LEFT SYMMETRIC ALGEBRAS OVER A REAL REDUCTIVE LIE ALGEBRA

Akira Mizuhara

Received November 27, 2000

Abstract.

Let A be a left symmetric algebra over a real Lie algebra . A symmetric bilinear form \langle , \rangle of A is called *of Hessian type* if the following equality holds:

 $\langle xy, z \rangle + \langle y, xz \rangle = \langle yx, z \rangle + \langle x, yz \rangle \quad (x, y, z \in A).$

H. Shima studied the structures of left symmetric algebras with a positive definite symmetric bilinear form of Hessian type ([S]).

Denote by h the bilinear form defined by

 $h(x, y) = \operatorname{Tr} R(xy),$

where R(x) denotes the right multiplication on A by an element x. h is a symmetric bilinear form of Hessian type.

It is called the canonical 2-form on A. A left symmetric algebra A = (, e, h) over with a right identity e and the non degenerate canonical 2-form h is called regular.

In this paper, we shall study the structures of a regular algebra over a real reductive Lie algebra and related topics.

1 Preliminaries.

[A] Let be a real Lie algebra of dimension n with a binomial product \cdot . The algebra $A = (\cdot, \cdot)$ is called an algebra over if

$$[a,b] = ab - ba \quad (a,b \in).$$

For an algebra A over , denote by R a trilinear mapping $A \times A \times A$ into A defined by

$$R(a, b, c) = a(bc) - b(ac) - [a, b] c$$

and call it the curvature of A.

An algebra A over with vanishing curvature is called *left symmetric*.

For an algebra A over , a symmetric bilinear form h on A is called *of Hessian type* ([S]) if the following equality holds:

$$h(ab, c) + h(b, ac) = h(ba, c) + h(a, bc) \quad (a, b, c \in A).$$

An algebra (A, h) over with a form h of Hessian type is called *projectively flat* if the following equality holds:

$$R(a, b, c) = -h(b, c)a + h(a, c)b \quad (a, b, c \in A).$$

²⁰⁰⁰ Mathematics Subject Classification. 17D25.

Key words and phrases. Left symmetric algebra, regular algebra, real reductive Lie algebra, semi direct sum decomposition.

[B] Let E^n be a real affine space of dimension n and $\rho = (\varphi, \pi)$ a Lie homomorphism of into the Lie algebra aff(E) of all infinitesimal affine transformations on E, where $\varphi(a)$ (resp. $\pi(a)$) denotes the linear (resp. translation) part of $\rho(a)$.

A Lie homomorphism ρ is called an admissible affine representation of in E if π is a linear isomorphism of onto E.

Let A be a left symmetric algebra over A. Denote by L(a) (resp. R(a)) the left (resp. right) multiplication of A by an element a. Then the mapping \tilde{L} of \hat{L} into aff(A) defined by

$$L(a) = (L(a), a)$$

is an admissible affine representation of in A, which is called the left affine representation of a left symmetric algebra A over .

We can prove the following (cf. [S]):

Lemma 1. Let $\rho = (\varphi, \pi)$ be an admissible affine representation of in E. Define a binomial product in by the formula

$$ab = \pi^{-1} \left(\varphi(a) \pi(b) \right) \quad (a, b \in \).$$

Then the algebra $A = (, \rho)$ with the above multiplication is a left symmetric algebra over .

[C] For an element $a = (a_{ij}, a_i)$ of aff (E), denote by \overline{a} a vector field on $E(x_1, x_2, \ldots, x_n)$ defined by

$$\overline{a} = -\sum (a_{ij}x_j + a_i)\frac{\partial}{\partial x_i}.$$

For an affine representation $\rho = (\varphi, \pi)$ of in E, denote by $F_{\rho}(x)$ (resp. $F_{\varphi}(x)$) a polynomial on $E(x_1, \ldots, x_n)$ defined by

$$F_{\rho}(x)\omega_{0} = \overline{\rho(a_{1})} \wedge \overline{\rho(a_{2})} \wedge \dots \wedge \overline{\rho(a_{n})} \quad \left(\text{resp. } F_{\varphi}(x)\omega_{0} = \overline{\varphi(a_{1})} \wedge \overline{\varphi(a_{2})} \wedge \dots \wedge \overline{\varphi(a_{n})}\right),$$

where $\{a_i\}$ is a base of and ω_0 denotes the tensor field on $E(x_1, \ldots, x_n)$ defined by

$$\omega_0 = \left(\frac{\partial}{\partial x_1}\right) \wedge \left(\frac{\partial}{\partial x_2}\right) \wedge \dots \wedge \left(\frac{\partial}{\partial x_n}\right).$$

The polynomial $F_{\rho}(x)$ (resp. $F_{\varphi}(x)$) is uniquely determined by $(, \rho)$ (resp. $(, \varphi)$) up to a constant multiple.

Denote this polynomial by $F_{\rho} = |\rho(\)|$ (resp. $F_{\varphi} = |\varphi(\)|$) and call it the polynomial for $(\ ,\rho)$ (resp. $(\ ,\varphi)$).

Let A be a left symmetric algebra over , and (y_1, y_2, \ldots, y_n) the affine coordinate system of A with respect to a base $\{a_i\}$ of A. The polynomial $F(y) = \left|\tilde{L}(\cdot)\right|$ for the left affine representation (\cdot, \tilde{L}) of A is called *the polynomial for A*.

