Lemma 2, Corollary and the above equalities (1) and (2),
(, ) is the canonical 2-form on A. A is called non degenerate if the canonical 2-form h of
A is non degenerate.

Lemma 7. Let B be an ideal of A. Then h|B is the canonical 2-form on B.

In fact, for b € B, we have Tr R(b) = Tr (R(b)|B). Therefore it is clear that
h(b,t") = Tr R(bb') = Tr (R(bb)|B) .

We can easily prove the following.

Lemma 8. Let B be an ideal of A, and h a symmetric bilinear form on A of Hessian
type. Then the orthogonal complement B of B with respect to h is a subalgebra of A.
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[F] Let A be a left symmetric algebra over a Lie algebra . A is called regular if
(1) A is non degenerate,

(2) A has a right identity.

Lemma 9. Let A= ( ,e,h) be a regular algebra over a real Lie algebra  with a right
identity e and the non degenerate canonical 2-form h, and B an ideal of A. If B is regular,
then there exists a reqular subalgebra B of A such that

(1) A= B® B, semidirect with BB =0,
(2) B L B with respect to h,
(8) L(c)|B (c € B) is a derivation of the algebra B.

Proof. Put B = B*. Then B is a subalgebra of A, by Lemma 8. Denote by h; the
canonical 2-form on B. Then, since hy = h|B by Lemma 7 and h, is non degenerate by the
assumption, we have BN B = {0}. Therefore A = B @ B, semi direct sum.

Next denote by e; a right identity of B. Then b(e —e1) =0 (b € B). Thus es = e — ¢
is an element of B. Moreover, for ¢ € B, we have

ces = ce—cep =c—cey.
Therefore e, is a right idgltity of B and Be; = 0.
For b,b" € B and ¢ € B, by the following equalities:
(be)er — b(cey) = (cb)ey — c(ber), Bey =0, c(bb') = (cb)b' + b(ch'),
we obtain
(1) bc=0,i.e. BB=0 and
(2) L(c)|B (c € B) is a derivation of the algebra B.

Moreover (1) implies that B L B and h|B coincides with the non degenerate canonical
2-form hy of B. Thus B is a regular subalgebra of A. a

Let B (resp. B) be a left symmetric algebra over (resp. ) and
D: — DerB

a Lie homomorphism of B into the derivation algebra Der B of an algebra B. The semi
direct sum B®p B of B by B that is determined by D is, by definition, an algebra over the
direct sum B & B of two vector spaces with the following multiplication:

(b,c)(b',c") = (bb' + D(c)', cc').

It is clear that B ®p B is a left symmetric algebra over a Lie algebra @p ~ of the semi

direct sum of by that is determined by D. Thus we can construct a semi direct sum
B ®p B with BB = 0.
The following lemma can be easily proved.

Lemma 10. Let B&p B be the semi direct sum of B by B that is determined by D. If
both B = ( ,e1,h1) and B = ( ,ez, hy) are reqular, then B ©p B is reqular with a right
identity e = ey + ey and the non degenerate canonical 2-form h = hy + hs.
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2 Let = @ be areal reductive Lie algebra of dimension n where (resp. )
denotes the center (resp. semi simple ideal) of with  # {0}, p = (¢, 7) an admissible
affine representation of in a real affine space E™ of dimension 7.

First we shall prove the following proposition.

Proposition 1.  Let p be an admissible affine representation of a real reductive Lie algebra
= @& with # {0} in E™, and A a left symmetric algebra over  corresponding to
p = (p,7). Assume that
m =deg(p] ) <n=dim

Then there exist an ideal B of A of dimension m whose underlying Lie algebra  contains
and a commutative subalgebra B of A satisfying the following conditions:

(1) A= B® B, semi direct sum with BB =0,
(2) B has a right identity.

Proof. By the assumption, there exist ¢( )-invariant subspaces E; and E» such that
dmE, =m, dimE;=n—-m, ¢( )|E2=0, E=E ®E,.

