A BEST-CHOICE PROBLEM FOR A PRODUCTION SYSTEM WHICH DETERIORATES AT A DISORDER TIME

Minoru Sakaguchi*

Received October 10, 2000

Abstract

A production system is working in the GOOD state and there is a constant probability that it falls into the BAD state (and remains there) at a disorder moment. A decision-maker observes the output X_{t} of the system at each time $t=1,2, \ldots, n$, and decide either CONTINUE (i.e. reject X_{t} and observe X_{t+1}), or STOP (i.e. accept and receive X_{t}). The objective is to maximize the expected net value of the X_{τ} at the stopping time τ he decides during the given finite period of time n. Recall is not allowed (i.e. the observation once rejected cannot be recalled later.) For uniformly distributed observations we derive the Optimality Equation and show that the optimal policy is not necessarily of a control-limit type. Also an example in which the optimal policy is of a control-limit type is shown. An analytical solution for the infinite-horizon version by introducing discount rate over time, where a functional equation must be solved, is as yet unknown.

1 Problem and the Optimality Equation. The output of a production system is being observed one by one sequentially over the time. The system can be in either a GOOD or a BAD state. The true state of the system is unknown and only be inferred from the quality of the output. Let $f_{0}\left(f_{1}\right)$ be the pdf of quality X of the output in the GOOD (BAD) state. We assume that f_{0} stochastically dominates f_{1}.

At each period $k, k=1,2, \ldots, n$, the controller observes the output X_{k} and must choose one of the two decisions; $\operatorname{STOP}\left(=\right.$ accepts the output value $\left.X_{k}\right)$ or CONTINUE ($=$ reject the X_{k} and then observe the next X_{k+1}). After the decision CONTINUE has been selected, state transitions occur which is descrived by a Markov chain with the transition matrix

where $a=1-\bar{a} \in(0,1)$ is the transition probability that a sysytem in state $0(=$ GOOD $)$ during one period, remains in state 0 during the next one piriod. If the state enters state $1(=\mathrm{BAD})$, it remains in state 1 thereafter.

The objective is to maximize the expected net value of the output X_{τ} at the stopping time τ. The time horizon is n. If the controller fails to stop until the n-th output, he must stop at the n-th. Recall is not allowed (i.e. the observation once rejected cannot be recalled later).

For uniformly distributed observations we develop the routine method of deriving the optimal policy by dynamic programming, and we show that (1) Under some condition the expected net value obtained by following the optimal policy becomes larger as the

[^0]controller's opinion that the unknown true state of the system is GOOD increases. (2) The optimal policy is not necessarily of a control-limit type (i.e. STOP if and only if the observation X_{τ} exceeds some "control-limit" which is a function of the time remaining and the posterior knowledge currently possesed).

The model discussed in this paper belong to the area of the disorder problem in the partially observable Markov process combined with best-choice problems in the area of the so-called secretary problems. The model has many applications and has atracted the attention of many authors. Fundamental facts and important results are contained in the works of $[1,2,4,5,6,9]$. Closely related works to this study are Gilbert and Mosteller [2; Section 3], Grosfeld-Nir [3] and Sakaguchi [8].

Let $\pi(\bar{\pi}) \in[0,1]$ be the probability that the system is in state $0(1)$ at the begining of a period, just prior to the decision. If the current information on the unknown true state at period t is $\langle\pi, \bar{\pi}\rangle$, the action CONTINUE is chosen, and an r.v. X_{t} is observed, then the posterior information about the true state at the begining of period $t+1$ is $<\pi\left(X_{t}\right), \bar{\pi}\left(X_{t}\right)>$, where

$$
\begin{equation*}
\pi(x)=a \pi f_{0}(x) /\left(\pi f_{0}(x)+\bar{\pi} f_{1}(x)\right) \tag{1.2}
\end{equation*}
$$

via Bayes' formula and state-transition by matrix (1.1). The decision in the $(t+1)-$ st period is made based on $<\pi\left(X_{t}\right), \bar{\pi}\left(X_{t}\right)>$. Note that since $\pi(x)=a\left\{1+(\bar{\pi} / \pi) f_{1}(x) / f_{0}(x)\right\}^{-1}$.

