LEFT SYMMETRIC ALGEBRAS OVER A REAL REDUCTIVE LIE ALGEBRA

Akira Mizuhara

Received November 27, 2000

Abstract.
Let A be a left symmetric algebra over a real Lie algebra . A symmetric bilinear form \langle,$\rangle of A$ is called of Hessian type if the following equality holds:

$$
\langle x y, z\rangle+\langle y, x z\rangle=\langle y x, z\rangle+\langle x, y z\rangle \quad(x, y, z \in A)
$$

H. Shima studied the structures of left symmetric algebras with a positive definite symmetric bilinear form of Hessian type ([S]).

Denote by h the bilinear form defined by

$$
h(x, y)=\operatorname{Tr} R(x y),
$$

where $R(x)$ denotes the right multiplication on A by an element x. h is a symmetric bilinear form of Hessian type.
It is called the canonical 2-form on A. A left symmetric algebra $A=(, e, h)$ over with a right identity e and the non degenerate canonical 2-form h is called regular.

In this paper, we shall study the structures of a regular algebra over a real reductive Lie algebra and related topics.

1 Preliminaries.

[A] Let be a real Lie algebra of dimension n with a binomial product \cdot. The algebra $A=(, \cdot)$ is called an algebra over if

$$
[a, b]=a b-b a \quad(a, b \in)
$$

For an algebra A over , denote by R a trilinear mapping $A \times A \times A$ into A defined by

$$
R(a, b, c)=a(b c)-b(a c)-[a, b] c
$$

and call it the curvature of A.
An algebra A over with vanishing curvature is called left symmetric.
For an algebra A over , a symmetric bilinear form h on A is called of Hessian type ([S]) if the following equality holds:

$$
h(a b, c)+h(b, a c)=h(b a, c)+h(a, b c) \quad(a, b, c \in A)
$$

An algebra (A, h) over with a form h of Hessian type is called projectively flat if the following equality holds:

$$
R(a, b, c)=-h(b, c) a+h(a, c) b \quad(a, b, c \in A)
$$

[^0][B] Let E^{n} be a real affine space of dimension n and $\rho=(\varphi, \pi)$ a Lie homomorphism of into the Lie algebra $\operatorname{aff}(E)$ of all infinitesimal affine transformations on E, where $\varphi(a)$ (resp. $\pi(a)$) denotes the linear (resp. translation) part of $\rho(a)$.

A Lie homomorphism ρ is called an admissible affine representation of in E if π is a linear isomorphism of onto E.

Let A be a left symmetric algebra over . Denote by $L(a)$ (resp. $R(a)$) the left (resp. right) multiplication of A by an element a. Then the mapping \tilde{L} of into aff (A) defined by

$$
\tilde{L}(a)=(L(a), a)
$$

is an admissible affine representation of in A, which is called the left affine representation of a left symmetric algebra A over .

We can prove the following (cf. [S]):

Lemma 1. Let $\rho=(\varphi, \pi)$ be an admissible affine representation of in E. Define a binomial product in by the formula

$$
a b=\pi^{-1}(\varphi(a) \pi(b)) \quad(a, b \in)
$$

Then the algebra $A=(, \rho)$ with the above multiplication is a left symmetric algebra over
[C] For an element $a=\left(a_{i j}, a_{i}\right)$ of $\operatorname{aff}(E)$, denote by \bar{a} a vector field on $E\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ defined by

$$
\bar{a}=-\sum\left(a_{i j} x_{j}+a_{i}\right) \frac{\partial}{\partial x_{i}}
$$

For an affine representation $\rho=(\varphi, \pi)$ of \quad in E, denote by $F_{\rho}(x)\left(\operatorname{resp} . F_{\varphi}(x)\right)$ a polynomial on $E\left(x_{1}, \ldots, x_{n}\right)$ defined by

$$
F_{\rho}(x) \omega_{0}=\overline{\rho\left(a_{1}\right)} \wedge \overline{\rho\left(a_{2}\right)} \wedge \cdots \wedge \overline{\rho\left(a_{n}\right)} \quad\left(\operatorname{resp} . F_{\varphi}(x) \omega_{0}=\overline{\varphi\left(a_{1}\right)} \wedge \overline{\varphi\left(a_{2}\right)} \wedge \cdots \wedge \overline{\varphi\left(a_{n}\right)}\right)
$$

where $\left\{a_{i}\right\}$ is a base of and ω_{0} denotes the tensor field on $E\left(x_{1}, \ldots, x_{n}\right)$ defined by

$$
\omega_{0}=\left(\frac{\partial}{\partial x_{1}}\right) \wedge\left(\frac{\partial}{\partial x_{2}}\right) \wedge \cdots \wedge\left(\frac{\partial}{\partial x_{n}}\right)
$$

The polynomial $F_{\rho}(x)\left(\right.$ resp. $\left.F_{\varphi}(x)\right)$ is uniquely determined by $(, \rho)(\operatorname{resp} .(, \varphi))$ up to a constant multiple.
Denote this polynomial by $F_{\rho}=|\rho()|\left(\right.$ resp. $\left.F_{\varphi}=|\varphi()|\right)$ and call it the polynomial for $(, \rho)(r e s p .(, \varphi))$.

Let A be a left symmetric algebra over , and $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ the affine coordinate system of A with respect to a base $\left\{a_{i}\right\}$ of A. The polynomial $F(y)=|\tilde{L}()|$ for the left affine representation $(, \tilde{L})$ of A is called the polynomial for A.