Lemma 2. Let $\rho = (\varphi, \pi)$ be an affine representation of in E, and F_{ρ} (resp. F_{φ}) the polynomial for $(, \rho)$ (resp. $(, \varphi)$). Then we have $(a \in)$

$$L_{\overline{\rho(a)}}F_{\rho} = \chi(a)F_{\rho} \quad \left(resp. \ L_{\overline{\varphi(a)}}F_{\varphi} = \chi(a)F_{\varphi}\right),$$

where $L_{\overline{X}}$ denotes the Lie differentiation with respect to a vector field \overline{X} and $\chi(a)$ denotes an infinitesimal character on defined by

$$\chi(a) = \operatorname{Tr} \operatorname{ad} a - \operatorname{Tr} \rho(a).$$

In fact, on the one hand, we have

$$L_{\overline{\rho(a)}}\left(\overline{\rho(a_1)}\wedge\cdots\wedge\overline{\rho(a_n)}\right) = \sum \overline{\rho(a_1)}\wedge\cdots\wedge\overline{\rho([a,a_i])}\wedge\cdots\wedge\overline{\rho(a_n)}$$
$$= (\operatorname{Tr} \operatorname{ad} a) \overline{\rho(a_1)}\wedge\cdots\wedge\overline{\rho(a_n)}.$$

On the other hand, we have

$$L_{\overline{\rho(a)}}(F_{\rho}\omega_{0}) = (L_{\overline{\rho(a)}}F_{\rho})\omega_{0} + F_{\rho}(\operatorname{Tr}\rho(a))\omega_{0}$$

Hence we obtain the desired result.

For a left symmetric algebra A over , we have

$$L(a) - R(a) = \operatorname{ad} a \quad (a \in).$$

Thus we have the following.

Corollary. Let $F = \left| \tilde{L}() \right|$ be the polynomial for a left symmetric algebra A over . Then we have

$$L_{\overline{L}(a)}F = -(\operatorname{Tr} R(a))F \quad (a \in).$$

Remark. Let A be a left symmetric algebra over and D the characteristic polynomial of A ([H]).

Then D coincides with the polynomial $\left| \tilde{L}(\) \right|$ of an algebra A over $\$, up to a constant multiple.

In fact, let $\{a_i\}$ be a base of A. Then, for an element $y = \sum y_i a_i$ of A, we have

$$\tilde{L}(a_k)y = a_ky + a_k = \text{the }k\text{-th row of the matrix }(R(y) + I),$$

where I denotes the unit matrix. Therefore we have

$$-\overline{\tilde{L}(a_k)}$$
 = the k-th row of the matrix $\left(\frac{\partial}{\partial y_1}, \frac{\partial}{\partial y_2}, \dots, \frac{\partial}{\partial y_n}\right) (R(y) + I).$

Thus we have $D(y) = |\tilde{L}(\)|$, up to a constant multiple.

[D] Let $\rho = (\varphi, \pi)$ be an admissible affine representation of in E. A point P of E is called a fixed point of $(, \rho)$ if P satisfies the following:

$$\rho(a)P = \rho(a)P + \pi(a) = 0 \quad (a \in \).$$

We can easily prove the following.

Lemma 3. Let $A = (, \rho)$ be a left symmetric algebra over corresponding to an admissible affine representation $\rho = (\varphi, \pi)$ of in E. Then the following statements are mutually equivalent:

- (1) A has a right identity e,
- (2) $(, \rho)$ has a fixed point P.

In fact, if A has a right identity e, then $P = \pi(-e)$ is a fixed point of $(, \rho)$, and conversely.

be a real reductive Lie algebra where Let = \oplus (resp.) denotes the center (resp. the semi simple ideal) of

Let ρ be an admissible affine representation of a real reductive Lie algebra Lemma 4. in E. Assume that $\deg(\varphi|) = \dim$. Then there exists a fixed point of $(, \rho)$. = \oplus

In fact, since π is a φ -cocycle, that is,

$$\varphi(a)\pi(b) - \varphi(b)\pi(a) = \pi\left([a,b]\right) \quad (a,b \in \),$$

there exists a point P of E([J]) such that

$$\pi(s) = \varphi(s)P \quad (s \in \).$$

Moreover, since is the center of , for any element c in and s in , we have

$$\varphi(s)\left(\pi(c) - \varphi(c)P\right) = \varphi(s)\pi(c) - \varphi(c)\pi(s) = \pi\left([s,c]\right) = 0.$$

Since $\deg(\varphi|) = \dim E$, -P is a fixed point of $(, \rho)$.

[E] Let $\rho = (\varphi, \pi)$ be an admissible affine representation of in E. Denote by $A = (\rho, \rho)$ the left symmetric algebra over corresponding to ρ , F_{ρ} (resp. F_{φ}) the polynomial for $(, \rho)$ (resp. $(, \varphi)$). Denote by Ω_{ρ} a subset of E defined by

$$\Omega_{\rho} = \{ x \in E ; F_{\rho}(x) \neq 0 \}.$$

 Put

$$_{0}=\left\{ a\in \quad ;\,L_{\overline{\rho \left(a\right) }}F=0\right\} .$$

Then $_0$ is an ideal of containing [,].

An algebra A is called *complete* if one of the following equivalent conditions holds ([K1], [K2], [Se]):

(1) $= _{0},$

- (2) $\Omega_{\rho} = E,$
- (3) F_{ρ} is a non zero constant.