$$
\begin{gather*}
\pi\left\{\begin{array}{l}
=0 \\
\in(0,1) \\
=1
\end{array}\right\} \Rightarrow \pi(x)\left\{\begin{array}{l}
\equiv 0 \\
\in[0, a] \\
\equiv a
\end{array}\right\}, \quad \forall x \tag{1.2a}\\
\quad \pi<\pi^{\prime} \Rightarrow \pi(x) \leq \pi^{\prime}(x), \quad \forall x \tag{1.2b}
\end{gather*}
$$

Define state (k, π) to mean that $\left(1^{0}\right)$ we have not yet stopped the process, $\left(2^{0}\right)$ the current information about the unknown true state of the system is $<\pi, \bar{\pi}\rangle,\left(3^{0}\right)$ there remain k periods until horizon comes, and $\left(4^{0}\right)$ we choose the decision CONTINUE. We denote by $v_{k}(\pi)$ the expected value that will be obtained if all decisions in and after state (k, π) are made optimally. Then we have the Optimality Equation(OE)

$$
\begin{equation*}
v_{k}(\pi)=\mathrm{E}\left[X \vee v_{k-1}(\pi(X)) \mid \pi\right] \quad\left(k=1,2, \ldots, n ; \quad 0 \leq \pi \leq 1 ; \quad v_{0}(\pi) \equiv 0\right) \tag{1.3}
\end{equation*}
$$

where $x \vee y=\max (x, y)$, and $\mathrm{E}[g(x) \mid \pi]$ means $\int g(x)\left(\pi f_{0}(x)+\bar{\pi} f_{1}(x)\right) d x$ for any function $g(x)$. The optimal decision in state (k, π) and after observing the first r.v. X is ; STOP(CONTINUE) if $X>(<) v_{k-1}(\pi(X))$.

From (1.2a) we evidently have

$$
\begin{equation*}
v_{k}(0)=\mathrm{E}_{1}\left[X \vee v_{k-1}(0)\right] \quad \text { and } \quad v_{k}(1)=\mathrm{E}_{0}\left[X \vee v_{k-1}(a)\right] \tag{1.4}
\end{equation*}
$$

where $\mathrm{E}_{i}(i=0,1)$ means expectation taken under the pdf f_{i}.

First we prove the following result.
Theorem 1 (i) $v_{k}(\pi)<v_{k+1}(\pi), \quad \forall \pi \in[0,1]$.
(ii) If $\pi(x)$ is a non-decreasing function of x, then $v_{k}(\pi), k \geq 1$, is non-decreasing in π.

Proof. Induction is used.
(i); $\quad v_{1}(\pi)=\mathrm{E}[X \vee 0 \mid \pi]=\pi \mathrm{E}_{0} X+\bar{\pi} \mathrm{E}_{1} X>0=v_{0}(\pi)$.

Soppose that

$$
v_{0}(\pi)<v_{1}(\pi)<\cdots<v_{k}(\pi), \quad \forall \pi \in[0,1] .
$$

Then

$$
v_{k+1}(\pi)=\mathrm{E}\left[X \vee v_{k}(\pi(X)) \mid \pi\right]>\mathrm{E}\left[X \vee v_{k-1}(\pi(X)) \mid \pi\right]=v_{k}(\pi)
$$

(ii); $\quad v_{1}(\pi)=\pi \mathrm{E}_{0} X+\bar{\pi} \mathrm{E}_{1} X=\mathrm{E}_{1} X+\pi\left(\mathrm{E}_{0} X-\mathrm{E}_{1} X\right)$
is non-decreasing in π, since $\mathrm{E}_{0}(X) \geq \mathrm{E}_{1}(X)$.
Soppose that $v_{1}(\pi), v_{2}(\pi), \cdots, v_{k}(\pi)$ are non-decreasing in π. Then for $\pi<\pi^{\prime}$.