Put = Y(E), =7 (E).
With respect to the decomposition E = E; @ Ea2, ¢(s) (s € ) can be expressed as follows:

S11 0
=% 0]
Since [p( ),p( )] =p( ), we have

This implies that  is contained in
Moreover, by a direct computation, p can be expressed as follows:

| bir 0 b3 e O 0 -
pr=| " 0 e wa=| ) 0] e
Therefore we obtain
(1) p' = p| is an admissible affine representation of a Lie algebra in Ej, and the

algebra B corresponding to p' is an ideal of A,

(2) p'= p|_ is an admissible affine representation of a commutative Lie algebra in B,
and the algebra B corresponding to p” is a commutative subalgebra of A,

(3) BB =0.
Moreover, by Lemma, 3, 4, B has a right identity. This completes the proof. a

Corollary. If A is non degenerate, then A, B and B are regular.

Proof. Since A= B @ B, semi direct with BB = 0, we have
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(1) B L B with respect to h, and
(2) both h|B and h|B are non degenerate.

Since B has a right identity e; and the canonical 2-form h; is non degenerate, by the
above condition (2) and Lemma 7, (B,e1,h;) is regular. Moreover, since BB = 0, the
canonical 2-form hy of B coincides with h|B. Thus, by (2), B is a commutative, semi
simple associative algebra i.e. (B,es,hs) is a regular algebra with an identity e;. Hence,
by Lemma 10, A is also regular. a

Let p be an admissible affine representation of a real reductive Lie algebra = &
with  # {0} in E", and A a left symmetric algebra over corresponding to p = (¢, 7).
Assume that

deg(p| )=dim . (%)

Proposition 2. Under the assumption (), let B be a non commutative minimal ideal
of A, then there exists a subalgebra B of A such that

(1) A= B® B, semi direct sum with BB = 0,
(2) B (resp. B) has a right identity.

Proof. Denote by the underlying Lie algebra of B. Then, since is non commutative,
1= N isanideal (# {0}) of . Put Ey =x( ). Since E; is ¢( )-invariant, there
exists a ¢( )-invariant subspace Ey, complementary to Ej.
First we shall show that deg(p( 1)|E1) = dim E;.
In fact, let Ey5 be a maximal p( 1)-invariant subspace of E; satisfying ¢( 1)|E12 = 0.
Denote by E11 a ¢( 1)-invariant subspace of E;, complementary to E;5. With respect to
the decomposition E1; @ E12 ® Es, p(s) (s € 1) can be expressed as follows:

0 0
p(s) =] 0 0 0
0 0

Set p(z) = (wij)1<i<s,1<j<a (x € ). Then, since Bisanideal of Aand [p( 1),p( )] C
p( 1), p can be expressed as follows:

si1 0 0 s14
p(sy= 0 0 0 O (se 1),
0O 0 0 O

bir 0 0 b
p(b) = 0 bas  bas 0 (b € 7T_1(E'11)),
0 0 0 0

M, 0 0 0
p(b') = 0 by, byy Dby (b € m71(E1)),
0 0 0 0

C11 0 0 0
p(c) = 0 Coo  C23 0 (C S 7T_1(E2)).
0 32 c33 c34
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Moreover, by comparing the 4-th row of [p(b), p(c)] (resp. [p(b), p(b)]), we get
b22, b23 = 0 (b S ’/T_l(Ell)).

Thus 7! (E11) has a structure of a non commutative ideal of A. But this is a contradiction.
Hence we get
deg(p( 1)|Er) = dim E;.

Now, with respect to the decomposition E; @& E», p can be expressed as follows:

biir 0 b3

pr=| " 0 e e =] )

s 023] (ce =n"'(E)).

Similarly as in the proof of Proposition 1, we have the following;:
(1) ~is a Lie subalgebra of |

(2) p'" = p|E2 is an admissible affine representation of " in E», and the algebra B
corresponding to p is a subalgebra of A,

(3) A= B® B, semi direct sum with BB =0,
(4) B (resp. B) has a right identity.

