AN ORDER PRESERVING INEQUALITY VIA FURUTA INEQUALITY *

Yang Changsen

Received July 7, 2000; revised November 20, 2000

Abstract. Using Furuta's inequality, we can get that if $1<p<t, A_{1}>0, A_{2} \geq B>0$ and $A_{1}^{t} \mathfrak{h}_{\frac{1-t}{p-t}} A_{2}^{p} \leq A_{2}$, then

$$
\left(B^{r} A_{1}^{t} B^{r}\right)^{\frac{\alpha+2 r}{t+2 r}} \geq\left(B^{r} A_{2}^{p} B^{r}\right)^{\frac{\alpha+2 r}{p+2 r}} .
$$

holds for any $0 \leq \alpha \leq \min \{2 p-1, t\}$ and $r \geq 0$. We can also get that if $1 \leq p \leq 2 p<$ $t, A_{1}>0, A_{2} \geq B>0$ and $A_{1}^{t} \underline{L}_{\frac{2 p-t}{}-t}^{p-t} A_{2}^{p} \leq A_{2}^{2 p}$, then

$$
\left(B^{r} A_{1}^{t} B^{r}\right)^{\frac{\alpha+2 r}{t+2 r}} \geq\left(B^{r} A_{2}^{p} B^{r}\right)^{\frac{\alpha+2 r}{p+2 r}} .
$$

holds for any $0 \leq \alpha \leq 2 p$ and $r \geq 0$.

1. INTRODUCTION

In what follows, H means a complex Hilbert space. A bounded linear operator T on H is said to be positive (in symbol: $T \geq 0$) if $(T x, x) \geq 0$ for any $\mathrm{x} \in H$. Also an operator T is strictly positive (in symbol: $T>0$) if T is positive and invertible. Furuta's inequality means the following results.

Theorem F (Furuta inequality)
If $A \geq B \geq 0$, then for each $r \geq 0$,
(i) $\quad\left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq\left(B^{\frac{r}{2}} B^{p} B^{\frac{r}{2}}\right)^{\frac{1}{q}}$
and

$$
\begin{equation*}
\left(A^{\frac{r}{2}} A^{p} A^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq\left(A^{\frac{r}{2}} B^{p} A^{\frac{r}{2}}\right)^{\frac{1}{q}} \tag{ii}
\end{equation*}
$$

hold for $p \geq 0$ and $q \geq 1$ with $(1+r) q \geq p+r$.

We remark that Theorem F yields the following famous Löwner-Heinz theorem when we put $r=0$ in (i) or (ii) stated above.

Theorem L-H. $A \geq B \geq 0$ ensures $A^{\alpha} \geq B^{\alpha}$ for any $\alpha \in[0,1]$.

Alternative proofs of Theorem F are given in [1][12] and also an elementary one-page proof in [6]. It is shown in [14] that the domain drawn for p, q and r in Figure is the best

[^0]possible for Theorem F.

It is known that (i) and (ii) in Theorem F remain valid for some negative numbers p, q and r in case A and B are invertible. By a simple observation, the problem to find real numbers p, q and r for which (i) or (ii) holds is reduced to the case $p \geq 0, q>0$ and $r \in R$ for (ii). Here we put $r=-t \leq 0$ and q minimum in (ii), then the following results are known.

Theorem $\mathbf{A}([2][13][15][16])$.If $A \geq B \geq 0$ with $A>0$, then the following inequalites hold:
(I) $A^{1-t} \geq\left(A^{\frac{-t}{2}} B^{p} A^{\frac{-t}{2}}\right)^{\frac{1-t}{p-t}}$ for $1 \geq p>t \geq 0$ with $p \geq \frac{1}{2}$.
(II) $\quad A^{-t} \geq\left(A^{\frac{-t}{2}} B^{p} A^{\frac{-t}{2}}\right)^{\frac{-t}{p-t}}$ for $1 \geq t>p \geq 0$ with $\frac{1}{2} \geq p$.
(III) $A^{2 p-t} \geq\left(A^{\frac{-t}{2}} B^{p} A^{\frac{-t}{2}}\right)^{\frac{2 p-t}{p-t}}$ for $\frac{1}{2} \geq p>t \geq 0$.
(IV) $A^{2 p-1-t} \geq\left(A^{\frac{-t}{2}} B^{p} A^{\frac{-t}{2}}\right)^{\frac{2 p-1-t}{p-t}}$ for $1 \geq t>p \geq \frac{1}{2}$.