Lemma 2. Let $\rho=(\varphi, \pi)$ be an affine representation of in E, and F_{ρ} (resp. F_{φ}) the polynomial for $(, \rho)$ (resp. $(, \varphi)$). Then we have $(a \in)$

$$
L_{\overline{\rho(a)}} F_{\rho}=\chi(a) F_{\rho} \quad\left(\operatorname{resp} . L_{\overline{\varphi(a)}} F_{\varphi}=\chi(a) F_{\varphi}\right)
$$

where $L_{\bar{X}}$ denotes the Lie differentiation with respect to a vector field \bar{X} and $\chi(a)$ denotes an infinitesimal character on defined by

$$
\chi(a)=\operatorname{Tr} \operatorname{ad} a-\operatorname{Tr} \rho(a)
$$

In fact, on the one hand, we have

$$
\begin{aligned}
L_{\overline{\rho(a)}}\left(\overline{\rho\left(a_{1}\right)} \wedge \cdots \wedge \overline{\rho\left(a_{n}\right)}\right) & =\sum \overline{\rho\left(a_{1}\right)} \wedge \cdots \wedge \overline{\rho\left(\left[a, a_{i}\right]\right)} \wedge \cdots \wedge \overline{\rho\left(a_{n}\right)} \\
& =(\operatorname{Tr} \operatorname{ad} a) \overline{\rho\left(a_{1}\right)} \wedge \cdots \wedge \overline{\rho\left(a_{n}\right)}
\end{aligned}
$$

On the other hand, we have

$$
L_{\overline{\rho(a)}}\left(F_{\rho} \omega_{0}\right)=\left(L_{\overline{\rho(a)}} F_{\rho}\right) \omega_{0}+F_{\rho}(\operatorname{Tr} \rho(a)) \omega_{0}
$$

Hence we obtain the desired result.

For a left symmetric algebra A over , we have

$$
L(a)-R(a)=\operatorname{ad} a \quad(a \in)
$$

Thus we have the following.
Corollary. Let $F=|\tilde{L}()|$ be the polynomial for a left symmetric algebra A over. Then we have

$$
L_{\overline{\tilde{L}(a)}} F=-(\operatorname{Tr} R(a)) F \quad(a \in) .
$$

Remark. Let A be a left symmetric algebra over and D the characteristic polynomial of $A([\mathrm{H}])$.
Then D coincides with the polynomial $|\tilde{L}()|$ of an algebra A over , up to a constant multiple.

In fact, let $\left\{a_{i}\right\}$ be a base of A. Then, for an element $y=\sum y_{i} a_{i}$ of A, we have

$$
\tilde{L}\left(a_{k}\right) y=a_{k} y+a_{k}=\text { the } k \text {-th row of the matrix }(R(y)+I)
$$

where I denotes the unit matrix.
Therefore we have

$$
-\overline{\tilde{L}\left(a_{k}\right)}=\text { the } k \text {-th row of the matrix }\left(\frac{\partial}{\partial y_{1}}, \frac{\partial}{\partial y_{2}}, \ldots, \frac{\partial}{\partial y_{n}}\right)(R(y)+I)
$$

Thus we have $D(y)=|\tilde{L}()|$, up to a constant multiple.
[D] Let $\rho=(\varphi, \pi)$ be an admissible affine representation of in E. A point P of E is called a fixed point of $(, \rho)$ if P satisfies the following:

$$
\rho(a) P=\rho(a) P+\pi(a)=0 \quad(a \in)
$$

We can easily prove the following.
Lemma 3. Let $A=(, \rho)$ be a left symmetric algebra over corresponding to an admissible affine representation $\rho=(\varphi, \pi)$ of in E. Then the following statements are mutually equivalent:
(1) A has a right identity e,
(2) $(, \rho)$ has a fixed point P.

In fact, if A has a right identity e, then $P=\pi(-e)$ is a fixed point of $(, \rho)$, and conversely.

Let $=\oplus$ be a real reductive Lie algebra where (resp.) denotes the center (resp. the semi simple ideal) of .

Lemma 4. Let ρ be an admissible affine representation of a real reductive Lie algebra $=\oplus \quad$ in E. Assume that $\operatorname{deg}(\varphi \mid)=\operatorname{dim}$. Then there exists a fixed point of $(, \rho)$.

In fact, since π is a φ-cocycle, that is,

$$
\varphi(a) \pi(b)-\varphi(b) \pi(a)=\pi([a, b]) \quad(a, b \in \quad)
$$

there exists a point P of $E([\mathrm{~J}])$ such that

$$
\pi(s)=\varphi(s) P \quad(s \in \quad)
$$

Moreover, since is the center of, for any element c in and s in, we have

$$
\varphi(s)(\pi(c)-\varphi(c) P)=\varphi(s) \pi(c)-\varphi(c) \pi(s)=\pi([s, c])=0
$$

Since $\operatorname{deg}(\varphi \mid)=\operatorname{dim} E,-P$ is a fixed point of $(, \rho)$.
[E] Let $\rho=(\varphi, \pi)$ be an admissible affine representation of in E. Denote by $A=(, \rho)$ the left symmetric algebra over corresponding to ρ, F_{ρ} (resp. F_{φ}) the polynomial for $(, \rho)($ resp. $(, \varphi))$. Denote by Ω_{ρ} a subset of E defined by

$$
\Omega_{\rho}=\left\{x \in E ; F_{\rho}(x) \neq 0\right\}
$$

Put

$$
{ }_{0}=\{a \in \quad ; L \overline{\rho(a)} F=0\} .
$$

Then ${ }_{0}$ is an ideal of containing [,].
An algebra A is called complete if one of the following equivalent conditions holds ([K1], [K2], [Se]):
(2) $\Omega_{\rho}=E$,
(3) F_{ρ} is a non zero constant.

In the sequel, we assume that $\neq 0$.
Under the assumption, there exists an element ξ of such that $={ }_{0} \oplus R\{\xi\}$ (as a linear space).