$$
v_{k+1}\left(\pi^{\prime}\right)=\mathrm{E}\left[X \vee v_{k}\left(\pi^{\prime}(X)\right) \mid \pi^{\prime}\right] \geq \mathrm{E}\left[X \vee v_{k}(\pi(X)) \mid \pi^{\prime}\right]
$$

since $\pi(x) \leq \pi^{\prime}(x), \quad \forall x$, and hence $v_{k}(\pi(x)) \leq v_{k}\left(\pi^{\prime}(x)\right)$ by induction hypothesis.
Therefore it follows that

$$
\begin{aligned}
& v_{k+1}\left(\pi^{\prime}\right)-v_{k+1}(\pi) \geq \mathrm{E}\left[X \vee v_{k}(\pi(X)) \mid \pi^{\prime}\right]-\mathrm{E}\left[X \vee v_{k}(\pi(X)) \mid \pi\right] \\
= & {\left[\left(\pi^{\prime} \mathrm{E}_{0}+\bar{\pi}^{\prime} \mathrm{E}_{1}\right)-\left(\pi \mathrm{E}_{0}+\bar{\pi} \mathrm{E}_{1}\right)\right]\left[X \vee v_{k}(\pi(X))\right]=\left(\pi^{\prime}-\pi\right)\left(\mathrm{E}_{0}-\mathrm{E}_{1}\right)\left[X \vee v_{k}(\pi(X))\right] }
\end{aligned}
$$

Now since $\pi(x)$ is non-decreasing in x by the assumed condition in (ii), and hence $v_{k}(\pi(x))$ is non-decreasing in x by induction hypothesis, and since f_{0} stochastically dominates f_{1}, we obtain $\left(\mathrm{E}_{0}-\mathrm{E}_{1}\right)\left[X \vee v_{k}(\pi(X))\right] \geq 0$. This implies

$$
\pi^{\prime}>\pi \Rightarrow v_{k+1}\left(\pi^{\prime}\right)-v_{k-1}(\pi) \geq 0
$$

which completes the induction arguments.
Remark 1. The condition that f_{0} stochastically dominates f_{1} dose not imply that $\pi(x)=\frac{a \pi f_{0}(x)}{\pi f_{0}(x)+\bar{\pi} f_{1}(x)}$ is non-decreasing in x. An example is as follows:

Let, for $p \in(0,1)$,

$$
\begin{align*}
& f_{0}(x)=I \quad(0 \leq x \leq 1) \\
& f_{1}(x)=\left(p^{-1}+p^{-2}\right)(p-x) I(0 \leq x \leq p)+(1 / \bar{p})(x-p) I(p<x \leq 1) \tag{1.5}
\end{align*}
$$

It is easy to see that f_{0} dominates f_{1}. We have in this case

$$
\pi(x)=\left\{\begin{array}{l}
\frac{a \pi}{\pi+\bar{\pi}\left(p^{-1}+p^{-2}\right)(p-x)}, \quad \text { if } x<p \\
\frac{a \pi}{\pi+(\bar{\pi} / \bar{p})(x-p)}, \quad \text { if } x>p
\end{array}\right.
$$

which is decreasing in $p \leq x \leq 1$. See Figures 1 and 2 .

Figure 1: The two pdfs given by (1.5)

Figure 2: Posterior probability $\pi(x)$ for the pdf s (1.5).

2 Finite Horizon with Uniformly Distributed Observations. We first study a special case where the pdf s are both uniform and f_{0} stochastically dominates f_{1}. That is, let

$$
\begin{equation*}
f_{0}(x)=I(0 \leq x \leq 1) \text { and } f_{1}(x)=p^{-1} I(0 \leq x \leq p) \tag{2.1}
\end{equation*}
$$

where $p \in(0,1)$, and $I(\mathrm{e})$ is the indicater function of the event e.
From (1.1) and (1.2) it is clear that

$$
\begin{equation*}
\pi(x)=\hat{\pi} I((0 \leq x \leq p)+a I((p<x \leq 1) \tag{2.2}
\end{equation*}
$$

where $\hat{\pi} \equiv a p \pi /(p \pi+\bar{\pi})$.
If $p<x \leq 1$, the system is known to be in good state, and so the strategy thereafter is forced to follow the optimal policy starting from state with $\pi=a$. The OE (1.3) becomes