Yoshino [16] initiated an attempt to extend the domain in which the form of Theorem F holds. Afterwards, the domain given by him was enlarged to (I) by Fujii,Kamei and Furuta [2]. Kamei [13] gave simplified proofs of (I) and (III). Tanahashi [15] showed all the inequalities in Theorem A and proved that the outside exponents of (I),(II) and (IV) are best possible. Extension of Theorem A are shown in [3][4][8] and [11], and related results to Theorem A are shown in[9] and [10].

The following h_{s} for any $s>0$ is defined in [7] by

$$
A \natural_{s} B=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{s} A^{1 / 2}
$$

for an invertible positive A and a positive operator B.
Associated with (I) and (III) of Theorem A, it is shown in [3] and [15]that the following inequalities hold when $A \geq B>0$:

$$
\begin{gather*}
\left(A^{t} \underline{1}_{\frac{1-t}{p-t}} B^{p}\right) \leq B, \text { for } 0 \leq t<p \text { and } \frac{1}{2} \leq p \leq 1, \tag{1.1}\\
\left(A_{\underline{L}_{\frac{2 p-t}{}}^{p-t}} B^{p}\right) \leq B^{2 p}, \text { for } 0 \leq t<p \leq \frac{1}{2} \tag{1.2}
\end{gather*}
$$

In this paper, we remark that $A^{\alpha} \geq B^{\alpha}$ holds for any $\alpha \in[0,2 p-1]$, when (1.1)holds for p and t such that $1<p<2 p-1<t$. But $A^{\alpha} \geq B^{\alpha}$ for any $\alpha \in[0,2 p-1]$ does not always ensure (1.1) in general. Similarly, $A^{\alpha} \geq B^{\alpha}$ holds for any $\alpha \in[0,2 p]$, when the opposite inequality of (1.2) holds for p and t such that $1 \leq p \leq 2 p<t$, and $A^{\alpha} \geq B^{\alpha}$ holds for any $\alpha \in[0,2 p]$ does not always ensure the opposite inequality of (1.2) in general.

2. MAIN RESULTS

Theorem 1.Let $1 \leq p<t, A_{1}>0$, and $A_{2} \geq B>0$ such that

$$
\begin{equation*}
A_{1}{ }_{\mathfrak{L}_{\frac{1-t}{p-t}}} A_{2}^{p} \leq A_{2} \text { for } p>1 \tag{2.1}
\end{equation*}
$$

and
$A_{1} \geq A_{2} \quad$ for $p=1$.
then

$$
\left(B^{r} A_{1}^{t} B^{r}\right)^{\frac{\alpha+2 r}{t+2 r}} \geq\left(B^{r} A_{2}^{p} B^{r}\right)^{\frac{\alpha+2 r}{p+2 r}}
$$

holds for any $0 \leq \alpha \leq \min \{2 p-1, t\}$ and $r \geq 0$.

Theorem 2.Let $1 \leq p \leq 2 p<t, A_{1}>0$, and $A_{2} \geq B>0$ such that

$$
\begin{equation*}
A_{1}^{t} \mathfrak{h}_{\frac{2 p-t}{p-t}} A_{2}^{p} \geq A_{2}^{2 p} \tag{2.2}
\end{equation*}
$$

then

$$
\left(B^{r} A_{1}^{t} B^{r}\right)^{\frac{\alpha+2 r}{t+2 r}} \geq\left(B^{r} A_{2}^{p} B^{r}\right)^{\frac{\alpha+2 r}{p+2 r}} .
$$

holds for any $0 \leq \alpha \leq 2 p$ and $r \geq 0$.

3. PROOFS OF THE MAIN RESULTS

We need the following lemma.
Lemma ([7]).For invertible positive operators A and invertible operator B,

$$
\left(B A B^{*}\right)^{s}=B A^{1 / 2}\left(A^{1 / 2} B^{*} B A^{1 / 2}\right)^{s-1} A^{1 / 2} B^{*}
$$

holds for any real number s.