Denote by g a tensor field on Ω_{ρ} of type $(0,2)$ defined by

$$
g_{i j}=\left(\frac{\partial^{2}}{\partial x_{i} \partial x_{j}}\right) \log \left|F_{\rho}\right|
$$

Lemma 5. For $a, b \in$, we have

$$
g(\overline{\rho(a)}, \overline{\rho(b)})=\frac{1}{F_{\rho}}\left(L \overline{\rho(a) \rho(b)} F_{\rho}\right)
$$

Proof. For the sake of simplicity, put

$$
F_{\rho}=F, \quad \frac{\partial F}{\partial x_{i}}=F_{, i}, \quad\left(\frac{\partial^{2}}{\partial x_{i} \partial x_{j}}\right) F=F_{, i, j}
$$

Set

$$
\begin{aligned}
& \overline{\rho(a)}=-\sum\left(a_{i j} x_{j}+a_{i}\right) \frac{\partial}{\partial x_{i}}=\sum A^{i} \frac{\partial}{\partial x_{i}} \\
& \overline{\rho(b)}=-\sum\left(b_{i j} x_{j}+b_{i}\right) \frac{\partial}{\partial x_{i}}=\sum B^{i} \frac{\partial}{\partial x_{i}}
\end{aligned}
$$

Then, by Lemma 2, we have

$$
\chi(a) F=\sum A^{i} F_{, i}, \quad \chi(b) F=\sum B^{i} F_{, i}
$$

Therefore we have

$$
\chi(a) \chi(b) F=L_{\overline{\rho(b)}}\left(L_{\overline{\rho(a)}} F\right)=-L_{\overline{\rho(a) \rho(b)}} F+\sum B^{j} A^{i} F_{, i, j} .
$$

Hence we obtain

$$
g(\overline{\rho(a)}, \overline{\rho(b)})=\left(\frac{1}{F}\right)^{2} \sum A^{i} B^{j}\left(F_{, i, j} F-F_{, i} F_{, j}\right)=\frac{1}{F} L \overline{\rho(a) \rho(b)} F
$$

Now, denote by \langle,$\rangle a symmetric bilinear form on defined by$

$$
\langle a, b\rangle=\left.g(\overline{\rho(a)}, \overline{\rho(b)})\right|_{x=0} \quad(a, b \in)
$$

and call it the 2-form defined by $F=F_{\rho}$.

Lemma 6. The symmetric bilinear form \langle,$\rangle on defined by F_{\rho}$ is of Hessian type on $A=(, \rho)$.

Proof. Denote by π^{\prime} an endomorphism of aff (E) defined by

$$
\pi^{\prime}(\rho(a))=(0, \pi(a))
$$

Then it is clear that
(1) $\pi^{\prime}(\rho(a b))=\pi^{\prime}(\rho(a) \rho(b))$,
(2) $\left.L \overline{\rho(a) \rho(b)} F\right|_{0}=\left.L \overline{\pi^{\prime}(\rho(a) \rho(b))} F\right|_{0}$.

Therefore we have, for $a, b, c \in$,

$$
\begin{aligned}
& \langle a b, c\rangle+\langle b, a c\rangle-\langle b a, c\rangle-\langle a, b c\rangle \\
& \quad=\langle c, a b\rangle+\langle b, a c\rangle-\langle c, b a\rangle-\langle a, b c\rangle \\
& \quad=\left.\left(L_{\overline{\rho(c) \rho(a b)}}+L \overline{\rho(b) \rho(a c)}-L \frac{}{\rho(c) \rho(b a)}-L_{\overline{\rho(a) \rho(b c)}}\right) F\right|_{0} .
\end{aligned}
$$

On the one hand, the π-component of

$$
\rho(c) \rho(a b)+\rho(b) \rho(a c)-\rho(c) \rho(b a)-\rho(a) \rho(b c)
$$

is equal to

$$
\pi([c,[a, b]]) .
$$

On the other hand, it is clear that $[c,[a, b]] \in{ }_{0}$. Thus, by (2), we obtain the desired result.

A symmetric bilinear form h on A of Hessian type defined by

$$
h(a, b)=\operatorname{Tr} R(a b) \quad(a, b \in A)
$$

is called the canonical 2-form on A.
Denote by \langle,$\rangle the 2$-form on A defined by the polynomial $F=|\tilde{L}()|$ for a left symmetric algebra A. Then, by Lemma 2, Corollary and the above equalities (1) and (2), \langle,$\rangle is the canonical 2-form on A . A$ is called non degenerate if the canonical 2-form h of A is non degenerate.

Lemma 7. Let B be an ideal of A. Then $h \mid B$ is the canonical 2-form on B.
In fact, for $b \in B$, we have $\operatorname{Tr} R(b)=\operatorname{Tr}(R(b) \mid B)$. Therefore it is clear that

$$
h\left(b, b^{\prime}\right)=\operatorname{Tr} R\left(b b^{\prime}\right)=\operatorname{Tr}\left(R\left(b b^{\prime}\right) \mid B\right)
$$

We can easily prove the following.
Lemma 8. Let B be an ideal of A, and h a symmetric bilinear form on A of Hessian type. Then the orthogonal complement B^{\perp} of B with respect to h is a subalgebra of A.
[F] Let A be a left symmetric algebra over a Lie algebra . A is called regular if
(1) A is non degenerate,
(2) A has a right identity.

Lemma 9. Let $A=(, e, h)$ be a regular algebra over a real Lie algebra with a right identity e and the non degenerate canonical 2-form h, and B an ideal of A. If B is regular, then there exists a regular subalgebra \bar{B} of A such that
(1) $A=B \oplus \bar{B}$, semidirect with $B \bar{B}=0$,
(2) $B \perp \bar{B}$ with respect to h,
(3) $L(c) \mid B(c \in B)$ is a derivation of the algebra B.

Proof. Put $\bar{B}=B^{\perp}$. Then \bar{B} is a subalgebra of A, by Lemma 8. Denote by h_{1} the canonical 2-form on B. Then, since $h_{1}=h \mid B$ by Lemma 7 and h_{1} is non degenerate by the assumption, we have $B \cap \bar{B}=\{0\}$. Therefore $A=B \oplus \bar{B}$, semi direct sum.