In the sequel, we assume that \neq_{0} . Under the assumption, there exists an element ξ of such that $=_{0} \oplus R \{\xi\}$ (as a linear space).

Denote by g a tensor field on Ω_{ρ} of type (0,2) defined by

$$g_{ij} = \left(\frac{\partial^2}{\partial x_i \partial x_j}\right) \log |F_{\rho}|.$$

Lemma 5. For $a, b \in$, we have

$$g\left(\overline{\rho(a)},\overline{\rho(b)}\right) = \frac{1}{F_{\rho}}\left(L_{\overline{\rho(a)\rho(b)}}F_{\rho}\right).$$

Proof. For the sake of simplicity, put

$$F_{\rho} = F, \quad \frac{\partial F}{\partial x_i} = F_{,i}, \quad \left(\frac{\partial^2}{\partial x_i \partial x_j}\right) F = F_{,i,j}.$$

 Set

$$\overline{\rho(a)} = -\sum (a_{ij}x_j + a_i)\frac{\partial}{\partial x_i} = \sum A^i \frac{\partial}{\partial x_i},$$
$$\overline{\rho(b)} = -\sum (b_{ij}x_j + b_i)\frac{\partial}{\partial x_i} = \sum B^i \frac{\partial}{\partial x_i}.$$

Then, by Lemma 2, we have

$$\chi(a)F = \sum A^i F_{,i}, \quad \chi(b)F = \sum B^i F_{,i}.$$

Therefore we have

$$\chi(a)\chi(b)F = L_{\overline{\rho(b)}}(L_{\overline{\rho(a)}}F) = -L_{\overline{\rho(a)\rho(b)}}F + \sum B^{j}A^{i}F_{,i,j}.$$

Hence we obtain

$$g\left(\overline{\rho(a)},\overline{\rho(b)}\right) = \left(\frac{1}{F}\right)^2 \sum A^i B^j \left(F_{,i,j}F - F_{,i}F_{,j}\right) = \frac{1}{F} L_{\overline{\rho(a)\rho(b)}}F.$$

Now, denote by $\langle \ , \ \rangle$ a symmetric bilinear form on – defined by

$$\langle a,b\rangle = g\left(\overline{\rho(a)},\overline{\rho(b)}\right)\Big|_{x=0} \quad (a,b\in \),$$

and call it the 2-form defined by $F = F_{\rho}$.

AKIRA MIZUHARA

Lemma 6. The symmetric bilinear form \langle , \rangle on defined by F_{ρ} is of Hessian type on $A = (, \rho)$.

Proof. Denote by π' an endomorphism of aff (E) defined by

$$\pi'(\rho(a)) = (0, \pi(a)).$$

Then it is clear that

(1)
$$\pi'(\rho(ab)) = \pi'(\rho(a)\rho(b)),$$

(2)
$$L_{\overline{\rho(a)\rho(b)}}F\Big|_0 = L_{\overline{\pi'(\rho(a)\rho(b))}}F\Big|_0.$$

Therefore we have, for $a, b, c \in$,

$$\begin{split} \langle ab, c \rangle + \langle b, ac \rangle - \langle ba, c \rangle - \langle a, bc \rangle \\ &= \langle c, ab \rangle + \langle b, ac \rangle - \langle c, ba \rangle - \langle a, bc \rangle \\ &= \left(L_{\overline{\rho(c)\rho(ab)}} + L_{\overline{\rho(b)\rho(ac)}} - L_{\overline{\rho(c)\rho(ba)}} - L_{\overline{\rho(a)\rho(bc)}} \right) F \Big|_{0}. \end{split}$$

On the one hand, the π -component of

$$\rho(c)\rho(ab) + \rho(b)\rho(ac) - \rho(c)\rho(ba) - \rho(a)\rho(bc)$$

is equal to

$$\pi\left(\left[c,\left[a,b
ight]
ight)
ight)$$
 .

On the other hand, it is clear that $[c, [a, b]] \in [0, c]$. Thus, by (2), we obtain the desired result.

A symmetric bilinear form h on A of Hessian type defined by

$$h(a,b) = \operatorname{Tr} R(ab) \quad (a,b \in A)$$

is called the canonical 2-form on A.

Denote by \langle , \rangle the 2-form on A defined by the polynomial $F = |\tilde{L}()|$ for a left symmetric algebra A. Then, by Lemma 2, Corollary and the above equalities (1) and (2), \langle , \rangle is the canonical 2-form on A. A is called *non degenerate* if the canonical 2-form h of A is non degenerate.

Lemma 7. Let B be an ideal of A. Then h|B is the canonical 2-form on B.

In fact, for $b \in B$, we have $\operatorname{Tr} R(b) = \operatorname{Tr} (R(b)|B)$. Therefore it is clear that

$$h(b, b') = \operatorname{Tr} R(bb') = \operatorname{Tr} (R(bb')|B).$$

We can easily prove the following.

Lemma 8. Let B be an ideal of A, and h a symmetric bilinear form on A of Hessian type. Then the orthogonal complement B^{\perp} of B with respect to h is a subalgebra of A.

[F] Let A be a left symmetric algebra over a Lie algebra . A is called *regular* if

- (1) A is non degenerate,
- (2) A has a right identity.