Proof of Theorem 1.
(i)When $p=1, A_{1} \geq A_{2} \geq B>0$ implies

$$
\left(B^{r} A_{1}^{t} B^{r}\right)^{\frac{1+2 r}{t+2 r}} \geq B^{r} A_{1} B^{r} \geq B^{r} A_{2} B^{r}
$$

for $t \geq 1$ and $r \geq 0$ by Furuta inequality, so that the theorem is proved by Löwner-Heinz theorem for $\alpha \in[0,1]$.
(ii) When $p>1$, by (2.1) and the Lemma, we have

$$
A_{2}^{\frac{p}{2}}\left(A_{2}^{\frac{p}{2}} A_{1}^{-t} A_{2}^{\frac{p}{2}}\right)^{\frac{1-p}{p-t}} A_{2}^{\frac{p}{2}}=A_{1}^{\frac{t}{2}}\left(A_{1}^{\frac{-t}{2}} A_{2}^{p} A_{1}^{\frac{-t}{2}}\right)^{\frac{1-t}{p-t}} A_{1}^{\frac{t}{2}}=A_{1}^{t} \mathfrak{L}_{\frac{1-t}{p-t}} A_{2}^{p} \leq A_{2}
$$

that is,

$$
\begin{equation*}
\left(A_{2}^{-\frac{p}{2}} A_{1}^{t} A_{2}^{-\frac{p}{2}}\right)^{\frac{p-1}{t-p}} \geq A_{2}^{p-1} \tag{3.1}
\end{equation*}
$$

Applying Furuta inequality to $A_{2} \geq B>0$, we also have for each $r \geq 0$,

$$
\begin{equation*}
\left(A_{2}^{\frac{p}{2}} B^{2 r} A_{2}^{\frac{p}{2}}\right)^{\frac{p-1}{p+2 r}} \leq A_{2}^{p-1} \tag{3.2}
\end{equation*}
$$

Since $(1+p) \frac{p+2 r}{p-1} \geq 2 r+p$.Let $X=\left(A_{2}^{\frac{p}{2}} B^{2 r} A_{2}^{\frac{p}{2}}\right)^{\frac{p-1}{p+2 r}}$, and $Y=\left(A_{2}^{-\frac{p}{2}} A_{1}^{t} A_{2}^{-\frac{p}{2}}\right)^{\frac{p-1}{t-p}}$, then by (3.1) and (3.2), we see

$$
\begin{equation*}
X \leq A_{2}^{p-1} \leq Y \tag{3.3}
\end{equation*}
$$

Applying Furuta inequality again to $Y \geq X>0$, we also have

$$
\begin{equation*}
\left(X^{\frac{p+2 r}{2(p-1)}} Y^{\frac{t-p}{p-1}} X^{\frac{p+2 r}{2(p-1)}}\right)^{\frac{\alpha+2 r}{t+2 r}} \geq X^{\frac{\alpha+2 r}{p-1}} \tag{3.4}
\end{equation*}
$$

since $\frac{t-p}{p-1}, \frac{p+2 r}{p-1} \geq 0, \frac{t+2 r}{\alpha+2 r} \geq 1$ and $\left(1+\frac{p+2 r}{p-1}\right) \frac{t+2 r}{\alpha+2 r} \geq \frac{t-p}{p-1}+\frac{p+2 r}{p-1}$.
Applying the Lemma several times and (3.4), then for each $r \geq 0$ we have the following results