$$
\begin{align*}
v_{k}(\pi) & =\left[\int_{0}^{p}\left\{x \vee v_{k-1}(\hat{\pi})\right\}+\int_{p}^{1}\left\{x \vee v_{k-1}(a)\right\}\right]\left(\pi f_{0}(x)+\bar{\pi} f_{1}(x)\right) d x \tag{2.3}\\
& =(\pi+\bar{\pi} / p) \int_{0}^{p}\left\{x \vee v_{k-1}(\hat{\pi})\right\} d x+\pi \int_{p}^{1}\left\{x \vee v_{k-1}(a)\right\} d x
\end{align*}
$$

and, for $\pi=0$,

$$
v_{k}(0)=p^{-1} \int_{0}^{p}\left(x \vee v_{k-1}(0)\right) d x \quad \text { (by using (1.4)) }
$$

which is rewritten as

$$
\begin{equation*}
v_{k}(0)=p U_{k} \tag{2.4}
\end{equation*}
$$

where $\left\{U_{k}\right\}$ satisfies the recurrsion $U_{k}=\frac{1}{2}\left(1+U_{k-1}^{2}\right), \quad\left(k=1,2, \ldots, U_{0} \equiv 0\right)$.
Also for $\pi=1$, (1.4) gives

$$
v_{k}(1)=\int_{0}^{1}\left(x \vee v_{k-1}(a)\right) d x=\frac{1}{2}\left[1+\left(v_{k-1}(a)\right)^{2}\right],
$$

since $v_{k-1}(a) \leq v_{k-1}(1)<1$.
From the OE (2.3) we obtain
Theorem 2. For the best-choice problem with two uniform pdf with a disorder moment, described by $(2.1) \sim(2.3)$, the optimal decision in state (k, π) and after observing a $r . v$. X, is

Stop if $X \in B_{k}(\pi)$, and Continue, if otherwise,
where

$$
B_{k}(\pi)=\left\{\begin{array}{l}
\left(v_{k-1}(\hat{\pi}), 1\right), \quad \text { in Case } 1 \quad\left(\text { i.e. } v_{k-1}(a)<p\right) \tag{2.5}\\
\left(v_{k-1}(\hat{\pi}), p\right) \cup\left(v_{k-1}(a), 1\right), \quad \text { in Case } 2\left(\text { i.e. } v_{k-1}(\hat{\pi})<p<v_{k-1}(a)\right) \\
\left(v_{k-1}(a), 1\right), \quad \text { in Case } 3 \quad\left(\text { i.e. } p<v_{k-1}(\hat{\pi})\right) .
\end{array}\right.
$$

We show that $B_{2}(\pi)$ can be a disconnected set.
Since we have

$$
v_{1}(\pi)=\pi \mathrm{E}_{0} X+\bar{\pi} \mathrm{E}_{1} X=\frac{1}{2}(\pi+\bar{\pi} p)=\frac{1}{2}(p+\bar{p} \pi),
$$

$$
\frac{1}{2}(p+\bar{p} \pi)<p<\frac{1}{2}(p+\bar{p} a) \Longleftrightarrow p \in\left(0, \frac{a}{1+a}\right), \quad \text { indep. of } \pi
$$

and

$$
\frac{1}{2}(p+\bar{p} a)<p \Longleftrightarrow p \in\left(\frac{a}{1+a}, 1\right),
$$

the optimal stopping region $B_{2}(\pi)$ is by (2.5)

$$
\begin{equation*}
B_{2}(\pi)=\left(\frac{1}{2}(p+\bar{p} \hat{\pi}), p\right) \cup\left(\frac{1}{2}(p+\bar{p} a), 1\right), \tag{2.6}
\end{equation*}
$$

if $0<p<a /(1+a)$, i.e., Case 2;

$$
\begin{equation*}
=\left(\frac{1}{2}(p+\bar{p} \hat{\pi}), 1\right), \tag{2.7}
\end{equation*}
$$

if $a /(1+a)<p<1$, i.e., Case 1. See Figure 3.

Case 2, i.e. $0<p<\frac{a}{1+a}$.