Next denote by e_{1} a right identity of B. Then $b\left(e-e_{1}\right)=0(b \in B)$. Thus $e_{2}=e-e_{1}$ is an element of \bar{B}. Moreover, for $c \in \bar{B}$, we have

$$
c e_{2}=c e-c e_{1}=c-c e_{1}
$$

Therefore e_{2} is a right identity of \bar{B} and $\bar{B} e_{1}=0$.
For $b, b^{\prime} \in B$ and $c \in \bar{B}$, by the following equalities:

$$
(b c) e_{1}-b\left(c e_{1}\right)=(c b) e_{1}-c\left(b e_{1}\right), \quad \bar{B} e_{1}=0, \quad c\left(b b^{\prime}\right)=(c b) b^{\prime}+b\left(c b^{\prime}\right)
$$

we obtain
(1) $b c=0$, i.e. $B \bar{B}=0$ and
(2) $L(c) \mid B(c \in \bar{B})$ is a derivation of the algebra B.

Moreover (1) implies that $B \perp \bar{B}$ and $h \mid \bar{B}$ coincides with the non degenerate canonical 2-form h_{2} of \bar{B}. Thus \bar{B} is a regular subalgebra of A.

Let B (resp. \bar{B}) be a left symmetric algebra over (resp. ${ }^{-}$) and

$$
D:-\longrightarrow \operatorname{Der} B
$$

a Lie homomorphism of ${ }^{-}$into the derivation algebra $\operatorname{Der} B$ of an algebra B. The semi direct sum $B \oplus_{D} \bar{B}$ of B by \bar{B} that is determined by D is, by definition, an algebra over the direct sum $B \oplus \bar{B}$ of two vector spaces with the following multiplication:

$$
(b, c)\left(b^{\prime}, c^{\prime}\right)=\left(b b^{\prime}+D(c) b^{\prime}, c c^{\prime}\right)
$$

It is clear that $B \oplus_{\underline{D}} \bar{B}$ is a left symmetric algebra over a Lie algebra \oplus_{D} of the semi direct sum of by that is determined by D. Thus we can construct a semi direct sum $B \oplus_{D} \bar{B}$ with $B \bar{B}=0$.

The following lemma can be easily proved.
Lemma 10. Let $B \oplus_{D} \bar{B}$ be the semi direct sum of B by \bar{B} that is determined by D. If both $B=\left(, e_{1}, h_{1}\right)$ and $\bar{B}=\left({ }^{-}, e_{2}, h_{2}\right)$ are regular, then $B \oplus_{D} \bar{B}$ is regular with a right identity $e=e_{1}+e_{2}$ and the non degenerate canonical 2-form $h=h_{1}+h_{2}$.

2 Let $=\oplus$ be a real reductive Lie algebra of dimension n where (resp.) denotes the center (resp. semi simple ideal) of with $\neq\{0\}, \rho=(\varphi, \pi)$ an admissible affine representation of in a real affine space E^{n} of dimension n.

First we shall prove the following proposition.
Proposition 1. Let ρ be an admissible affine representation of a real reductive Lie algebra $=\oplus$ with $\neq\{0\}$ in E^{n}, and A a left symmetric algebra over corresponding to $\rho=(\varphi, \pi)$. Assume that

$$
m=\operatorname{deg}(\varphi \mid \quad)<n=\operatorname{dim}
$$

Then there exist an ideal B of A of dimension m whose underlying Lie algebra contains and a commutative subalgebra \bar{B} of A satisfying the following conditions:
(1) $A=B \oplus \bar{B}$, semi direct sum with $B \bar{B}=0$,
(2) B has a right identity.

Proof. By the assumption, there exist $\varphi\left(\quad\right.$-invariant subspaces E_{1} and E_{2} such that

$$
\operatorname{dim} E_{1}=m, \quad \operatorname{dim} E_{2}=n-m, \quad \varphi(\quad) \mid E_{2}=0, \quad E=E_{1} \oplus E_{2}
$$

Put $=\pi^{-1}\left(E_{1}\right),{ }^{-}=\pi^{-1}\left(E_{2}\right)$.
With respect to the decomposition $E=E_{1} \oplus E_{2}, \varphi(s)(s \in \quad)$ can be expressed as follows:

$$
\varphi(s)=\left[\begin{array}{cc}
s_{11} & 0 \\
0 & 0
\end{array}\right]
$$

Since $[\rho(\quad), \rho(\quad)]=\rho(\quad)$, we have

$$
\rho(s)=\left[\begin{array}{ccc}
s_{11} & 0 & s_{13} \\
0 & 0 & 0
\end{array}\right]
$$

This implies that is contained in .
Moreover, by a direct computation, ρ can be expressed as follows:

$$
\rho(b)=\left[\begin{array}{ccc}
b_{11} & 0 & b_{13} \\
0 & 0 & 0
\end{array}\right](b \in), \quad \rho(c)=\left[\begin{array}{ccc}
c_{11} & 0 & 0 \\
0 & c_{22} & c_{23}
\end{array}\right] \quad\left(c \in^{-}\right)
$$

Therefore we obtain
(1) $\rho^{\prime}=\rho \mid$ is an admissible affine representation of a Lie algebra in E_{1}, and the algebra B corresponding to ρ^{\prime} is an ideal of A,
(2) $\rho^{\prime \prime}=\left.\rho\right|^{-}$is an admissible affine representation of a commutative Lie algebra ${ }^{-}$in E_{2}, and the algebra \bar{B} corresponding to $\rho^{\prime \prime}$ is a commutative subalgebra of A,
(3) $B \bar{B}=0$.

Moreover, by Lemma 3, $4, B$ has a right identity. This completes the proof.
Corollary. If A is non degenerate, then A, B and \bar{B} are regular.
Proof. Since $A=B \oplus \bar{B}$, semi direct with $B \bar{B}=0$, we have
(1) $B \perp \bar{B}$ with respect to h, and
(2) both $h \mid B$ and $h \mid \bar{B}$ are non degenerate.