$$
\begin{aligned}
& \left(B^{r} A_{1}^{t} B^{r}\right)^{\frac{\alpha+2 r}{t+2 r}} \\
= & B^{r} A_{1}^{t / 2}\left(A_{1}^{t / 2} B^{2 r} A_{1}^{t / 2}\right)^{\frac{\alpha-t}{t+2 r}} A_{1}^{t / 2} B^{r} \quad \text { by the lemma } \\
= & B^{r} A_{1}^{t / 2}\left(A_{1}^{-t / 2} A_{2}^{p / 2}\left(A_{2}^{-p / 2} B^{-2 r} A_{2}^{-p / 2}\right) A_{2}^{p / 2} A_{1}^{-t / 2}\right)^{\frac{t-\alpha}{t+2 r}} A_{1}^{t / 2} B^{r} \\
= & B^{r} A_{2}^{p / 2}\left(A_{2}^{-p / 2} B^{-2 r} A_{2}^{-p / 2}\right)^{1 / 2}\left\{\left(A_{2}^{-p / 2} B^{-2 r} A_{2}^{-p / 2}\right)^{1 / 2} A_{2}^{p / 2} A_{1}^{-t} A_{2}^{p / 2}\right. \\
& \left.\left(A_{2}^{-p / 2} B^{-2 r} A_{2}^{-p / 2}\right)^{1 / 2}\right\}^{-\frac{\alpha+2 r}{t+2 r}}\left(A_{2}^{-p / 2} B^{-2 r} A_{2}^{-p / 2}\right)^{1 / 2} A_{2}^{p / 2} B^{r} \quad \text { by the lemma } \\
= & B^{r} A_{2}^{p / 2}\left(A_{2}^{p / 2} B^{2 r} A_{2}^{p / 2}\right)^{-1 / 2}\left\{\left(A_{2}^{p / 2} B^{2 r} A_{2}^{p / 2}\right)^{1 / 2} A_{2}^{-p / 2} A_{1}^{t} A_{2}^{-p / 2}\right. \\
& \left.\left(A_{2}^{p / 2} B^{2 r} A_{2}^{p / 2}\right)^{1 / 2}\right\}^{\frac{\alpha+2 r}{t+2 r}}\left(A_{2}^{p / 2} B^{2 r} A_{2}^{p / 2}\right)^{-1 / 2} A_{2}^{p / 2} B^{r} \\
= & B^{r} A_{2}^{p / 2}\left(A_{2}^{p / 2} B^{2 r} A_{2}^{p / 2}\right)^{-1 / 2}\left\{X^{\frac{p+2 r}{2(p-1)}} Y^{\frac{t-p}{p-1}} X^{\frac{p+2 r}{2(p-1)}}\right\}^{\frac{\alpha+2 r}{t+2 r}}\left(A_{2}^{p / 2} B^{2 r} A_{2}^{p / 2}\right)^{-1 / 2} A_{2}^{p / 2} B^{r} \\
\geq & B^{r} A_{2}^{p / 2}\left(A_{2}^{p / 2} B^{2 r} A_{2}^{p / 2}\right)^{-1 / 2} X^{\frac{\alpha+2 r}{p-1}}\left(A_{2}^{p / 2} B^{2 r} A_{2}^{p / 2}\right)^{-1 / 2} A_{2}^{p / 2} B^{r} \quad b y(3.4) \\
= & B^{r} A_{2}^{p / 2}\left(A_{2}^{p / 2} B^{2 r} A_{2}^{p / 2}\right)^{\frac{\alpha+2 r}{p+2 r}-1} A_{2}^{p / 2} B^{r} \\
= & \left(B^{r} A_{2}^{p} B^{r}\right)^{\frac{\alpha+2 r}{p+2 r}} \quad \text { by the lemma. }
\end{aligned}
$$

Hence the proof of Theorem 1 is complete.

Proof of Theorem 2.
By (2.2) and the Lemma , we have $A_{2}^{\frac{p}{2}}\left(A_{2}^{\frac{p}{2}} A_{1}^{-t} A_{2}^{\frac{p}{2}}\right)^{\frac{p}{p-t}} A_{2}^{\frac{p}{2}}=A_{1}^{\frac{t}{2}}\left(A_{1}^{\frac{-t}{2}} A_{2}^{p} A_{1}^{\frac{-t}{2}}\right)^{\frac{2 p-t}{p-t}} A_{1}^{\frac{t}{2}}=$ $A_{1}^{t} \mathfrak{q}_{\frac{2 p-t}{}}^{p-t} A_{2}^{p} \leq A_{2}^{2 p}$,
that is

$$
\begin{equation*}
\left(A_{2}^{-\frac{p}{2}} A_{1}^{t} A_{2}^{-\frac{p}{2}}\right)^{\frac{p}{t-p}} \geq A_{2}^{p} \tag{3.5}
\end{equation*}
$$

Applying Furuta inequality to $A_{2} \geq B>0$, we also have for each $r \geq 0$,

$$
\begin{equation*}
\left(A_{2}^{\frac{p}{2}} B^{2 r} A_{2}^{\frac{p}{2}}\right)^{\frac{p}{p+2 r}} \leq A_{2}^{p} \tag{3.6}
\end{equation*}
$$

since $(1+p) \frac{p+2 r}{p} \geq 2 r+p$. Let $X=\left(A_{2}^{\frac{p}{2}} B^{2 r} A_{2}^{\frac{p}{2}}\right)^{\frac{p}{p+2 r}}$, and $Y=\left(A_{2}^{-\frac{p}{2}} A_{1}^{t} A_{2}^{-\frac{p}{2}}\right)^{\frac{p}{t-p}}$, then by (3.5) and (3.6) we see