Case 1, i.e. $\frac{a}{1+a}<p<1$

Figure 3. Optimal stopping region in state $(2, \pi)$

3 Finite Horizon with Uniformly Distributed Observations-Continued. Let, for $p \in\left(0, \frac{1}{2}\right)$,

$$
\begin{equation*}
f_{0}(x)=I(p \leq x \leq 1+p), \quad \text { and } \quad f_{1}(x)=I(0 \leq x \leq 1) . \tag{3.1}
\end{equation*}
$$

From (1.1)-(1.2) it is clear that

$$
\begin{equation*}
\pi(x)=a \pi I(p \leq x \leq 1)+a I(1 \leq x \leq 1+p) . \tag{3.2}
\end{equation*}
$$

Note that if $x \in\left\{\begin{array}{c}(0, p) \\ (1,1+p)\end{array}\right\}$ the system is known to be in $\left\{\begin{array}{c}\text { bad } \\ \text { good }\end{array}\right\}$ state and so the strategy thereafter is forced to follow the optimal policy starting from state with $\pi=\left\{\begin{array}{l}0 \\ 1\end{array}\right\}$.

Thus the $\mathrm{OE}(1.3)$ becomes

$$
\begin{gather*}
v_{k}(\pi)=\left[\int_{0}^{p}\left(x \vee v_{k-1}(0)\right)+\int_{p}^{1}\left(x \vee v_{k-1}(a \pi)\right)+\int_{0}^{1+p}\left(x \vee v_{k-1}(a)\right)\right]\left(\pi f_{0}(x)+\bar{\pi} f_{1}(x)\right) d s \tag{3.3}\\
=\bar{\pi} p U_{k-1}+\int_{p}^{1}\left(x \vee v_{k-1}(a \pi)\right) d x+\pi \int_{1}^{1+p}\left(x \vee v_{k-1}(a)\right) d x \\
\left(k=1,2, \ldots, n ; \quad 0 \leq \pi \leq 1 ; \quad v_{0}(\pi) \equiv 0, v_{k}(0)=U_{k}\right)
\end{gather*}
$$

since the first integral in [\cdots] is equal to

$$
\begin{gathered}
\bar{\pi} \int_{0}^{p}\left(x \vee v_{k-1}(0)\right)\left(\pi f_{0}(x)+\bar{\pi} f_{1}(x)\right) d x \\
\quad=\bar{\pi} \int_{0}^{p}\left(x \vee U_{k-1}\right) d x=\bar{\pi} p U_{k-1} .
\end{gathered}
$$

Here the sequence $\left\{U_{k}\right\}$ is the one which appeared in Section 2.
Also for $\pi=1,(3.3)$ gives

$$
\begin{equation*}
v_{k}(1)=\int_{p}^{1+p}\left(x \vee v_{k-1}(a)\right) d x=v_{k-1}(a)+\frac{1}{2}\left(1+p-v_{k-1}(a)\right)^{2} \tag{3.4}
\end{equation*}
$$

since $p<\frac{1}{2} \leq U_{k-1}=v_{k-1}(0) \leq v_{k-1}(a)<1+p$.
Hence we obtain :
Theorem 3. For the best-choice problem with two pdfs and a disorder moment described by (3.1) ~ (3.3), the optimal decision in state (k, π) and after observing a r.v. X, is :

Stop, if $X \in B_{k}(\pi)$, and Continue, if otherwise,
where

$$
B_{k}(\pi)=\left\{\begin{array}{l}
\left(v_{k-1}(a \pi), 1+p\right), \text { in Case } 1 \text { i.e., } v_{k-1}(a)<1, \tag{3.5}\\
\left(v_{k-1}(a \pi), 1\right) \cup\left(v_{k-1}(a), 1+p\right), \text { in Case } 2 \text { i.e., } v_{k-1}(a \pi)<1<v_{k-1}(a), \\
\left(v_{k-1}(a \pi), 1+p\right), \text { in Case } 3 \text { i.e., } 1<v_{k-1}(a \pi) .
\end{array}\right.
$$