This completes the proof. a
We can easily prove the following.

Corollary. If A is non degenerate, then A, B and B are reqular and B L B with respect
to h.

Proposition 3.  Let p be an admissible affine representation of a real reductive Lie algebra
= @& with # {0} in E™ satisfying the condition (x), and A the corresponding algebra
over . Let B be a minimal ideal of A.
Assume that (A, e, h) is reqular and indecomposable. Then B is non commutative.

Proof. Assume that B is commutative. Denote by the underlying Lie algebra of B and
by IV the radical of B. Then there exists a commutative associative semi simple subalgebra
S of B such that B = N & S, semi direct sum.

We shall investigate the following three cases separately.
(1) B =S. In this case, by Lemma 9, the subalgebra B+ with respect to h satisfies the
following conditions:

(1) A= B B, semi direct sum with BB+ =0,
(2) L(c)|B (c € BY) is a derivation of B.

Since B is a commutative semi simple algebra, Der B = {0}. Therefore, by the above
condition (2), we have B+ B = 0. But this contradicts to the assumption.

(2) B = N. In this case, for any element = of A, we have h(z, B) = Tr R(xB) = 0. Thus
we have

hz,B) =0 (z€A).

This contradicts to the assumption that A is non degenerate.
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(3) N # {0} and S # {0}. Since S is a commutative semi simple algebra, S is expressed
as S =@ S;, where S; (1 <i <r)isa commutative simple ideal of S with the identity e;.
Put B; = Be; (i =1,2,...,r). Since the underlying Lie algebra of B is contained in the
center , we have [L(b),L(x)] =0 (b€ ,z € ). Therefore it is clear that B; is an ideal
of A. Since B is a minimal ideal of A, S has to be simple.

Now, since is contained in the center of , the restriction L(s)|B to B of L(s) (s € )
induces a Lie homomorphism L|B of a semi simple Lie algebra  into a Lie algebra [B]
consisting of all linear endomorphisms X of B satisfying [X, L(b)] =0 (b € B).

By the Lemma below, [B] is a solvable Lie subalgebra of (B). Thus we have L|B = 0.
But this contradicts to the assumption (x).

This completes the proof of Proposition 3. a

Lemma. Let B= N &S be a commutative associative algebra over the real with a unit
element e, where N (resp. S) denotes the radical (resp. a simple subalgebra) of B. Then
the Lie algebra [B] defined above is solvable.

Proof of Lemma.

(a) S = R{e}. In this case, since N is nilpotent, there exists a base {z1,x2,...,Zm} of N
such that, with respect to the base {x1,za,...,2m,e} of B, L(x;) is expressed as a matrix
of the following form:

Let X = (2ij)1<i,j<m+1 be an element of [B]. By a direct computation, we have
Tl =22 =+ = Tengim+1, Lij =0 (0> 7).

Therefore the Lie algebra [B] is solvable.

(b) S = R{e, f} with f2 = —e. Denote by L(x)|N the restriction to N of the left (= right)
multiplication of B by an element, 2. Then we have (L(f)|N)? = —id.

Therefore dim N is even. Moreover, since N is nilpotent, there exists a base {zi, yi};cicm
of N such that, with respect to the base {z1,y1,...,%Tm,Ym, f,e} of B, L(x;) and L(y;) are
expressed as matrices of the following form:

0 0
* *
L(ml)_ 0 ’ L(yl)_ 0
0 0 J |ith 0 0 E |ith

0 1 1 0
WhereJ—[_1 O]andE_[O 1].

Let X = (2ij)1<i,j<m+1 be an element of [B], where z;; € (2, R).
By a direct computation, we have

T =T = =Tmpimyl =B+ 3] (o, BER), x5 =0 (i>}]).
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Therefore the Lie algebra [B] is solvable. This completes the proof of Lemma. ad
By Propositions 1, 2 and 3, we obtain the following theorem.

