AN INTEGRAL PRESERVED BY A TRANSLATION ON THE SPACE $\Gamma_0(D) \bigoplus M_0(D)$

KEIKO NAKAGAMI

Received October 2, 2000; revised October 30, 2000

ABSTRACT. In this paper, we introduce a translation invariant integral, called the $(E.R.\mathcal{T})$ -integral, such that the (E.R)-integrable function defined by using the Cantor set by Kunugi is integrable.

1 Introduction In our paper [9], we defined the space $\Gamma_0(D) \bigoplus M_0(D)$ of generalized functions on an interval D. A generalized function is expressed by a pair of elements in $\Gamma_0(D)$ and $M_0(D)$. The set $\Gamma_0(D)$ is the singular part of $\Gamma_0(D) \bigoplus M_0(D)$ in the sense that it contains the δ -function together with it's higher derivatives. The set $M_0(D)$ consists of all real valued measurable functions on D, which is the regular part of $\Gamma_0(D) \bigoplus M_0(D) \bigoplus M_0(D)$. In our papers [9] and [6], the translation invariant $(E.R.\mathcal{M})$ -integral over this space was defined. This integral was defined for a function g such that there exists a Cauchy sequence $(V(g_n, \varepsilon_n, A_n))$ satisfying $\bigcap_{n=1}^{\infty} V(g_n, \varepsilon_n, A_n) \ni g$, where the sets A_n are restricted to the sets of the form $(-n, n) \setminus \bigcup_{k=1}^{m} B_k$ for some open intervals B_k with length 1/n. By this restriction to the sets A_n , the $(E.R.\mathcal{M})$ -integrable function (Kunugi[1]), mentioned in Section 4, defined by using the Cantor set is not $(E.R.\mathcal{M})$ -integrable.

In this paper, we introduce another translation invariant integral called the $(E.R.\mathcal{T})$ integral. The definition of the integral is independent of the above restriction. The above function due to Kunugi is $(E.R.\mathcal{T})$ -integrable. In Section 2, we recall some terminologies and notations containing the definition of the $(E.R.\Lambda)$ -integral in the paper [9]. In Section 3, we give the definition of the $(E.R.\mathcal{T})$ -integral. In Section 4, the $(E.R.\mathcal{T})$ -integral is shown to be an extention of the (E.R)-integral.

2 Terminologies and notations Let $M_0(D)$ be the set of all real valued Lebesgue measurable functions defined on a finite or an infinite interval D. In what follows, we suppose that the set $M_0(D)$ is classified by the usual equivalence relation f(x) = g(x) a.e. We denote measurable functions by symbols $f(x), g(x), \ldots$ and a class in $M_0(D)$ containing a measurable function g(x) by the same symbol g(x) or g. For each Lebesgue measurable subset A of D and $\varepsilon > 0$, we define a pre-neighbourhood $V(f, \varepsilon, A)$ as

$$V(f,\varepsilon,A) = \{g \in M_0(D) : \int_A |f(x) - g(x)| dx \le \varepsilon\}.$$

We denote $V(f, \varepsilon, A)$ by V(f) if there is no fear of confusion.

Definition 1 A sequence $(V(f_n)) = (V(f_n, \varepsilon_n, A_n))$ of preneighbourhoods in $M_0(D)$ is called a Cauchy sequence if

(i) $V(f_1) \sqsupseteq V(f_2) \sqsupseteq \dots$, and (ii) $\varepsilon_n \to 0$.

²⁰⁰⁰ Mathematics Subject Classification. 46F-99.

Key words and phrases. generalized function, integral by a translation .

For a Cauchy sequence $(V(f_n, \varepsilon_n, A_n))$ on D, we consider the following two conditions: $(T_1) \operatorname{m}((D \setminus A_n) \cap [-1/\varepsilon_n, 1/\varepsilon_n]) \leq \varepsilon_n.^1$

 (T_2) $f_n(x)$ is decomposed into a sum of measurable functions $f_{1n}(x)$ and $f_{2n}(x)$ on D, where supp $f_{1n} \subseteq D \setminus A_n$, and

$$\int_{D\setminus A_n} |f_{2n}(x)| dx \le \varepsilon_n$$

If $(V(f_n)) = (V(f_n, \varepsilon_n, A_n))$ is a Cauchy sequence which satisfies conditions (T_1) and (T_2) , the Cauchy sequence is called a G_0 -Cauchy sequence on D. Let $G_0(D)$ be the set of sequences (f_n) such that there exists a G_0 -Cauchy sequence $(V(f_n))$ with $0 \in \bigcap_{n=1}^{\infty} V(f_n)$.