Since B has a right identity e_{1} and the canonical 2-form h_{1} is non degenerate, by the above condition (2) and Lemma $7,\left(B, e_{1}, h_{1}\right)$ is regular. Moreover, since $B \bar{B}=0$, the canonical 2-form h_{2} of \bar{B} coincides with $h \mid \bar{B}$. Thus, by (2), \bar{B} is a commutative, semi simple associative algebra i.e. $\left(\bar{B}, e_{2}, h_{2}\right)$ is a regular algebra with an identity e_{2}. Hence, by Lemma $10, A$ is also regular.

Let ρ be an admissible affine representation of a real reductive Lie algebra $=\oplus$ with $\quad \neq\{0\}$ in E^{n}, and A a left symmetric algebra over corresponding to $\rho=(\varphi, \pi)$.

Assume that

$$
\begin{equation*}
\operatorname{deg}(\varphi \mid \quad)=\operatorname{dim} \tag{*}
\end{equation*}
$$

Proposition 2. Under the assumption (*), let B be a non commutative minimal ideal of A, then there exists a subalgebra \bar{B} of A such that
(1) $A=B \oplus \bar{B}$, semi direct sum with $B \bar{B}=0$,
(2) $B($ resp, $\bar{B})$ has a right identity.

Proof. Denote by the underlying Lie algebra of B. Then, since is non commutative, $1=\cap$ is an ideal $(\neq\{0\})$ of . Put $E_{1}=\pi()$. Since E_{1} is $\varphi(\quad)$-invariant, there exists a $\varphi(\quad)$-invariant subspace E_{2}, complementary to E_{1}.

First we shall show that $\operatorname{deg}\left(\varphi(\quad 1) \mid E_{1}\right)=\operatorname{dim} E_{1}$.
In fact, let E_{12} be a maximal $\varphi(\quad 1)$-invariant subspace of E_{1} satisfying $\varphi(\quad 1) \mid E_{12}=0$. Denote by E_{11} a $\varphi(1)$-invariant subspace of E_{1}, complementary to E_{12}. With respect to the decomposition $E_{11} \oplus E_{12} \oplus E_{2}, \varphi(s)(s \in \quad 1)$ can be expressed as follows:

$$
\varphi(s)=\left[\begin{array}{ccc}
s_{11} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Set $\rho(x)=\left(x_{i j}\right)_{1 \leq i \leq 3,1 \leq j \leq 4}(x \in)$. Then, since B is an ideal of A and $[\rho(\quad 1), \rho()] \subset$ $\rho(1), \rho$ can be expressed as follows:

$$
\begin{aligned}
& \rho(s)=\left[\begin{array}{cccc}
s_{11} & 0 & 0 & s_{14} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad(s \in \quad 1), \\
& \rho(b)=\left[\begin{array}{cccc}
b_{11} & 0 & 0 & b_{14} \\
0 & b_{22} & b_{23} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left(b \in \pi^{-1}\left(E_{11}\right)\right), \\
& \rho\left(b^{\prime}\right)=\left[\begin{array}{cccc}
b_{11}^{\prime} & 0 & 0 & 0 \\
0 & b_{22}^{\prime} & b_{23}^{\prime} & b_{24}^{\prime} \\
0 & 0 & 0 & 0
\end{array}\right]\left(b^{\prime} \in \pi^{-1}\left(E_{12}\right)\right), \\
& \rho(c)=\left[\begin{array}{cccc}
c_{11} & 0 & 0 & 0 \\
0 & c_{22} & c_{23} & 0 \\
0 & c_{32} & c_{33} & c_{34}
\end{array}\right]\left(c \in \pi^{-1}\left(E_{2}\right)\right) .
\end{aligned}
$$

Moreover, by comparing the 4 -th row of $[\rho(b), \rho(c)]$ (resp. $\left[\rho(b), \rho\left(b^{\prime}\right)\right]$), we get

$$
b_{22}, b_{23}=0 \quad\left(b \in \pi^{-1}\left(E_{11}\right)\right)
$$

Thus $\pi^{-1}\left(E_{11}\right)$ has a structure of a non commutative ideal of A. But this is a contradiction. Hence we get

$$
\operatorname{deg}\left(\varphi(\quad 1) \mid E_{1}\right)=\operatorname{dim} E_{1}
$$

Now, with respect to the decomposition $E_{1} \oplus E_{2}, \rho$ can be expressed as follows:

$$
\rho(b)=\left[\begin{array}{ccc}
b_{11} & 0 & b_{13} \\
0 & 0 & 0
\end{array}\right](b \in), \quad \rho(c)=\left[\begin{array}{ccc}
c_{11} & 0 & 0 \\
0 & c_{22} & c_{23}
\end{array}\right] \quad\left(c \in^{-}=\pi^{-1}\left(E_{2}\right)\right)
$$

Similarly as in the proof of Proposition 1, we have the following:
(1) ${ }^{-}$is a Lie subalgebra of ,
(2) $\rho^{\prime \prime}=\rho \mid E_{2}$ is an admissible affine representation of ${ }^{-}$in E_{2}, and the algebra \bar{B} corresponding to $\rho^{\prime \prime}$ is a subalgebra of A,
(3) $A=B \oplus \bar{B}$, semi direct sum with $B \bar{B}=0$,
(4) B (resp. \bar{B}) has a right identity.

This completes the proof.
We can easily prove the following.
Corollary. If A is non degenerate, then A, B and \bar{B} are regular and $B \perp \bar{B}$ with respect to h.

Proposition 3. Let ρ be an admissible affine representation of a real reductive Lie algebra $=\oplus$ with $\neq\{0\}$ in E^{n} satisfying the condition $(*)$, and A the corresponding algebra over . Let B be a minimal ideal of A.

