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A BEST-CHOICE PROBLEM FOR A PRODUCTION SYSTEM WHICH

DETERIORATES AT A DISORDER TIME
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Abstract. A production system is working in the GOOD state and there is a constant

probability that it falls into the BAD state (and remains there) at a disorder moment.

A decision-maker observes the output Xt of the system at each time t = 1; 2; : : : ; n;

and decide either CONTINUE ( i.e. reject Xt and observe Xt+1), or STOP ( i.e.

accept and receive Xt). The objective is to maximize the expected net value of the X�

at the stopping time � he decides during the given �nite period of time n. Recall is not

allowed ( i.e. the observation once rejected cannot be recalled later.) For uniformly

distributed observations we derive the Optimality Equation and show that the optimal

policy is not necessarily of a control-limit type. Also an example in which the optimal

policy is of a control-limit type is shown. An analytical solution for the in�nite-horizon

version by introducing discount rate over time, where a functional equation must be

solved, is as yet unknown.

1 Problem and the Optimality Equation. The output of a production system is

being observed one by one sequentially over the time. The system can be in either a GOOD

or a BAD state. The true state of the system is unknown and only be inferred from the

quality of the output. Let f0(f1) be the pdf of quality X of the output in the GOOD(BAD)

state. We assume that f0 stochastically dominates f1.

At each period k; k = 1; 2; : : : ; n; the controller observes the output Xk and must choose

one of the two decisions; STOP(= accepts the output value Xk) or CONTINUE ( = reject

the Xk and then observe the next Xk+1). After the decision CONTINUE has been selected,

state transitions occur which is descrived by a Markov chain with the transition matrix

(1:1) GOOD

BAD

GOOD BAD�
a �a
0 1

�

where a = 1 � �a 2 (0; 1) is the transition probability that a sysytem in state 0(= GOOD)

during one period, remains in state 0 during the next one piriod. If the state enters state

1(= BAD), it remains in state 1 thereafter.

The objective is to maximize the expected net value of the output X� at the stopping

time � . The time horizon is n. If the controller fails to stop until the n-th output, he must

stop at the n-th. Recall is not allowed ( i.e. the observation once rejected cannot be recalled

later).

For uniformly distributed observations we develop the routine method of deriving the

optimal policy by dynamic programming, and we show that (1) Under some condition

the expected net value obtained by following the optimal policy becomes larger as the
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controller's opinion that the unknown true state of the system is GOOD increases. (2)

The optimal policy is not necessarily of a control-limit type ( i.e. STOP if and only if the

observation X�exceeds some \control-limit" which is a function of the time remaining and

the posterior knowledge currently possesed).

The model discussed in this paper belong to the area of the disorder problem in the

partially observable Markov process combined with best-choice problems in the area of

the so-called secretary problems. The model has many applications and has atracted the

attention of many authors. Fundamental facts and important results are contained in the

works of [1, 2, 4, 5, 6, 9]. Closely related works to this study are Gilbert and Mosteller [2;

Section 3], Grosfeld-Nir [3] and Sakaguchi [8].

Let �(��) 2 [0; 1] be the probability that the system is in state 0(1) at the begining of a

period, just prior to the decision. If the current information on the unknown true state at

period t is < �; �� >; the action CONTINUE is chosen, and an r.v. Xt is observed, then the

posterior information about the true state at the begining of period t+1 is< �(Xt); ��(Xt) >;
where

(1:2) �(x) = a�f0(x)= (�f0(x) + ��f1(x))

via Bayes' formula and state-transition by matrix (1.1). The decision in the (t+1)�st period
is made based on < �(Xt); ��(Xt) > : Note that since �(x) = a f1 + (��=�)f1(x)=f0(x)g

�1
:

(1:2a) �

8<
:

= 0

2 (0; 1)
= 1

9=
;) �(x)

8<
:

� 0

2 [0; a]
� a

9=
; ; 8x:

(1:2b) � < �0 ) �(x) � �0(x); 8x:

De�ne state (k; �) to mean that (10) we have not yet stopped the process, (20) the

current information about the unknown true state of the system is < �; �� >; (30) there

remain k periods until horizon comes, and (40) we choose the decision CONTINUE. We

denote by vk(�) the expected value that will be obtained if all decisions in and after state

(k; �) are made optimally. Then we have the Optimality Equation(OE)

(1:3) vk(�) = E [X _ vk�1(�(X)) j �] (k = 1; 2; : : : ; n; 0 � � � 1; v0(�) � 0)

where x _ y = max(x; y); and E[g(x)j�] means
R
g(x) (�f0(x) + ��f1(x)) dx for any func-

tion g(x): The optimal decision in state (k; �) and after observing the �rst r.v. X is ;

STOP(CONTINUE) if X > (<)vk�1(�(X)):
From (1.2a) we evidently have

(1:4) vk(0) = E1 [X _ vk�1(0)] and vk(1) = E0 [X _ vk�1(a)] ;

where Ei(i = 0; 1) means expectation taken under the pdf fi:



A BEST-CHOICE PROBLEM FOR A PRODUCTION SYSTEM 691

First we prove the following result.