Definition 2 A decomposition $f_n = f_{1n} + f_{2n}$ in (T_2) for a G_0 -Cauchy sequence $(V(f_n))$ is called an associated decomposition of f_n .

If (f_n) and (g_n) have associated decompositions $f_{1n} + f_{2n}$ and $g_{1n} + g_{2n}$ of f_n and g_n respectively such that there is an $n_0 \in \mathbb{N}$ satisfying $f_{1n} = g_{1n}$ a.e. for each $n \ge n_0$, we say that (f_n) and (g_n) are equivalent. Let $\Gamma_0(D)$ be the quotient space of $G_0(D)$ classified by this equivalence relation, whose element containing (f_n) is denoted by $[f_n]$.

The following set is the underling space of our whole theory:

$$\Gamma_0(D) \bigoplus M_0(D) = \{ ([f_n], g); [f_n] \in \Gamma_0(D), g \in M_0(D) \}$$

In what follows, we denote the pair $([f_n], g)$ by $[f_n] \oplus g$.

Let $\Lambda = (\lambda_n)$ be a sequence of finite absolutely continuous measures on **R**. A Cauchy sequence $(V(g_n, \varepsilon_n, A_n))$ is called an L_0 -Cauchy sequence if it satisfies the following three conditions on D:

 (K_1) if B is a Lebesgue measurable subset of D with $\lambda_n(D \setminus A_n) \ge \lambda_n(B)$, then $m(B \cap [-1/\varepsilon_n, 1/\varepsilon_n]) \le \varepsilon_n$.

 (K_2) if $m(D \setminus A_n) > 0$ for all n, there exist k, k' > 0 such that

$$k \le \lambda_n (D \setminus A_n) \le k'$$

for all n.

 (K_3) if B is a Lebesgue measurable subset of D with $\lambda_n(D \setminus A_n) \geq \lambda_n(B)$, then

$$\int_B |g_n(x)| dx \le \varepsilon_n.$$

Let $\mathbf{F}_0(\Lambda)$ be the set of L_0 -Cauchy sequences on D and let $L_0(\Lambda)$ be the set of sequences (g_n) in $L^1(D)$ such that there exists an L_0 -Cauchy sequence $(V(g_n))$.

Definition 3 A sequence $(V(g_n)) \in \mathbf{F}_0(\lambda)$ is called on L_0 -Cauchy sequence for g if $\bigcap_{n=1}^{\infty} V(g_n) = \{g\}$.

Definition 4 Let (g_n) be a sequence in $L_0(\Lambda)$ with an L_0 -Cauchy sequence for $g \in M_0(D)$. If

$$\lim_{n \to \infty} \sup \int_D g_n(x) dx = \lim_{n \to \infty} \inf \int_D g_n(x) dx,$$

¹We denote the Lebesgue measure of the set A by m(A).

this common value is denoted by

$$I(g,\Lambda) = (E.R.\Lambda) \int_D g(x) dx$$

and $I(g, \Lambda)$ is called the $(E.R.\Lambda)$ -integral of g on D. If $-\infty < I(g, \Lambda) < \infty$, g is called to be $(E.R.\Lambda)$ -integrable on D.

Now we give the definition of the $(E.R.\Lambda)$ -integration on $\Gamma_0(D) \bigoplus M_0(D)$.

Definition 5 Suppose that a sequence (f_n) in $G_0(D)$ has an associated decomposition $f_{1n} + f_{2n}$ of f_n such that the value

$$I([f_n]; D) = \lim_{n \to \infty} \int_D f_{1n}(x) dx$$

exists and the $(E.R.\Lambda)$ -integral $I(g,\Lambda)$ of $g \in M_0(D)$ exists, where the values of these integrals may be finite or infinite. Then, if $I([f_n]; D) + I(g,\Lambda)$ has a meaning, this sum is denoted by

$$(E.R.\Lambda)\int_D [f_n] \oplus gdx = (E.R.\Lambda)\int_D (f_n(x)) \oplus g(x)dx,$$

and the common value is called the $(E.R.\Lambda)$ -integral of $[f_n] \oplus g$ on D.