Assume that (A, e, h) is regular and indecomposable. Then B is non commutative.
Proof. Assume that B is commutative. Denote by the underlying Lie algebra of B and by N the radical of B. Then there exists a commutative associative semi simple subalgebra S of B such that $B=N \oplus S$, semi direct sum.

We shall investigate the following three cases separately.
(1) $B=S$. In this case, by Lemma 9 , the subalgebra B^{\perp} with respect to h satisfies the following conditions:
(1) $A=B \oplus B^{\perp}$, semi direct sum with $B B^{\perp}=0$,
(2) $L(c) \mid B\left(c \in B^{\perp}\right)$ is a derivation of B.

Since B is a commutative semi simple algebra, $\operatorname{Der} B=\{0\}$. Therefore, by the above condition (2), we have $B^{\perp} B=0$. But this contradicts to the assumption.
(2) $B=N$. In this case, for any element x of A, we have $h(x, B)=\operatorname{Tr} R(x B)=0$. Thus we have

$$
h(x, B)=0 \quad(x \in A)
$$

This contradicts to the assumption that A is non degenerate.
(3) $N \neq\{0\}$ and $S \neq\{0\}$. Since S is a commutative semi simple algebra, S is expressed as $S=\bigoplus S_{i}$, where $S_{i}(1 \leq i \leq r)$ is a commutative simple ideal of S with the identity e_{i}. Put $B_{i}=B e_{i}(i=1,2, \ldots, r)$. Since the underlying Lie algebra of B is contained in the center , we have $[L(b), L(x)]=0(b \in, x \in)$. Therefore it is clear that B_{i} is an ideal of A. Since B is a minimal ideal of A, S has to be simple.

Now, since is contained in the center of , the restriction $L(s) \mid B$ to B of $L(s)(s \in \quad)$ induces a Lie homomorphism $L \mid B$ of a semi simple Lie algebra into a Lie algebra $[B]$ consisting of all linear endomorphisms X of B satisfying $[X, L(b)]=0(b \in B)$.

By the Lemma below, $[B]$ is a solvable Lie subalgebra of $\quad(B)$. Thus we have $L \mid B=0$. But this contradicts to the assumption (*).

This completes the proof of Proposition 3.
Lemma. Let $B=N \oplus S$ be a commutative associative algebra over the real with a unit element e, where N (resp. S) denotes the radical (resp. a simple subalgebra) of B. Then the Lie algebra $[B]$ defined above is solvable.

Proof of Lemma.

(a) $S=R\{e\}$. In this case, since N is nilpotent, there exists a base $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ of N such that, with respect to the base $\left\{x_{1}, x_{2}, \ldots, x_{m}, e\right\}$ of $B, L\left(x_{i}\right)$ is expressed as a matrix of the following form:

$$
L\left(x_{i}\right)=\left[\begin{array}{cccc}
& & & 0 \\
& * & & \vdots \\
& & & 0 \\
0 & \cdots & 0 & 1
\end{array}\right] i \text {-th } \quad(1 \leq i \leq m)
$$

Let $X=\left(x_{i j}\right)_{1 \leq i, j \leq m+1}$ be an element of [B]. By a direct computation, we have

$$
x_{11}=x_{22}=\cdots=x_{m+1 m+1}, \quad x_{i j}=0(i>j)
$$

Therefore the Lie algebra $[B]$ is solvable.
(b) $S=R\{e, f\}$ with $f^{2}=-e$. Denote by $L(x) \mid N$ the restriction to N of the left (= right) multiplication of B by an element x. Then we have $(L(f) \mid N)^{2}=-\mathrm{id}$.
Therefore $\operatorname{dim} N$ is even. Moreover, since N is nilpotent, there exists a base $\left\{x_{i}, y_{i}\right\}_{1<i<m}$ of N such that, with respect to the base $\left\{x_{1}, y_{1}, \ldots, x_{m}, y_{m}, f, e\right\}$ of $B, L\left(x_{i}\right)$ and $L\left(y_{i}\right)$ are expressed as matrices of the following form:
where $J=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ and $E=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
Let $X=\left(x_{i j}\right)_{1 \leq i, j \leq m+1}$ be an element of $[B]$, where $x_{i j} \in(2, R)$.
By a direct computation, we have

$$
x_{11}=x_{22}=\cdots=x_{m+1 m+1}=\alpha E+\beta J(\alpha, \beta \in R), \quad x_{i j}=0(i>j)
$$

Therefore the Lie algebra $[B]$ is solvable. This completes the proof of Lemma.
By Propositions 1, 2 and 3, we obtain the following theorem.
Theorem 1. Let $A=(, e, h)$ be a regular algebra over a real reductive Lie algebra $=\oplus$, and B a minimal ideal of A. Then,
(1) B is regular,
(2) there exists a regular subalgebra \bar{B} of A such that $A=B \oplus \bar{B}$, semi direct with $B \bar{B}=0$ and $B \perp \bar{B}$ with respect to the canonical 2-form h of A.

Proof. Let A be a left symmetric algebra over $=\oplus$ corresponding to an admissible affine representation $\rho=(\varphi, \pi)$ in E.

1. Assume that $=\{0\}$. Then A is a commutative associative semi simple algebra, and there is nothing to prove.
2. Assume next that $\neq\{0\}$. Then, by Propositions 1, 2, 3 and Corollaries, we obtain the theorem.