Lemma 9. Let A = (, e, h) be a regular algebra over a real Lie algebra with a right identity e and the non degenerate canonical 2-form h, and B an ideal of A. If B is regular, then there exists a regular subalgebra \overline{B} of A such that

- (1) $A = B \oplus \overline{B}$, semidirect with $B\overline{B} = 0$,
- (2) $B \perp \overline{B}$ with respect to h,
- (3) $L(c)|B| (c \in B)$ is a derivation of the algebra B.

Proof. Put $\overline{B} = B^{\perp}$. Then \overline{B} is a subalgebra of A, by Lemma 8. Denote by h_1 the canonical 2-form on B. Then, since $h_1 = h|B$ by Lemma 7 and h_1 is non degenerate by the assumption, we have $B \cap \overline{B} = \{0\}$. Therefore $A = B \oplus \overline{B}$, semi direct sum.

Next denote by e_1 a right identity of B. Then $b(e - e_1) = 0$ $(b \in B)$. Thus $e_2 = e - e_1$ is an element of \overline{B} . Moreover, for $c \in \overline{B}$, we have

$$ce_2 = ce - ce_1 = c - ce_1.$$

Therefore e_2 is a right identity of \overline{B} and $\overline{B}e_1 = 0$.

For $b, b' \in B$ and $c \in \overline{B}$, by the following equalities:

$$(bc)e_1 - b(ce_1) = (cb)e_1 - c(be_1), \quad \overline{B}e_1 = 0, \quad c(bb') = (cb)b' + b(cb'),$$

we obtain

- (1) bc = 0, i.e. $B\overline{B} = 0$ and
- (2) L(c)|B| $(c \in \overline{B})$ is a derivation of the algebra B.

Moreover (1) implies that $B \perp \overline{B}$ and $h|\overline{B}$ coincides with the non degenerate canonical 2-form h_2 of \overline{B} . Thus \overline{B} is a regular subalgebra of A.

Let B (resp. \overline{B}) be a left symmetric algebra over (resp.) and

$$D : \longrightarrow Der B$$

a Lie homomorphism of into the derivation algebra Der B of an algebra B. The semi direct sum $B \oplus_D \overline{B}$ of B by \overline{B} that is determined by D is, by definition, an algebra over the direct sum $B \oplus \overline{B}$ of two vector spaces with the following multiplication:

$$(b, c)(b', c') = (bb' + D(c)b', cc').$$

It is clear that $B \oplus_{\underline{D}} \overline{B}$ is a left symmetric algebra over a Lie algebra $\oplus_{\underline{D}}$ of the semi direct sum of by that is determined by D. Thus we can construct a semi direct sum $B \oplus_{\underline{D}} \overline{B}$ with $B\overline{B} = 0$.

The following lemma can be easily proved.

Lemma 10. Let $B \oplus_D \overline{B}$ be the semi direct sum of B by \overline{B} that is determined by D. If both $B = (\ , e_1, h_1)$ and $\overline{B} = (\ , e_2, h_2)$ are regular, then $B \oplus_D \overline{B}$ is regular with a right identity $e = e_1 + e_2$ and the non degenerate canonical 2-form $h = h_1 + h_2$.

2 Let = \oplus be a real reductive Lie algebra of dimension n where (resp.) denotes the center (resp. semi simple ideal) of with $\neq \{0\}$, $\rho = (\varphi, \pi)$ an admissible affine representation of in a real affine space E^n of dimension n.

First we shall prove the following proposition.

Proposition 1. Let ρ be an admissible affine representation of a real reductive Lie algebra = \oplus with $\neq \{0\}$ in E^n , and A a left symmetric algebra over corresponding to $\rho = (\varphi, \pi)$. Assume that

$$m = \deg(\varphi|) < n = \dim$$

- Then there exist an ideal B of A of dimension m whose underlying Lie algebra contains and a commutative subalgebra \overline{B} of A satisfying the following conditions:
- (1) $A = B \oplus \overline{B}$, semi direct sum with $B\overline{B} = 0$,
- (2) B has a right identity.

Proof. By the assumption, there exist $\varphi()$ -invariant subspaces E_1 and E_2 such that

$$\dim E_1 = m, \quad \dim E_2 = n - m, \quad \varphi(-) | E_2 = 0, \quad E = E_1 \oplus E_2.$$

Put $= \pi^{-1}(E_1), \quad = \pi^{-1}(E_2).$ With respect to the decomposition $E = E_1 \oplus E_2, \varphi(s) \quad (s \in \mathbb{C})$ can be expressed as follows:

$$\varphi(s) = \left[\begin{array}{cc} s_{11} & 0\\ 0 & 0 \end{array} \right].$$

Since $[\rho(), \rho()] = \rho()$, we have

$$\rho(s) = \left[\begin{array}{ccc} s_{11} & 0 & s_{13} \\ 0 & 0 & 0 \end{array} \right]$$

This implies that is contained in .

Moreover, by a direct computation, ρ can be expressed as follows:

$$\rho(b) = \begin{bmatrix} b_{11} & 0 & b_{13} \\ 0 & 0 & 0 \end{bmatrix} \quad (b \in \), \quad \rho(c) = \begin{bmatrix} c_{11} & 0 & 0 \\ 0 & c_{22} & c_{23} \end{bmatrix} \quad (c \in \).$$

Therefore we obtain

- (1) $\rho' = \rho|$ is an admissible affine representation of a Lie algebra in E_1 , and the algebra *B* corresponding to ρ' is an ideal of *A*,
- (2) $\rho'' = \rho|$ is an admissible affine representation of a commutative Lie algebra in E_2 , and the algebra \overline{B} corresponding to ρ'' is a commutative subalgebra of A,
- (3) $B\overline{B} = 0.$

Moreover, by Lemma 3, 4, B has a right identity. This completes the proof. \Box

Corollary. If A is non degenerate, then A, B and \overline{B} are regular.