Theorem 1 (i) vk(�) < vk+1(�); 8� 2 [0; 1]:
(ii) If �(x) is a non-decreasing function of x; then vk(�); k � 1; is non-decreasing in �:

Proof. Induction is used.

(i); v1(�) = E[X _ 0 j �] = �E0X + ��E1X > 0 = v0(�):

Soppose that

v0(�) < v1(�) < � � � < vk(�); 8� 2 [0; 1]:

Then

vk+1(�) = E[X _ vk(�(X)) j �] > E[X _ vk�1(�(X)) j �] = vk(�):

(ii); v1(�) = �E0X + ��E1X = E1X + �(E0X � E1X)

is non-decreasing in �; since E0(X) � E1(X):

Soppose that v1(�); v2(�); � � � ; vk(�) are non-decreasing in �: Then for � < �0:

vk+1(�
0) = E[X _ vk(�

0(X)) j �0] � E[X _ vk(�(X)) j �0];

since �(x) � �0(x); 8x; and hence vk(�(x)) � vk(�
0(x)) by induction hypothesis.

Therefore it follows that

vk+1(�
0)� vk+1(�) � E[X _ vk(�(X)) j �0]� E[X _ vk(�(X)) j �]

= [(�0E0 + ��0E1)� (�E0 + ��E1)] [X _ vk(�(X))] = (�0 � �)(E0 � E1)[X _ vk(�(X))]:

Now since �(x) is non-decreasing in x by the assumed condition in (ii), and hence

vk(�(x)) is non-decreasing in x by induction hypothesis, and since f0 stochastically domi-

nates f1, we obtain (E0 � E1) [X _ vk(�(X))] � 0: This implies

�0 > � ) vk+1(�
0)� vk�1(�) � 0

which completes the induction arguments. 2

Remark 1. The condition that f0 stochastically dominates f1 dose not imply that

�(x) =
a�f0(x)

�f0(x)+��f1(x)
is non-decreasing in x. An example is as follows:

Let, for p 2 (0; 1);

(1:5)
f0(x) = I (0 � x � 1);
f1(x) = (p�1 + p�2)(p� x)I(0 � x � p) + (1=�p) (x � p)I(p < x � 1):
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It is easy to see that f0 dominates f1. We have in this case

�(x) =

8<
:

a�
�+��(p�1+p�2)(p�x)

; if x < p

a�
�+(��=�p)(x�p)

; if x > p

which is decreasing in p � x � 1: See Figures 1 and 2.
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Figure 1: The two pdfs given by (1.5)

-

6

a�
1+��=p

a�

0

a

pp 1
x

Figure 2: Posterior probability �(x) for the pdf s (1.5).

2 Finite Horizon with Uniformly Distributed Observations. We �rst study a spe-

cial case where the pdf s are both uniform and f0 stochastically dominates f1: That is, let

(2:1) f0(x) = I (0 � x � 1) and f1(x) = p�1I (0 � x � p);

where p 2 (0; 1); and I(e) is the indicater function of the event e.

From (1.1) and (1.2) it is clear that
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(2:2) �(x) = �̂I ((0 � x � p) + aI ((p < x � 1);

where �̂ � ap�=(p� + ��):

If p < x � 1; the system is known to be in good state, and so the strategy thereafter is

forced to follow the optimal policy starting from state with � = a: The OE (1.3) becomes

(2:3) vk(�) =

�Z p

0

fx _ vk�1(�̂)g+
Z 1

p

fx _ vk�1(a)g
�
(�f0(x) + ��f1(x))dx

= (� + ��=p)

Z p

0

fx _ vk�1(�̂)gdx+ �

Z 1

p

fx _ vk�1(a)gdx ;

and, for � = 0;

vk(0) = p�1
Z p

0

(x _ vk�1(0))dx ( by using (1:4) )

which is rewritten as

(2:4) vk(0) = pUk

where fUkg satis�es the recurrsion Uk = 1
2
(1 + U2

k�1); (k = 1; 2; : : : ; U0 � 0):

Also for � = 1; (1.4) gives

vk(1) =

Z 1

0

(x _ vk�1(a))dx =
1

2

�
1 + (vk�1(a))

2
�
;

since vk�1(a) � vk�1(1) < 1:

From the OE (2.3) we obtain

Theorem 2. For the best-choice problem with two uniform pdf with a disorder moment,

described by (2:1) � (2:3); the optimal decision in state (k; �) and after observing a r. v.