Let $B_{i}=\left({ }_{i}, e_{i}, h_{i}\right)(i=1,2)$ be a regular algebra over a real reductive Lie algebra ${ }_{i}$. Denote by D a Lie homomorphism of ${ }_{2}$ into the derivation algebra $\operatorname{Der}{ }_{1}$ of ${ }_{1}$, and by $=1_{1} \oplus_{D} \quad$ the semi direct sum of ${ }_{1}$ by ${ }_{2}$ that is determined by D. Then is reductive if and only if there exists a Lie homomorphism φ of ${ }_{2}$ into 1_{1} such that

$$
D(c)=\operatorname{ad} \varphi(c) \quad(c \in \quad 2) .
$$

Moreover $D(c)=\operatorname{ad} \varphi(c)$ is a derivation of B_{1} is equivalent to

$$
L(b) R(\varphi(c))=R(\varphi(c)) L(b) \quad\left(b \in B_{1}\right)
$$

Therefore, by Lemma 10, we obtain the following theorem.
Theorem 2. Let $B_{i}=\left(\quad, e_{i}, h_{i}\right)(i=1,2)$ be a regular algebra over a real reductive Lie algebra \quad, and φ a Lie homomorphism of 2 into 1_{1} satisfying the following condition:

$$
[L(b), R(\varphi(c))]=0 \quad(b \in \quad 1, c \in \quad 2)
$$

where $D(c)=\operatorname{ad} \varphi(c)$. Then the semi direct sum $A=B_{1} \oplus_{D} B_{2}$ is a regular algebra over a real reductive Lie algebra $=1 \oplus_{D}$ 2 with a right identity $e=e_{1}+e_{2}$ and the canonical 2-form $h=h_{1}+h_{2}$.

3 In this section, we shall give a remark and some examples.
First, let A be a left symmetric algebra over a real Lie algebra. Assume that A has a right identity e. Denote by ${ }_{0}$ the linear subspace of defined by

$$
{ }_{0}=\{a \in \quad ; \operatorname{Tr} R(a)=0\}
$$

Then we have the following direct sum decomposition as a linear space: $={ }_{0} \oplus R\{e\}$.
Put, for $a, b \in$,

$$
a b=a * b+h_{0}(a, b) e
$$

where $a * b$ denotes the ${ }_{0}$-component of $a b$. Then, by a direct computation, we have
(1) $A_{0}=\left({ }_{0}, *\right)$ is an algebra over ${ }_{0}$ satisfying

$$
\begin{equation*}
R_{0}(a, b, c)=-h_{0}(b, c) a+h_{0}(a, c) b \tag{1}
\end{equation*}
$$

where R_{0} denotes the curvature of A_{0},
(2) h_{0} is a symmetric bilinear form on A_{0} of Hessian type satisfying

$$
h_{0}(a, b)=\frac{1}{n} h(a, b) \quad\left(a, b \in A_{0}\right),
$$

where h denotes the canonical 2-form on A,
(3) $D=\operatorname{ad} e$ is a derivation of the Lie algebra ${ }_{0}$ satisfying

$$
\begin{align*}
& h_{0}(a, D(b))+h_{0}(D(a), b)=0 \tag{2}\\
& D(a * b)=D(a) * b+a * D(b) \tag{3}
\end{align*}
$$

Conversely let $A_{0}=\left({ }_{0}, *\right)$ be an algebra over a real Lie algebra ${ }_{0}$ with a symmetric bilinear form h_{0} of Hessian type and a derivation D of ${ }_{0}$ satisfying the above conditions (1), (2) and (3). Then we enlarge ${ }_{0}$ as follows:

$$
={ }_{0} \oplus R\{e\} \text { with }[e, a]=D(a)\left(a \in{ }_{0}\right)
$$

Moreover we define a multiplication in by

$$
a b=a * b+h_{0}(a, b) e, \quad a e=a, \quad e a=a+D(a), \quad e e=e\left(a, b \in{ }_{0}\right)
$$

We can easily show that $A=(, \cdot)$ is a left symmetric algebra over with a right identity e. Thus we obtain the following theorem.

Theorem 3. Let $A=(, \cdot)$ be a left symmetric algebra over with a right identity e. Then there exist an ideal ${ }_{0}$ of of codimension 1, a structure of an algebra $A_{0}=\left({ }_{0}, *\right)$ over ${ }_{0}$, a symmetric bilinear form h_{0} on A_{0} of Hessian type, and a derivation D of ${ }_{0}$ satisfying the following conditions:
(1) an algebra A_{0} is projectively flat with respect to h_{0},
(2) $h_{0}(D(a), b)+h_{0}(a, D(b))=0$,
(3) $D(a * b)=D(a) * b+a * D(b)$.

Conversely, if an algebra $A_{0}=\left({ }_{0}, *\right)$ over a Lie algebra ${ }_{0}$ with a symmetric bilinear form h_{0} of Hessian type and a derivation D of ${ }_{0}$ satisfying the above conditions (1), (2) and (3), then we can construct a structure of a left symmetric algebra $A=(, \cdot)$ over an enlarged Lie algebra

$$
={ }_{0} \oplus R\{e\} \text { with }[e, x]=D(x)\left(x \in{ }_{0}\right)
$$

having a right identity e.
This is a slight modification of a theorem about a left symmetric algebra with identity ([N.P], [M,2]).

Let $A=(, \cdot)$ be a left symmetric algebra over with a right identity e. Suppose that has a non trivial center, that is, there exists an element a_{0} of such that $e+a_{0}$ is in the center of . We define a multiplication in $={ }_{0} \oplus R\{e\}$ by

$$
a b=a * b+h_{0}(a, b) e_{t}, \quad a e_{t}=a, \quad e_{t} a=a+(1-t) D(a), \quad e_{t} e_{t}=e_{t}
$$

where $e_{t}=e+t a_{0}(t \in R)$ and $a, b \in{ }_{0}$.
Then $A_{t}=(, \cdot)$ is a left symmetric algebra over with a right identity e_{t}, for any t. For $t=1, A_{1}$ is a left symmetric algebra over with an identity e_{1}.