Proof. Since $A = B \oplus \overline{B}$, semi direct with $B\overline{B} = 0$, we have

- (1) $B \perp \overline{B}$ with respect to h, and
- (2) both h|B and $h|\overline{B}$ are non degenerate.

Since *B* has a right identity e_1 and the canonical 2-form h_1 is non degenerate, by the above condition (2) and Lemma 7, (B, e_1, h_1) is regular. Moreover, since $\overline{BB} = 0$, the canonical 2-form h_2 of \overline{B} coincides with $h|\overline{B}$. Thus, by (2), \overline{B} is a commutative, semi simple associative algebra i.e. (\overline{B}, e_2, h_2) is a regular algebra with an identity e_2 . Hence, by Lemma 10, A is also regular.

Let ρ be an admissible affine representation of a real reductive Lie algebra $= \oplus$ with $\neq \{0\}$ in E^n , and A a left symmetric algebra over corresponding to $\rho = (\varphi, \pi)$. Assume that

$$\deg(\varphi|) = \dim . \tag{*}$$

Proposition 2. Under the assumption (*), let B be a non commutative minimal ideal of A, then there exists a subalgebra \overline{B} of A such that

- (1) $A = B \oplus \overline{B}$, semi direct sum with $B\overline{B} = 0$,
- (2) B (resp. \overline{B}) has a right identity.

Proof. Denote by the underlying Lie algebra of *B*. Then, since is non commutative, $_1 = \cap$ is an ideal ($\neq \{0\}$) of . Put $E_1 = \pi($). Since E_1 is $\varphi($)-invariant, there exists a $\varphi($)-invariant subspace E_2 , complementary to E_1 .

First we shall show that $\deg(\varphi(-1)|E_1) = \dim E_1$.

In fact, let E_{12} be a maximal $\varphi(-)$ -invariant subspace of E_1 satisfying $\varphi(-)|E_{12} = 0$. Denote by E_{11} a $\varphi(-)$ -invariant subspace of E_1 , complementary to E_{12} . With respect to the decomposition $E_{11} \oplus E_{12} \oplus E_2$, $\varphi(s)$ $(s \in -)$ can be expressed as follows:

$$\varphi(s) = \left[\begin{array}{ccc} s_{11} & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{array} \right].$$

Set $\rho(x) = (x_{ij})_{1 \le i \le 3, 1 \le j \le 4}$ $(x \in)$. Then, since B is an ideal of A and $[\rho(-1), \rho(-)] \subset \rho(-1), \rho$ can be expressed as follows:

$$\begin{split} \rho(s) &= \begin{bmatrix} s_{11} & 0 & 0 & s_{14} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad (s \in \ _1), \\ \rho(b) &= \begin{bmatrix} b_{11} & 0 & 0 & b_{14} \\ 0 & b_{22} & b_{23} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad (b \in \pi^{-1}(E_{11})), \\ \rho(b') &= \begin{bmatrix} b_{11}' & 0 & 0 & 0 \\ 0 & b_{22}' & b_{23}' & b_{24}' \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad (b' \in \pi^{-1}(E_{12})) \\ \rho(c) &= \begin{bmatrix} c_{11} & 0 & 0 & 0 \\ 0 & c_{22} & c_{23} & 0 \\ 0 & c_{32} & c_{33} & c_{34} \end{bmatrix} \quad (c \in \pi^{-1}(E_2)). \end{split}$$

Moreover, by comparing the 4-th row of $[\rho(b), \rho(c)]$ (resp. $[\rho(b), \rho(b')]$), we get

$$b_{22}, b_{23} = 0 \quad (b \in \pi^{-1}(E_{11})).$$

Thus $\pi^{-1}(E_{11})$ has a structure of a non commutative ideal of A. But this is a contradiction. Hence we get

$$\deg(\varphi(-_1)|E_1) = \dim E_1.$$

Now, with respect to the decomposition $E_1 \oplus E_2$, ρ can be expressed as follows:

$$\rho(b) = \begin{bmatrix} b_{11} & 0 & b_{13} \\ 0 & 0 & 0 \end{bmatrix} \quad (b \in \), \quad \rho(c) = \begin{bmatrix} c_{11} & 0 & 0 \\ 0 & c_{22} & c_{23} \end{bmatrix} \quad (c \in \ -\pi^{-1}(E_2)).$$

Similarly as in the proof of Proposition 1, we have the following:

- (1) is a Lie subalgebra of ,
- (2) $\rho'' = \rho | E_2$ is an admissible affine representation of $\overline{}$ in E_2 , and the algebra \overline{B} corresponding to ρ'' is a subalgebra of A,
- (3) $A = B \oplus \overline{B}$, semi direct sum with $B\overline{B} = 0$,
- (4) B (resp. \overline{B}) has a right identity.

This completes the proof.

We can easily prove the following.

Corollary. If A is non degenerate, then A, B and \overline{B} are regular and $B \perp \overline{B}$ with respect to h.