X; is

Stop if X 2 Bk(�); and Continue, if otherwise,

where

(2:5) Bk(�) =

8>>>><
>>>>:

(vk�1(�̂); 1); in Case 1 (i:e: vk�1(a) < p)

(vk�1(�̂); p) [ (vk�1(a); 1); in Case 2 (i:e: vk�1(�̂) < p < vk�1(a))

(vk�1(a); 1); in Case 3 (i:e: p < vk�1(�̂)):

We show that B2(�) can be a disconnected set.

Since we have

v1(�) = �E0X + ��E1X =
1

2
(� + ��p) =

1

2
(p+ �p�);
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1

2
(p+ �p�) < p <

1

2
(p+ �pa)() p 2

�
0;

a

1 + a

�
; indep: of �

and

1

2
(p+ �pa) < p() p 2

�
a

1 + a
; 1

�
;

the optimal stopping region B2(�) is by (2.5)

(2:6) B2(�) =

�
1

2
(p+ �p�̂); p

�
[
�
1

2
(p+ �pa); 1

�
;

if 0 < p < a=(1 + a); i.e., Case 2;

(2:7) =

�
1

2
(p+ �p�̂); 1

�
;

if a=(1 + a) < p < 1; i.e., Case 1. See Figure 3.
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Case 2, i.e. 0 < p < a
1+a

: Case 1, i.e. a
1+a

< p < 1

Figure 3. Optimal stopping region in state (2; �)

3 Finite Horizon with Uniformly Distributed Observations|Continued. Let,

for p 2 (0; 1
2
);

(3:1) f0(x) = I (p � x � 1 + p); and f1(x) = I (0 � x � 1):

From (1.1)-(1.2) it is clear that

(3:2) �(x) = a�I (p � x � 1) + aI (1 � x � 1 + p):
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Note that if x 2
�

(0; p)
(1; 1 + p)

�
the system is known to be in

�
bad

good

�
state and

so the strategy thereafter is forced to follow the optimal policy starting from state with

� =

�
0

1

�
:

Thus the OE(1.3) becomes

(3:3)

vk(�) =

�Z p

0

(x _ vk�1(0)) +

Z 1

p

(x _ vk�1(a�)) +

Z 1+p

0

(x _ vk�1(a))

�
(�f0(x) + ��f1(x))ds

= ��pUk�1 +

Z 1

p

(x _ vk�1(a�))dx + �

Z 1+p

1

(x _ vk�1(a))dx

(k = 1; 2; : : : ; n; 0 � � � 1; v0(�) � 0; vk(0) = Uk)

since the �rst integral in [ � � � ] is equal to

��

Z p

0

(x _ vk�1(0))(�f0(x) + ��f1(x))dx

= ��

Z p

0

(x _ Uk�1)dx = ��pUk�1:

Here the sequence fUkg is the one which appeared in Section 2.

Also for � = 1; (3:3) gives

(3:4) vk(1) =

Z 1+p

p

(x _ vk�1(a))dx = vk�1(a) +
1

2
(1 + p� vk�1(a))

2

since p < 1
2
� Uk�1 = vk�1(0) � vk�1(a) < 1 + p:

Hence we obtain :

Theorem 3. For the best-choice problem with two pdfs and a disorder moment described

by (3:1) � (3:3); the optimal decision in state (k; �) and after observing a r.v. X; is :

Stop, if X 2 Bk(�); and Continue, if otherwise,

where

(3:5)

Bk(�) =

8>>>><
>>>>:

(vk�1(a�); 1 + p); in Case 1 i:e:; vk�1(a) < 1;

(vk�1(a�); 1) [ (vk�1(a); 1 + p); in Case 2 i:e:; vk�1(a�) < 1 < vk�1(a);

(vk�1(a�); 1 + p); in Case 3 i:e:; 1 < vk�1(a�):