We shall give two examples.
Example 1. Let A_{t} be a left symmetric algebra over $(2, R)$ whose multiplication table is as follows:

$$
\{a, b, c, e\} \text { is a base of } \quad(2, R) \text { and } t \in R
$$

A_{t}	a	b	c	e
a	$e-t c$	b	$-c$	$a-t c$
b	$-b$	0	$\frac{1}{2}(e+a-t c)$	$\frac{1}{2}\left(t e+t a+2 b-t^{2} c\right)$
c	c	$\frac{1}{2}(e-a-t c)$	0	c
e	$a-t c$	$\frac{1}{2}\left(t e+t a+2 b-t^{2} c\right)$	c	$e+t c$

Then $e_{t}=e-t c$ is a right identity of A_{t}. Moreover, $e_{0}=e$ is an identity of A_{0}.
For non zero s, t, we have an algebraic isomorphism σ of A_{s} onto A_{t} defined by

$$
\sigma(e)=e, \quad \sigma(a)=a, \quad \sigma(b)=\frac{s}{t} b \quad \text { and } \quad \sigma(c)=\frac{t}{s} c .
$$

Example 2. Let $A_{(s, t)}$ be a left symmetric algebra whose multiplication table is as follows:
$\{e, a, b\}$ is a base and $(s, t) \in R^{2}$.

$A_{(s, t)}$	e	a	b
e	$e+s(s+1) a+2 t(s+1) b$	$(1+s) a+2 t b$	b
a	$(1+s) a+2 t b$	a	b
b	b	0	0

By a direct computation, it is easily proved that
(1) $e-s a-2 t b$ is a right identity of $A_{(s, t)}$,
(2) $e-s a-2 t b$ is an identity if and only if $(s, t)=(0,0)$,
(3) if $s \neq s^{\prime}$, then there does not exist an algebraic isomorphism of $A_{(s, t)}$ onto $A_{\left(s^{\prime}, t^{\prime}\right)}$.

Next we shall give examples of left symmetric algebras over a real reductive Lie algebra.
Example 3. Denote by D the adjoint representation of $(2, R)$. Then we can construct the semi direct sum $A=(2, R) \oplus_{D} \quad(2, R)$ of the associative algebra $\quad(2, R)$ by the same associative algebra $\quad(2, R)$ that is determined by D.
A has an identity and the canonical 2-form h on A is non degenerate.
Example 4. Let be a Lie subalgebra of $(6, R)$ generated by $\left\{a \otimes E_{3} ; a \in \quad(2, R)\right\}$ and the set C of matrices of degree 6 defined below:

$$
C=\left\{\left[\begin{array}{lll}
E_{2} & & \tag{1}\\
& 0 & \\
& & 0
\end{array}\right],\left[\begin{array}{ccc}
0 & & \\
& E_{2} & \\
& & 0
\end{array}\right],\left[\begin{array}{ccc}
0 & & \\
& 0 & \\
& & E_{2}
\end{array}\right]\right\}
$$

(2) $C=\left\{\left[\begin{array}{ccc}E_{2} & 0 & 0 \\ & E_{2} & 0 \\ & & 0\end{array}\right],\left[\begin{array}{ccc}0 & E_{2} & 0 \\ & 0 & 0 \\ & & 0\end{array}\right],\left[\begin{array}{ccc}0 & 0 & 0 \\ & 0 & 0 \\ & & E_{2}\end{array}\right]\right\}$,
(3) $C=\left\{\left[\begin{array}{ccc}E_{2} & 0 & 0 \\ & E_{2} & 0 \\ & & E_{2}\end{array}\right],\left[\begin{array}{ccc}0 & E_{2} & 0 \\ & 0 & E_{2} \\ & & 0\end{array}\right],\left[\begin{array}{ccc}0 & 0 & E_{2} \\ & 0 & 0 \\ & & 0\end{array}\right]\right\}$.

The polynomial | | is expressed as follows:
(1) $\left(x_{1} x_{6}-x_{2} x_{5}\right)\left(x_{2} x_{3}-x_{1} x_{4}\right)\left(x_{4} x_{5}-x_{3} x_{6}\right)$,
(2) $\left(x_{1} x_{4}-x_{2} x_{3}\right)\left(x_{3} x_{6}-x_{4} x_{5}\right)^{2}$,
(3) $\left(x_{3} x_{6}-x_{4} x_{5}\right)^{3}$.

By a direct computation, we have the following.
(1) The algebra corresponding to (1) is simple with non degenerate canonical 2-form,
(2) The algebra corresponding to (2) is simple with degenerate canonical 2-form and trivial radical,
(3) The algebra corresponding to (3) is simple with degenerate canonical 2-form and non trivial radical.

References

[H] J. Helmstetter, Radical d'une algebre symmetrique à gauche, Ann. Inst. Fourier, Grenoble 29(1979), 17-35.
[J] N. Jacobson, Lie algebras, Interscience Tracts $\sharp 10$, Interscience, New York (1962).
[K1] H. Kim, Complete left-invariant affine structures on nilpotent Lie groups, J.Diff.Geometry 24(1986), 373-394.
[K2] _ The geometry of left symmetric algebras, J. Korean Math. Soc., 33(1996), 10491067.
[M1] A. Mizuhara, Affine representations of nilpotent Lie algebras and left symmetric algebras, Math. Japonica 34(1989), 53-64.
[M2] , Left invariant indefinite Riemannian metrics with constant sectional curvature on Lie groups, Math. Japonica 47(1998), 143-154.
[N, P] K. Nomizu and U. Pinkall, On a certain class of homogeneous projectively flat manifolds, Tohoku Math. J. 39(1987), 407-427.
[Se] D. Segal, The structure of complete left symmetric algebras, Math. Ann. 293(1992), 569-578.
[S] H. Shima, Homogeneous Hessian manifolds, Ann. Inst. Fourier, Grenoble 30(1980), 91-128.

[^0]: 2000 Mathematics Subject Classification. 17D25.
 Key words and phrases. Left symmetric algebra, regular algebra, real reductive Lie algebra, semi direct sum decomposition.