Proposition 3. Let ρ be an admissible affine representation of a real reductive Lie algebra = \oplus with $\neq \{0\}$ in E^n satisfying the condition (*), and A the corresponding algebra over . Let B be a minimal ideal of A.

Assume that (A, e, h) is regular and indecomposable. Then B is non commutative.

Proof. Assume that B is commutative. Denote by the underlying Lie algebra of B and by N the radical of B. Then there exists a commutative associative semi-simple subalgebra S of B such that $B = N \oplus S$, semi-direct sum.

We shall investigate the following three cases separately.

(1) B = S. In this case, by Lemma 9, the subalgebra B^{\perp} with respect to h satisfies the following conditions:

- (1) $A = B \oplus B^{\perp}$, semi direct sum with $BB^{\perp} = 0$,
- (2) $L(c)|B| \ (c \in B^{\perp})$ is a derivation of B.

Since B is a commutative semi simple algebra, $Der B = \{0\}$. Therefore, by the above condition (2), we have $B^{\perp}B = 0$. But this contradicts to the assumption.

(2) B = N. In this case, for any element x of A, we have h(x, B) = Tr R(xB) = 0. Thus we have

$$h(x,B) = 0 \quad (x \in A).$$

This contradicts to the assumption that A is non degenerate.

(3) $N \neq \{0\}$ and $S \neq \{0\}$. Since S is a commutative semi simple algebra, S is expressed as $S = \bigoplus S_i$, where S_i $(1 \le i \le r)$ is a commutative simple ideal of S with the identity e_i . Put $B_i = Be_i$ (i = 1, 2, ..., r). Since the underlying Lie algebra of B is contained in the center , we have [L(b), L(x)] = 0 $(b \in , x \in)$. Therefore it is clear that B_i is an ideal of A. Since B is a minimal ideal of A, S has to be simple.

Now, since is contained in the center of , the restriction L(s)|B to B of L(s) $(s \in)$ induces a Lie homomorphism L|B of a semi simple Lie algebra into a Lie algebra [B] consisting of all linear endomorphisms X of B satisfying [X, L(b)] = 0 $(b \in B)$.

By the Lemma below, [B] is a solvable Lie subalgebra of (B). Thus we have L|B = 0. But this contradicts to the assumption (*).

This completes the proof of Proposition 3.

Lemma. Let $B = N \oplus S$ be a commutative associative algebra over the real with a unit element e, where N (resp. S) denotes the radical (resp. a simple subalgebra) of B. Then the Lie algebra [B] defined above is solvable.

Proof of Lemma.

(a) $S = R\{e\}$. In this case, since N is nilpotent, there exists a base $\{x_1, x_2, \ldots, x_m\}$ of N such that, with respect to the base $\{x_1, x_2, \ldots, x_m, e\}$ of $B, L(x_i)$ is expressed as a matrix of the following form:

$$L(x_i) = \begin{bmatrix} & & 0 \\ & * & \vdots \\ & & 0 \\ 0 & \cdots & 0 & 1 \\ & & 0 \end{bmatrix} i\text{-th} \quad (1 \le i \le m).$$

Let $X = (x_{ij})_{1 \le i,j \le m+1}$ be an element of [B]. By a direct computation, we have

$$x_{11} = x_{22} = \dots = x_{m+1 m+1}, \quad x_{ij} = 0 \ (i > j).$$

Therefore the Lie algebra [B] is solvable.

(b) $S = R\{e, f\}$ with $f^2 = -e$. Denote by L(x)|N the restriction to N of the left (= right) multiplication of B by an element x. Then we have $(L(f)|N)^2 = -id$.

Therefore dim N is even. Moreover, since N is nilpotent, there exists a base $\{x_i, y_i\}_{1 \le i \le m}$ of N such that, with respect to the base $\{x_1, y_1, \ldots, x_m, y_m, f, e\}$ of B, $L(x_i)$ and $L(y_i)$ are expressed as matrices of the following form:

$$L(x_i) = \begin{bmatrix} & & 0 \\ & * & \vdots \\ & & 0 \\ 0 & \cdots & 0 & J \\ & & 0 \end{bmatrix}_{i-\text{th}} , \quad L(y_i) = \begin{bmatrix} & & 0 \\ & * & \vdots \\ & & 0 \\ 0 & \cdots & 0 & E \\ & & & 0 \end{bmatrix}_{i-\text{th}}$$

where $J = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ and $E = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

Let $X = (x_{ij})_{1 \le i,j \le m+1}$ be an element of [B], where $x_{ij} \in (2, R)$. By a direct computation, we have

$$x_{11} = x_{22} = \dots = x_{m+1 \, m+1} = \alpha E + \beta J \ (\alpha, \beta \in R), \quad x_{ij} = 0 \ (i > j).$$

Therefore the Lie algebra [B] is solvable. This completes the proof of Lemma.

By Propositions 1, 2 and 3, we obtain the following theorem.

- **Theorem 1.** Let A = (, e, h) be a regular algebra over a real reductive Lie algebra $= \oplus$, and B a minimal ideal of A. Then,
 - (1) B is regular,
 - (2) there exists a regular subalgebra \overline{B} of A such that $A = B \oplus \overline{B}$, semi direct with $B\overline{B} = 0$ and $B \perp \overline{B}$ with respect to the canonical 2-form h of A.