We obtain from (1.5)

$$
v_{1}(\pi)=\frac{1}{2}+p \pi, \quad(\text { Stop is optimal in state }(1, \pi))
$$

and therefore state $(2, \pi)$ is in Case 1. The optimal decision in state $(2, \pi)$, and observing the r.v. X is: Stop, if $X \in B_{2}(\pi)=\left(\frac{1}{2}+p a \pi, 1+p\right)$, and Continue, if otherwise. So, from (3.3) ~ (3.5), we have

$$
\begin{gather*}
v_{2}(\pi)=\frac{1}{2} p \bar{\pi}+\int_{p}^{1}\left\{x \vee\left(\frac{1}{2}+p a \pi\right)\right\} d x+\pi \int_{1}^{1+p} x d x \tag{3.6}\\
=\frac{5}{8}+\left\{\frac{1}{2}(1+p)+a\left(\frac{1}{2}-p\right)\right\} p \pi+\frac{1}{2}(a p \pi)^{2}
\end{gather*}
$$

Note that $v_{2}(\pi)$ is convexly increasing in $\pi \in[0, a]$, with values

$$
v_{2}(0)=\frac{5}{8} \quad \text { and } \quad v_{2}(a)=\frac{5}{8}+\frac{1}{2}\left(a+a^{2}\right) p+\frac{1}{2} a \bar{a}\left(1-a-a^{2}\right) p^{2} .
$$

From Theorem 3 and (3.4)-(3.5), it follows that

$$
v_{k-1}(a) \geq v_{k-1}(a \pi) \geq v_{k-1}(0) \xrightarrow[(k \rightarrow \infty)]{ } 1
$$

Starting at any given $\pi \in(0,1]$ and large k, the posterior $\pi(\cdot)$ and $v_{k-1}(\pi(\cdot))$ both become smaller as the process goes on. The optimal strategy behaves as in Case 3 , when k remains large, and passing Case 2, reaches Case 1 at last, as k decreases.

For example, from (3.5)-(3.6) we have in state $(3, \pi)$,

$$
\begin{aligned}
& v_{2}(a \pi)<1<v_{2}(a), \quad \text { i.e., Case 2, } \\
\Longleftrightarrow & \left\{\frac{1}{2}(1+p)+a\left(\frac{1}{2}-p\right)\right\} a p \pi+\frac{1}{2} a^{4} p^{2} \pi^{2}<\frac{3}{8}<\frac{1}{2}\left(a+a^{2}\right) p+\frac{1}{2}\left(a-2 a^{2}+a^{4}\right) p^{2},
\end{aligned}
$$

and this double inequalities hold true, when $a=1-0, \quad p \rightarrow \frac{1}{2}-0$ and $\pi^{2}+3 \pi-3<$ 0 , (i.e., $\left.0<\pi<\frac{1}{2}(\sqrt{21}-3) \fallingdotseq 0.7913\right)$. So for these triples of a, p and $\pi, B_{3}(\pi)$ is a disconnected set.

4 An Example where the Optimal Policy is a Control-limit Type. Next we consider the case where the pdfs are both power densities and f_{0} stochastically dominates f_{1}. That is, let

$$
\begin{equation*}
f_{0}(x)=2 x I(0 \leq x \leq 1) \quad \text { and } \quad f_{1}(x)=I(0 \leq x \leq 1) \tag{4.1}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\pi(x)=\frac{2 a \pi x}{2 \pi x+\bar{\pi}}, \quad \text { for } 0 \leq x \leq 1 \tag{4.2}
\end{equation*}
$$

which is concavely increasing in $0 \leq x \leq 1$, with values 0 at $x=0$, and $\frac{2 a \pi}{1+\pi}$ at $x=1$.
The OE(1.3) becomes

$$
\begin{align*}
v_{k}(\pi)= & \int_{0}^{1}(2 \pi x+\bar{\pi})\left\{x \vee v_{k-1}\left(\frac{2 a \pi x}{2 \pi x+\bar{\pi}}\right)\right\} d x \tag{4.3}\\
& \left(k=1,2, \ldots, n ; 0 \leq \pi \leq 1 ; v_{0}(\pi) \equiv 0\right)
\end{align*}
$$

Theorem 4. For the best-choice problem with two power pdfs with disorder moment descrived by (4.1) ~ (4.3), the optimal policy is of a control-limit type.