Theorem 1. Let A = ( ,e,h) be a regular algebra over a real reductive Lie algebra
= @& , and B a minimal ideal of A. Then,

(1) B is regular,

(2) there exists a reqular subalgebra B of A such that A = B® B, semi direct with BB = 0
and B | B with respect to the canonical 2-form h of A.

Proof. Let A be a left symmetric algebraover = @&  corresponding to an admissible
affine representation p = (p,7) in E.
1. Assume that = {0}. Then A is a commutative associative semi simple algebra, and

there is nothing to prove.
2. Assume next that  # {0}. Then, by Propositions 1, 2, 3 and Corollaries, we obtain
the theorem. a

Let B; = ( i,ei,h;) (i =1,2) be a regular algebra over a real reductive Lie algebra ;.

Denote by D a Lie homomorphism of » into the derivation algebra Der ; of 1, and by

= 1®p o the semi direct sum of ; by 5 that is determined by D. Then is reductive
if and only if there exists a Lie homomorphism ¢ of 5 into ; such that

D(c)=adp(c) (c€ 2).
Moreover D(c) = ad ¢(c) is a derivation of Bj is equivalent to
L(b)R(¢(c)) = R(p(c))L(b) (b€ By).

Therefore, by Lemma 10, we obtain the following theorem.

Theorem 2. Let B; = ( i,e5,h;) (i =1,2) be a regular algebra over a real reductive Lie
algebra ;, and ¢ a Lie homomorphism of o into 1 satisfying the following condition:

[L(b), R(p(c)] =0 (be 1,c€ ),

where D(c) = ad p(c). Then the semi direct sum A = By ®p Bs is a regular algebra over a
real reductive Lie algebra = 1 ®p o with a right identity e = e; + es and the canonical
2-form h = hy + ho.

3 In this section, we shall give a remark and some examples.
First, let A be a left symmetric algebra over a real Lie algebra . Assume that A has a
right identity e. Denote by |, the linear subspace of defined by

o=1a€ ;TrR(a)=0}.

Then we have the following direct sum decomposition as a linear space: = ,® R{e}.
Put, for a,b €
ab=axb+ ho(a,b)e,

where a * b denotes the -component of ab. Then, by a direct computation, we have
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(1) Ao =( ¢,*) is an algebra over | satisfying
(1) Ro(a,b,¢) = —ho(b,c)a + ho(a, c)b,
where Ry denotes the curvature of Ay,

(2) ho is a symmetric bilinear form on Ay of Hessian type satisfying
1
ho(a,b) = Eh(a,b) (a,b € Ap),

where h denotes the canonical 2-form on A,

(3) D = ade is a derivation of the Lie algebra | satisfying

(2) ho(a, D(b)) + ho(D(a),b) = 0,
(3) D(a xb) = D(a) *b+ a* D(b).

Conversely let Ag = ( ,,%) be an algebra over a real Lie algebra [ with a symmetric
bilinear form hg of Hessian type and a derivation D of | satisfying the above conditions
(1), (2) and (3). Then we enlarge  as follows:

= ,® R{e} with [e,a] = D(a) (a € ).
Moreover we define a multiplication in by
ab=axb+ ho(a,b)e, ae=a, ea=a+D(a), ee=e (a,be ).

We can easily show that A = ( ,-) is a left symmetric algebra over  with a right identity
e. Thus we obtain the following theorem.

Theorem 3. Let A = ( ,-) be a left symmetric algebra over  with a right identity e.
Then there exist an ideal o of of codimension 1, a structure of an algebra Ag = ( ,%)
over , a symmetric bilinear form ho on Ay of Hessian type, and a derivation D of |
satisfying the following conditions:

(1) an algebra Aq is projectively flat with respect to hg,
(2) ho(D(a),b) + ho(a, D(b)) =0,
(8) D(axb)=D(a)*b+axD(b).