$$
\begin{equation*}
X \leq A_{2}^{p} \leq Y \tag{3.7}
\end{equation*}
$$

Applying Furuta inequality again to $Y \geq X>0$, we also have

$$
\begin{equation*}
\left(X^{\frac{p+2 r}{2 p}} Y^{\frac{t-p}{p}} X^{\frac{p+2 r}{2 p}}\right)^{\frac{\alpha+2 r}{t+2 r}} \geq X^{\frac{\alpha+2 r}{p}} \tag{3.8}
\end{equation*}
$$

since $\frac{t-p}{p}, \frac{p+2 r}{p} \geq 0, \frac{t+2 r}{\alpha+2 r} \geq 1$ and $\left(1+\frac{p+2 r}{p}\right) \frac{t+2 r}{\alpha+2 r} \geq \frac{t-p}{p}+\frac{p+2 r}{p}$. Applying the Lemma several times and (3.8), then for each $r \geq 0$ we have the following :

$$
\begin{aligned}
& \left(B^{r} A_{1}^{t} B^{r}\right)^{\frac{\alpha+2 r}{t+2 r}} \\
= & B^{r} A_{1}^{t / 2}\left(A_{1}^{t / 2} B^{2 r} A_{1}^{t / 2}\right)^{\frac{\alpha-t}{t+2 r}} A_{1}^{t / 2} B^{r} \quad \text { by the lemma } \\
= & B^{r} A_{1}^{t / 2}\left(A_{1}^{-t / 2} A_{2}^{p / 2}\left(A_{2}^{-p / 2} B^{-2 r} A_{2}^{-p / 2}\right) A_{2}^{p / 2} A_{1}^{-t / 2}\right)^{\frac{t-\alpha}{t+2 r}} A_{1}^{t / 2} B^{r} \\
= & B^{r} A_{2}^{p / 2}\left(A_{2}^{-p / 2} B^{-2 r} A_{2}^{-p / 2}\right)^{1 / 2}\left\{\left(A_{2}^{-p / 2} B^{-2 r} A_{2}^{-p / 2}\right)^{1 / 2} A_{2}^{p / 2} A_{1}^{-t} A_{2}^{p / 2}\right. \\
& \left.\left(A_{2}^{-p / 2} B^{-2 r} A_{2}^{-p / 2}\right)^{1 / 2}\right\}^{-\frac{\alpha+2 r}{t+2 r}}\left(A_{2}^{-p / 2} B^{-2 r} A_{2}^{-p / 2}\right)^{1 / 2} A_{2}^{p / 2} B^{r} \quad \text { by the lemma } \\
= & B^{r} A_{2}^{p / 2}\left(A_{2}^{p / 2} B^{2 r} A_{2}^{p / 2}\right)^{-1 / 2}\left\{\left(A_{2}^{p / 2} B^{2 r} A_{2}^{p / 2}\right)^{1 / 2} A_{2}^{-p / 2} A_{1}^{t} A_{2}^{-p / 2}\right. \\
& \left.\left(A_{2}^{p / 2} B^{2 r} A_{2}^{p / 2}\right)^{1 / 2}\right\}^{\frac{\alpha+2 r}{t+2 r}}\left(A_{2}^{p / 2} B^{2 r} A_{2}^{p / 2}\right)^{-1 / 2} A_{2}^{p / 2} B^{r} \\
= & B^{r} A_{2}^{p / 2}\left(A_{2}^{p / 2} B^{2 r} A_{2}^{p / 2}\right)^{-1 / 2}\left\{X^{\frac{p+2 r}{2 p}} Y^{\frac{t-p}{p}} X^{\frac{p+2 r}{2 p}}\right\}^{\frac{\alpha+2 r}{t+2 r}}\left(A_{2}^{p / 2} B^{2 r} A_{2}^{p / 2}\right)^{-1 / 2} A_{2}^{p / 2} B^{r} \\
\geq & B^{r} A_{2}^{p / 2}\left(A_{2}^{p / 2} B^{2 r} A_{2}^{p / 2}\right)^{-1 / 2} X^{\frac{\alpha+2 r}{p}}\left(A_{2}^{p / 2} B^{2 r} A_{2}^{p / 2}\right)^{-1 / 2} A_{2}^{p / 2} B^{r} \quad b y(3.8) \\
= & B^{r} A_{2}^{p / 2}\left(A_{2}^{p / 2} B^{2 r} A_{2}^{p / 2}\right)^{\frac{\alpha+2 r}{p+2 r}-1} A_{2}^{p / 2} B^{r} \\
= & \left(B^{r} A_{2}^{p} B^{r}\right)^{\frac{\alpha+2 r}{p+2 r}} \quad \text { by the lemma. }
\end{aligned}
$$

Hence the proof of Theorem 2 is complete.