Proof. Eq.(4.3) gives

$$
v_{1}(\pi)=\int_{0}^{1}\left(2 \pi x^{2}+\bar{\pi} x\right) d x=\frac{1}{2}+\frac{1}{6} \pi
$$

and

$$
\begin{aligned}
v_{2}(\pi) & =\int_{0}^{1}(2 \pi x+\bar{\pi})\left\{x \vee v_{1}\left(\frac{2 a \pi x}{2 \pi x+\bar{\pi}}\right)\right\} d x \\
& =\left[\int_{0}^{b_{1}} v_{1}\left(\frac{2 a \pi x}{2 \pi x+\bar{\pi}}\right)+\int_{b_{1}}^{1} x\right](2 \pi x+\bar{\pi}) d x
\end{aligned}
$$

where $b_{1} \in(0,1)$ is a unique root of the quadratic equation

$$
v_{1}\left(\frac{2 a \pi x}{2 \pi x+\bar{\pi}}\right)=\frac{1}{2}+\frac{a}{6} \cdot \frac{2 \pi x}{2 \pi x+\bar{\pi}}=x .
$$

See Figure 4.

Figure 4. Optimal decision in state $(2, \pi)$.

From (1.2a), (4.1) and Theorem 1(ii), $v_{k-1}(\pi(x))$ is non-decreasing in x, i.e.,

$$
x<x^{\prime} \Rightarrow \pi(x)<\pi\left(x^{\prime}\right) \Rightarrow v_{k-1}(\pi(x)) \leq v_{k-1}\left(\pi\left(x^{\prime}\right)\right)
$$

Moreover we have, from Theorem 1 (i),

$$
v_{k-1}(\pi(x))<v_{k}(\pi(x)), \quad \forall x .
$$

Therefore $B_{k}(\pi)=\left(b_{k}, 1\right)$, in state (k, π) where $b_{k} \in(0,1)$ is a unique root of the equation $v_{k-1}(\pi(x))=x$. That is, the optimal policy is of a control-limit type.

5 Final Remark. Remark 1 is given in the previous Section 1.
Remark 2. By introducing discount rate $\alpha \in(0,1)$ over time, we can consider the infinite-horizon version. The Optimality Equation is functional equation

$$
v(\pi)=\mathrm{E}[X \vee \alpha v(\pi(X)) \mid \pi]
$$

The boundary conditions are: $v(0)$ is a unique root of the equation $\bar{\alpha} v(0)=\mathrm{E}_{1}[(X-$ $\left.\alpha v(0))^{+}\right]$, and $v(1)$ must satisfy the relation $v(1)=\mathrm{E}_{0}[X \vee \alpha v(a)]$.

References

[1] Bojdecki, T., Probability maximizing approach to optimal stopping and its application to a disorder problem, Stochastics 3(1966), 61-71.
[2] Gilbert, J.P. and F. Mosteller, Recognizing the maximum of a sequence, J. Am. Stat. Assoc. 61 (1966), 35-73.
[3] Grosfeld-Nir, A., A two-state partially observable Markov decision process with uniformly distributed observations, Opns. Res. 44 (1996), 458-463.
[4] Monahan, G.E., A survey of partially observable Markov decision processes: Theory, models and algorithms. Manag. Sci. 18 (1982), 362-380.
[5] Ross, S.M., Applied Probability Models with Optimization Applications, Holden Day, San Francisco, C.A., 1970.
[6] Ross, S.M., Quality control with Markovian deterioration, Manag. Sci. 17 (1971), 587-596.
[7] Sakaguchi, M., A discrete-time disorder problem, with a terminal classification, Math. Japonica 29 (1984), 471-482.
[8] Sakaguchi, M., A best-choice problem for the two streams of IID random variables, Math. Japonica, 51 (2000), 471-478.
[9] Smallwood, R. and E. Sondik, The optimal control of partially observable Markov Processes over a finite horizon. Opns. Res. 21 (1973), 1071-1088.
[10] Z. Porosinski and K. Szajowski, Full-information best choice problem with random starting point, Math. Japonica, 52 (2000), 57-63.

* 3-26-4 Midorigaoka, Toyonaka, Osaka 560-0002, JAPAN

Fax : +81-6-6856-2314

[^0]: 2000 Mathematics Subject Classification. 60G40, 62L15, 90C39.
 Key words and phrases. Dynamic programming, Optimal policy, Best-choice problem, Policy of a control-limit type, Disorder moment.