Conversely, if an algebra Ao = ( ,*) over a Lie algebra , with o symmetric bilinear
form ho of Hessian type and a derivation D of  satisfying the above conditions (1), (2)
and (3), then we can construct a structure of a left symmetric algebra A = ( ,-) over an
enlarged Lie algebra

= D R{e} with [e,z] = D(z) (x € ,)
having a right identity e.

This is a slight modification of a theorem about a left symmetric algebra with identity
(IN.P], [M,2]).
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Let A =( ,-) be a left symmetric algebra over  with a right identity e. Suppose that
has a non trivial center, that is, there exists an element ag of such that e + ag is in the
center of . We define a multiplication in = & R{e} by

ab=axb+ ho(a,b)e;, ae;=a, ea=a+ (1—t)D(a), ee;=ey,

where e, = e+tap (t € R) and a,b € .
Then A; = ( ,-) is a left symmetric algebra over with a right identity e;, for any ¢. For
t =1, Ay is a left symmetric algebra over  with an identity e;.

We shall give two examples.

Example 1. Let A; be a left symmetric algebra over (2, R) whose multiplication table

is as follows:
{a,b,c,e} isabaseof (2,R) and ¢ € R.

A | a b c e

a | e—tc b —c a —tc

b —b 0 +(e+a—tc) L(te+ta+2b—t%c)
¢ ¢ +(e—a—to) 0 ¢

e | a—tc S(te+ta+2b—t%) ¢ e+tc

Then e; = e — tc is a right identity of A;. Moreover, ey = e is an identity of Ag.
For non zero s, t, we have an algebraic isomorphism ¢ of A, onto A; defined by

t
ole)=e, o(a)=a, o(b)= ;b and o(c) = —e.
s
Example 2. Let A(s ) be a left symmetric algebra whose multiplication table is as
follows:
{e,a,b} is a base and (s,t) € R%.
A(s,t) | (& a b
e e+s(s+Da+2t(s+1)b (1+s)a+2tb b
a (1+s)a+ 2th a b
b b 0 0

By a direct computation, it is easily proved that
(1) e—sa—2tbis aright identity of A,
(2) e — sa — 2tbis an identity if and only if (s,t) = (0,0),

(3) if s # s', then there does not exist an algebraic isomorphism of A, ;) onto Ay 4.

Next we shall give examples of left symmetric algebras over a real reductive Lie algebra.

Example 3. Denote by D the adjoint representation of (2, R). Then we can construct
the semi direct sum A = (2, R)®p (2, R) of the associative algebra (2, R) by the same
associative algebra (2, R) that is determined by D.

A has an identity and the canonical 2-form h on A is non degenerate.

Example 4. Let be a Lie subalgebra of (6, R) generated by {a® E3;a € (2,R)}
and the set C' of matrices of degree 6 defined below:



LEFT SYMMETRIC ALGEBRAS OVER A REAL REDUCTIVE LIE ALGEBRA 729

[ B, 0 0

(1) C= 0 ) E2 ) 0 )
I 0 0 E
[ E;, 0 0 0 E, O 0 0 O

@ C= B 0|, 0 0|, 0 0 |,
I 0 0 B
"B, 0 0 0 B 0 00 B

(3) C= Ey, 0 |, 0 E» |, 0 0
I B 0 0

The polynomial | | is expressed as follows:
(1) (z126 — T2x5)(T223 — T124)(TaT5 — T3T6),
(2) (2174 — T273)(T376 — T4T5)2,
(3) (w3me — T4ws)3.
By a direct computation, we have the following.
(1) The algebra corresponding to (1) is simple with non degenerate canonical 2-form,

(2) The algebra corresponding to (2) is simple with degenerate canonical 2-form and
trivial radical,

(3) The algebra corresponding to (3) is simple with degenerate canonical 2-form and non
trivial radical.
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