Putting $r=0$ in Theorem 1, Theorem 2, we have

Corollary 1 Let $A_{1}>0, A_{2}>0$, and $1<p<2 p-1<t$, if

$$
A_{1}^{t দ_{\frac{1-t}{p-t}}} A_{2}^{p} \leq A_{2}
$$

then $A_{1}^{\alpha} \geq A_{2}^{\alpha}$ holds for $0 \leq \alpha \leq 2 p-1$

Corollary 2 Let $A_{1}>0, A_{2}>0$, and $1 \leq p<2 p<t$, if

$$
A_{1}^{t} \underline{h}_{\frac{p_{p-t}}{p-t}} A_{2}^{p} \geq A_{2}^{2 p}
$$

then $A_{1}^{\alpha} \geq A_{2}^{\alpha}$ holds for $0 \leq \alpha \leq 2 p$

4. EXAMPLES

Example 1.There exist $A_{1}>0, A_{2}>0,1<p<2 p-1<t$, such that $A_{1}^{2 p-1} \geq A_{2}^{2 p-1}$, but

$$
A_{1}{ }_{\mathfrak{L}_{\frac{1-t}{p-t}}} A_{2}^{p} \not \leq A_{2}
$$

Let $p=2, t=4$ and $A_{1}^{3}=\left(\begin{array}{cc}4 & 0 \\ 0 & 7\end{array}\right)$, and $A_{2}^{3}=\left(\begin{array}{ll}3 & 2 \\ 2 & 3\end{array}\right)$. we can get $A_{1}^{3} \geq A_{2}^{3}$, but the computer shows
$\left(A_{2} A_{1}^{-4} A_{2}\right)^{1 / 2}$
$=\left(\begin{array}{cc}0.5324196859 \cdots & 0.1228447632 \cdots \\ 0.1228447632 \cdots & 0.3766522145 \cdots\end{array}\right)$, and

$$
A_{2}^{-1}
$$

$=\left(\begin{array}{cc}0.7924017738 \cdots & -0.2075982261 \cdots \\ -0.2075982261 \cdots & 0.7924017738 \cdots\end{array}\right)$,
then the eigenvalues of $A_{2}^{-1}-\left(A_{2} A_{1}^{-4} A_{2}\right)^{1 / 2}$ are $0.6773631660 \cdots$ and $-0.0016315189 \cdots$, so

$$
\left(A_{2} A_{1}^{-4} A_{2}\right)^{1 / 2} \not \leq A_{2}^{-1}
$$

Hence $A_{1}{ }^{4} \mathfrak{h}_{\frac{3}{2}} A_{2}^{2}=A_{1}^{2}\left(A_{1}^{-2} A_{2}^{2} A_{1}^{-2}\right)^{\frac{3}{2}} A_{1}^{2}=A_{2}\left(A_{2} A_{1}^{-4} A_{2}\right)^{\frac{1}{2}} A_{2} \not \leq A_{2}$. by the Lemma.
Example 2. There exist $A_{1}>0, A_{2}>0,1 \leq p<2 p<t$, such that $A_{1}^{2 p} \geq A_{2}^{2 p}$, but

$$
A_{1}{ }_{\underline{h_{2 p-t}}}^{p-t} A_{2}^{p} \nsupseteq A_{2}^{2 p} .
$$

Let $p=2, t=6$ and $A_{1}^{4}=\left(\begin{array}{ll}4 & 0 \\ 0 & 7\end{array}\right)$, and $A_{2}^{4}=\left(\begin{array}{ll}3 & 2 \\ 2 & 3\end{array}\right)$. we can get $A_{1}^{4} \geq A_{2}^{4}$, but the computer shows
$\left(A_{2} A_{1}^{-6} A_{2}\right)^{1 / 2}$
$=\left(\begin{array}{ll}0.4383872572 \cdots & 0.0755991077 \cdots \\ 0.0755991077 \cdots & 0.2932678545 \cdots\end{array}\right)$, and
A_{2}^{-2}
$=\left(\begin{array}{cc}0.7236067977 \cdots & -0.2763932022 \cdots \\ -0.2763932022 \cdots & 0.7236067977 \cdots\end{array}\right)$,
then the eigenvalues of $A_{2}^{-2}-\left(A_{2} A_{1}^{-6} A_{2}\right)^{1 / 2}$ are $0.7171724757 \cdots$ and $-0.0016139920 \cdots$, so