We obtain from (1.5)

v1(�) =
1

2
+ p�; (Stop is optimal in state (1; �))
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and therefore state (2; �) is in Case 1. The optimal decision in state (2; �); and observing

the r.v. X is: Stop, if X 2 B2(�) = ( 1
2
+ pa�; 1 + p); and Continue, if otherwise. So, from

(3:3) � (3:5); we have

(3:6) v2(�) =
1

2
p�� +

Z 1

p

fx _
�
1

2
+ pa�

�
gdx+ �

Z 1+p

1

xdx

=
5

8
+

�
1

2
(1 + p) + a

�
1

2
� p

��
p� +

1

2
(ap�)2:

Note that v2(�) is convexly increasing in � 2 [0; a]; with values

v2(0) =
5

8
and v2(a) =

5

8
+

1

2
(a+ a2)p+

1

2
a�a(1� a� a2)p2:

From Theorem 3 and (3.4)-(3.5), it follows that

vk�1(a) � vk�1(a�) � vk�1(0) �����!
(k!1)

1:

Starting at any given � 2 (0; 1] and large k; the posterior �(�) and vk�1(�(�)) both

become smaller as the process goes on. The optimal strategy behaves as in Case 3, when k
remains large, and passing Case 2, reaches Case 1 at last, as k decreases.

For example, from (3.5)-(3.6) we have in state (3; �);

v2(a�) < 1 < v2(a); i:e:; Case 2;

()
�
1

2
(1 + p) + a

�
1

2
� p

��
ap� +

1

2
a4p2�2 <

3

8
<

1

2
(a+ a2)p+

1

2
(a� 2a2 + a4)p2;

and this double inequalities hold true, when a = 1 � 0; p ! 1
2
� 0 and �2 + 3� � 3 <

0; (i :e:; 0 < � < 1
2
(
p
21 � 3) ; 0:7913): So for these triples of a; p and �; B3(�) is a

disconnected set.

4 An Example where the Optimal Policy is a Control-limit Type. Next we

consider the case where the pdfs are both power densities and f0 stochastically dominates

f1: That is, let

(4:1) f0(x) = 2xI(0 � x � 1) and f1(x) = I(0 � x � 1);

and therefore

(4:2) �(x) =
2a�x

2�x+ ��
; for 0 � x � 1;

which is concavely increasing in 0 � x � 1; with values 0 at x = 0; and 2a�
1+�

at x = 1:

The OE(1.3) becomes

(4:3) vk(�) =

Z 1

0

(2�x+ ��)

�
x _ vk�1

�
2a�x

2�x+ ��

��
dx

(k = 1; 2; : : : ; n; 0 � � � 1; v0(�) � 0)
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Theorem 4. For the best-choice problem with two power pdfs with disorder moment

descrived by (4:1) � (4:3); the optimal policy is of a control-limit type.

Proof. Eq.(4.3) gives

v1(�) =

Z 1

0

(2�x2 + ��x)dx =
1

2
+

1

6
�

and

v2(�) =

Z 1

0

(2�x+ ��)

�
x _ v1

�
2a�x

2�x+ ��

��
dx

=

"Z b1

0

v1

�
2a�x

2�x+ ��

�
+

Z 1

b1

x

#
(2�x+ ��)dx;

where b1 2 (0; 1) is a unique root of the quadratic equation

v1

�
2a�x

2�x+ ��

�
=

1

2
+

a

6
�

2�x

2�x+ ��
= x:

See Figure 4.

-
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b10
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�
�
�
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�
�
�
�
�
�
�
�
�
�

Figure 4. Optimal decision in state (2; �):

From (1.2a), (4.1) and Theorem 1(ii), vk�1(�(x)) is non-decreasing in x; i.e.,

x < x0 ) �(x) < �(x0)) vk�1(�(x)) � vk�1(�(x
0)):

Moreover we have, from Theorem 1 (i),

vk�1(�(x)) < vk(�(x)); 8x:

Therefore Bk(�) = (bk; 1); in state (k; �) where bk 2 (0; 1) is a unique root of the

equation vk�1(�(x)) = x: That is, the optimal policy is of a control-limit type. 2
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5 Final Remark. Remark 1 is given in the previous Section 1.

Remark 2. By introducing discount rate � 2 (0; 1) over time, we can consider the

in�nite-horizon version. The Optimality Equation is functional equation

v(�) = E[X _ �v(�(X)) j �]:

The boundary conditions are: v(0) is a unique root of the equation ��v(0) = E1[(X �
�v(0))+]; and v(1) must satisfy the relation v(1) = E0[X _ �v(a)]:
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