Proof. Let A be a left symmetric algebra over $= \oplus$ corresponding to an admissible affine representation $\rho = (\varphi, \pi)$ in E.

1. Assume that $= \{0\}$. Then A is a commutative associative semi-simple algebra, and there is nothing to prove.

2. Assume next that $\neq \{0\}$. Then, by Propositions 1, 2, 3 and Corollaries, we obtain the theorem.

Let $B_i = (i, e_i, h_i)$ (i = 1, 2) be a regular algebra over a real reductive Lie algebra i. Denote by D a Lie homomorphism of 2 into the derivation algebra Der_1 of 1, and by $= 1 \oplus D_2$ the semi direct sum of 1 by 2 that is determined by D. Then is reductive if and only if there exists a Lie homomorphism φ of 2 into 1 such that

$$D(c) = \operatorname{ad} \varphi(c) \quad (c \in {}_2).$$

Moreover $D(c) = \operatorname{ad} \varphi(c)$ is a derivation of B_1 is equivalent to

$$L(b)R(\varphi(c)) = R(\varphi(c))L(b) \ (b \in B_1).$$

Therefore, by Lemma 10, we obtain the following theorem.

Theorem 2. Let $B_i = (i, e_i, h_i)$ (i = 1, 2) be a regular algebra over a real reductive Lie algebra i_i , and φ a Lie homomorphism of 2 into 1 satisfying the following condition:

$$[L(b), R(\varphi(c))] = 0 \quad (b \in [1, c \in [2]),$$

where $D(c) = \operatorname{ad} \varphi(c)$. Then the semi direct sum $A = B_1 \oplus_D B_2$ is a regular algebra over a real reductive Lie algebra $= _1 \oplus_D _2$ with a right identity $e = e_1 + e_2$ and the canonical 2-form $h = h_1 + h_2$.

3 In this section, we shall give a remark and some examples.

First, let A be a left symmetric algebra over a real Lie algebra . Assume that A has a right identity e. Denote by $_0$ the linear subspace of defined by

$$_{0} = \{a \in ; \operatorname{Tr} R(a) = 0\}.$$

Then we have the following direct sum decomposition as a linear space: $=_0 \oplus R \{e\}$. Put, for $a, b \in$,

$$ab = a * b + h_0(a, b)e,$$

where a * b denotes the ₀-component of ab. Then, by a direct computation, we have

(1) $A_0 = (0, *)$ is an algebra over 0 satisfying

(1)
$$R_0(a,b,c) = -h_0(b,c)a + h_0(a,c)b,$$

where R_0 denotes the curvature of A_0 ,

(2) h_0 is a symmetric bilinear form on A_0 of Hessian type satisfying

$$h_0(a,b) = \frac{1}{n}h(a,b) \quad (a,b \in A_0),$$

where h denotes the canonical 2-form on A,

- (3) $D = \operatorname{ad} e$ is a derivation of the Lie algebra _0 satisfying
 - (2) $h_0(a, D(b)) + h_0(D(a), b) = 0,$

(3)
$$D(a * b) = D(a) * b + a * D(b)$$

Conversely let $A_0 = ({}_0, *)$ be an algebra over a real Lie algebra ${}_0$ with a symmetric bilinear form h_0 of Hessian type and a derivation D of ${}_0$ satisfying the above conditions (1), (2) and (3). Then we enlarge ${}_0$ as follows:

$$= _{0} \oplus R \{e\}$$
 with $[e, a] = D(a) (a \in _{0}).$

Moreover we define a multiplication in by

$$ab = a * b + h_0(a,b)e, \quad ae = a, \quad ea = a + D(a), \quad ee = e \ (a,b \in _0).$$

We can easily show that $A = (, \cdot)$ is a left symmetric algebra over with a right identity e. Thus we obtain the following theorem.

Theorem 3. Let $A = (, \cdot)$ be a left symmetric algebra over with a right identity e. Then there exist an ideal $_0$ of $_0$ of codimension 1, a structure of an algebra $A_0 = (_0, *)$ over $_0$, a symmetric bilinear form h_0 on A_0 of Hessian type, and a derivation D of $_0$ satisfying the following conditions:

- (1) an algebra A_0 is projectively flat with respect to h_0 ,
- (2) $h_0(D(a), b) + h_0(a, D(b)) = 0,$
- (3) D(a * b) = D(a) * b + a * D(b).

Conversely, if an algebra $A_0 = (_0, *)$ over a Lie algebra $_0$ with a symmetric bilinear form h_0 of Hessian type and a derivation D of $_0$ satisfying the above conditions (1), (2) and (3), then we can construct a structure of a left symmetric algebra $A = (\, \cdot)$ over an enlarged Lie algebra

$$= {}_{0} \oplus R \{e\} with [e, x] = D(x) (x \in {}_{0})$$

having a right identity e.

This is a slight modification of a theorem about a left symmetric algebra with identity ([N.P], [M,2]).

Let $A = (, \cdot)$ be a left symmetric algebra over with a right identity e. Suppose that has a non trivial center, that is, there exists an element a_0 of such that $e + a_0$ is in the center of . We define a multiplication in $=_0 \oplus R \{e\}$ by

$$ab=a\ast b+h_0(a,b)e_t,\quad ae_t=a,\quad e_ta=a+(1-t)D(a),\quad e_te_t=e_t,$$

where $e_t = e + ta_0$ $(t \in R)$ and $a, b \in _0$.