$$
\left(A_{2} A_{1}^{-6} A_{2}\right)^{1 / 2} \not \leq A_{2}^{-2}
$$

Hence $A_{1}{ }^{6} \mathfrak{1}_{\frac{1}{2}} A_{2}{ }^{2}=A_{1}^{3}\left(A_{1}^{-3} A_{2}^{2} A_{1}^{-3}\right)^{\frac{1}{2}} A_{1}^{3}=A_{2}\left(A_{2} A_{1}^{-6} A_{2}\right)^{-\frac{1}{2}} A_{2} \nsupseteq A_{2}^{4}$, by the Lemma.

Acknowledgement. The author would like to express his hearty thanks to Prof.Furuta for his warm and kind advice.

REFERENCES

[1] M.Fujii,Furuta's inequality and its mean theoretic approch,J.Operator Theory 23(1990), 67-72.
[2] M.Fujii,T.Furuta and E.Kamei, Complements to the Furuta inequality, Proc.Japan Acad.70(1994),Ser.A,239-242.
[3] M.Fujii,T.Furuta and E.Kamei, Complements to the Furuta inequality,III,Math Japon 45(1997),25-32.
[4] M.Fujii,J.F.Jiang and E.Kamei, Complements to the Furuta inequality,IV, Math Japon 45(1997),511-518.
[5] T.Furuta, $A \geq B \geq 0$ assures $\left(B^{r} A^{p} B^{r}\right)^{1 / q} \geq B^{\frac{p+2 r}{q}}$ for $r \geq 0, p \geq 0, q \geq 1$ with $(1+2 r) q \geq p+2 r$, Proc .Amer. Math.Soc.,101(1987),85-88.
[6] T.Furuta, An elementary proof of an order preserving inequality,Proc.Japan Acad.Ser.A Math.Sci.65(1989),126.
[7] T.Furuta, Extension of the Furuta inequality and Ando-Hiai log-majorization, Liner Alg. and Its Apple.,219(1995),139-155.
[8] T.Furuta, Parallelism related to the inequality $A \geq B \geq 0$ ensure $\left(A^{\frac{r}{2}} A^{p} A^{\frac{r}{2}}\right)^{\frac{1+r}{p+r}} \geq$ $\left(A^{\frac{r}{2}} B^{p} A^{\frac{r}{2}}\right)^{\frac{1+r}{p+r}}$ for $p \geq 1$ and $r \geq 0$, Math Japon 45(1997),203-209.
[9] T.Furuta, T.Yamazaki and M.Yanagida,Equivalence relations among Furuta-type inequalities with negative powers, Sci.Math. 1 (1998) 223-229.
[10] T.Furuta, T.Yamazaki and M.Yanagida,On a conjecture related Furuta-type inequalities with negative powers, Nihonkai Math.J.9(1998) 213-218.
[11] J.F.Jiang, E.Kamei and M.Fujii, The monotonicity of operator functions associated with the Furuta inequality,Math.Japon46(1997),337-343.
[12] E.Kamei,A satellite to Furuta's inequality, Math.Japon 33(1988),883-886.
[13] E.Kamei, Complements to the Furuta inequality,II, Math Japon 45(1997),15-23.
[14] K.Tanahashi,Best possibility of the Furuta inequality, Proc.Amer.Math.Soc., 124(1996), 141-146.
[15] K.Tanahashi,The Furuta inequality in case of negative power, Proc .Amer. Math.Soc. 127(1999), 1683-1692.
[16] T.Yoshino, Introduction to Operator Theory, Pitman Research Notes in Math.Ser.,300,Longman Scientific and Technical,1993.

DEPARTMENT OF MATHEMATICS, HENAN NORMAL UNIVERSITY XINXIANG 453002, CHINA

[^0]: 2000 Mathematics Subject Classification. 47A30,47A63 and 47B15.
 Key words and phrases. positive operator,Furuta inequality,operator inequality.

 * Supported by Natural Science and education Fundatiton of Henan Provice