Then $A_t = (, \cdot)$ is a left symmetric algebra over with a right identity e_t , for any t. For $t = 1, A_1$ is a left symmetric algebra over with an identity e_1 .

We shall give two examples.

Example 1. Let A_t be a left symmetric algebra over (2, R) whose multiplication table is as follows:

$$\{a, b, c, e\}$$
 is a base of $(2, R)$ and $t \in R$.

A_t	a	b	c	e
a	e-tc	b	-c	a - tc
b	-b	0	$\frac{1}{2}(e + a - tc)$	$\frac{1}{2}(te + ta + 2b - t^2c)$
c	c	$\frac{1}{2}(e-a-tc)$	0	- c
e	a - tc	$\frac{1}{2}(te + ta + 2b - t^2c)$	c	e + tc

Then $e_t = e - tc$ is a right identity of A_t . Moreover, $e_0 = e$ is an identity of A_0 .

For non zero s, t, we have an algebraic isomorphism σ of A_s onto A_t defined by

$$\sigma(e) = e, \quad \sigma(a) = a, \quad \sigma(b) = \frac{s}{t}b \quad \text{and} \quad \sigma(c) = \frac{t}{s}c.$$

Example 2. Let $A_{(s,t)}$ be a left symmetric algebra whose multiplication table is as follows: $\{e, a, b\}$ is a base and $(s, t) \in \mathbb{R}^2$

By a direct computation, it is easily proved that

- (1) e sa 2tb is a right identity of $A_{(s,t)}$,
- (2) e sa 2tb is an identity if and only if (s, t) = (0, 0),
- (3) if $s \neq s'$, then there does not exist an algebraic isomorphism of $A_{(s,t)}$ onto $A_{(s',t')}$.

Next we shall give examples of left symmetric algebras over a real reductive Lie algebra.

Example 3. Denote by D the adjoint representation of (2, R). Then we can construct the semi direct sum $A = (2, R) \oplus_D (2, R)$ of the associative algebra (2, R) by the same associative algebra (2, R) that is determined by D.

A has an identity and the canonical 2-form h on A is non degenerate.

Example 4. Let be a Lie subalgebra of (6, R) generated by $\{a \otimes E_3; a \in (2, R)\}$ and the set C of matrices of degree 6 defined below:

$$(1) \quad C = \left\{ \begin{bmatrix} E_2 & & \\ & 0 & \\ & & 0 \end{bmatrix}, \begin{bmatrix} 0 & & \\ & E_2 & \\ & & 0 \end{bmatrix}, \begin{bmatrix} 0 & & \\ & 0 & \\ & & E_2 \end{bmatrix} \right\},$$

$$(2) \quad C = \left\{ \begin{bmatrix} E_2 & 0 & 0 \\ & E_2 & 0 \\ & & 0 \end{bmatrix}, \begin{bmatrix} 0 & E_2 & 0 \\ & 0 & 0 \\ & & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ & 0 & 0 \\ & & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ & 0 & 0 \\ & & E_2 \end{bmatrix} \right\},$$

$$(3) \quad C = \left\{ \begin{bmatrix} E_2 & 0 & 0 \\ & E_2 & 0 \\ & & E_2 & 0 \\ & & & E_2 \end{bmatrix}, \begin{bmatrix} 0 & E_2 & 0 \\ & 0 & E_2 \\ & & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & E_2 \\ & 0 & 0 \\ & & & 0 \end{bmatrix} \right\}.$$

The polynomial | | is expressed as follows:

(1) $(x_1x_6 - x_2x_5)(x_2x_3 - x_1x_4)(x_4x_5 - x_3x_6),$

(2)
$$(x_1x_4 - x_2x_3)(x_3x_6 - x_4x_5)^2$$

(3) $(x_3x_6 - x_4x_5)^3$.

By a direct computation, we have the following.

- (1) The algebra corresponding to (1) is simple with non degenerate canonical 2-form,
- (2) The algebra corresponding to (2) is simple with degenerate canonical 2-form and trivial radical,
- (3) The algebra corresponding to (3) is simple with degenerate canonical 2-form and non trivial radical.

References

- [H] J. Helmstetter, Radical d'une algebre symmetrique à gauche, Ann. Inst. Fourier, Grenoble 29(1979), 17-35.
- [J] N. Jacobson, Lie algebras, Interscience Tracts #10, Interscience, New York (1962).
- [K1] H. Kim, Complete left-invariant affine structures on nilpotent Lie groups, J.Diff.Geometry 24(1986), 373-394.
- [K2] _____, The geometry of left symmetric algebras, J. Korean Math. Soc., 33(1996), 1049– 1067.
- [M1] A. Mizuhara, Affine representations of nilpotent Lie algebras and left symmetric algebras, Math. Japonica 34(1989), 53-64.
- [M2] _____, Left invariant indefinite Riemannian metrics with constant sectional curvature on Lie groups, Math. Japonica 47(1998), 143–154.
- [N,P] K. Nomizu and U. Pinkall, On a certain class of homogeneous projectively flat manifolds, Tohoku Math. J. 39(1987), 407–427.
- [Se] D. Segal, The structure of complete left symmetric algebras, Math. Ann. 293(1992), 569-578.
- [S] H. Shima, Homogeneous Hessian manifolds, Ann. Inst. Fourier, Grenoble 30(1980), 91–128.