3 The $(E.R.\mathcal{T})$ -integral. Our integral is considered on a finite or an infinite open interval D. We fix two increasing sequences $\alpha = (\alpha_n)$ and $\beta = (\beta_n)$ of real numbers with $\lim_{n\to\infty} \alpha_n = \infty$ and $\lim_{n\to\infty} \beta_n = \infty$, and a decreasing sequences (J_n) of measurable subsets with $J_n \subseteq [-\beta_n, \beta_n]$ and $\lim_{n\to\infty} m(J_n) = 0$. Now, we define a sequence (μ_n) of finite measures on \mathbf{R} as the following :

(1) Let ν_n be absolutely continuous measure on **R** such that

(1.1)
$$\nu_n(E_n) = \exp(-\alpha_n) ,$$

where $E_n = \mathbf{R} \setminus [-\beta_n, \beta_n]$, and , if $J_n \neq \phi$ for n=1,2,3,...,

$$\nu_n(J_n) = \exp(-\alpha_n)$$

We fix ν_n in the following .

(2) Denote $J_n + a = \{x + a; x \in J_n\}$ by J_n^a . For any Lebesgue measurable subset E of **R** and for any mutually diffrent points $a_1, a_2, ..., a_l \in D$, we set

(1.2)
$$\mu_n^0(E) = \sum_{i=1}^l \nu_n ((E \cap J_n^{a_i}) - a_i) + \nu_n (E \cap E_n) + m(E \cap (CE_n \setminus \bigcup_{i=1}^l J_n^{a_i})) .^2$$

(3) Put, for n=1,2,3,...,

1.3)
$$\mu_n = \mu_n^0 \setminus \exp(-\alpha_n) .$$

Then (μ_n) is called a sequence of measures defined for $a_1, a_2, ..., a_l$. We denote (μ_n) by $T((a_i)_1^l)$ or $T(a_1, a_2, ..., a_l)$. If $J_{n_0} = \phi$ for some number $n_0 \in \mathbf{N}$, for $n \ge n_0$, the measure μ_n is independent of the choice of a finite number of points $a_1, a_2, ..., a_l$.

As mentioned above, we fix sequences $(J_n), (\alpha_n)$, and (ν_n) in the following.

Let \mathcal{T} be the set of all sequences $T((a_i)_1^l)$ of measures. The set \mathcal{T} is a direct set with respect to the order $T((a_i)_1^l) \leq T((b_i)_1^k)$ defined by $\{a_1, a_2, ..., a_l\} \subseteq \{b_1, b_2, ..., b_k\}$.

²We denote $\mathbf{R} \setminus A$ by CA.

Definition 6 Suppose that a sequence (g_n) of functions in $M_0(D)$ satisfies the following condition which is called the (*)-condition for $a_1, a_2, ..., a_l$:

For any $a \in D$ with $a \neq a_i$ (i = 1, 2, ..., l),

$$\lim_{n \to \infty} \int_{J_n^a \cap D} |g_n(x)| dx = 0$$

Let $L_0^*(T((a_i)_1^l))$ (or $L_0^*(T(a_1, a_2, ..., a_l))$) be the set of all sequences (g_n) in $L^1(D)$ satisfying the (*)-condition for $a_1, a_2, ..., a_l$ for which an L_0 -Cauchy sequence $(V(g_n))$ exists.

Remark 1 In the paper [9] and [6], we give a concrete expression for measures ν_n and sets A_n . However, in this paper, their expressions are more general.

Proposition 1 If $(g_n) \in L_0^*(T(a_1, a_2, ..., a_l))$, then $(g_n) \in L_0^*(T(a, a_1, ..., a_l))$ for any $a \in D$ with $a \neq a_i$ (i = 1, 2, ..., l).

Proof. Let $J_n \neq \phi$ for n = 1, 2, 3, ..., and let $(g_n) \in L_o^*(T(a_1, a_2, ..., a_l))$. Then there exists an L_0 -Cauchy sequence $(V(g_n, \varepsilon_n, A_n)) \in \mathbf{F}_0(T(a_1, a_2, ..., a_l))$ and (g_n) satisfies the (*)-condition. Let $(\mu_n) = T(a_1, a_2, ..., a_l)$. Then we have $\mu_n = \mu_n^0 / \exp(-\alpha_n)$ by (3). By virtue of (K_2) , there exist $k_1, k_2 > 0$ such that

(1.4)
$$k_1 \le \mu_n(CA_n) \le k_2$$
.

There exists an integer c > 1 such that

$$(1.5) (k_2 + l)/k_1 < c .$$

Put $\rho_n = c \varepsilon_n + m(J_n) + \eta_n$, where

$$\eta_n = \sup_{k \ge n} \int_{J_k^a \cap D} |g_k(x)| dx$$

We will show that

$$(V(g_n))_N^{\infty} = (V(g_n, \rho_n, B_n))_N^{\infty} \in \mathbf{F}_0(T(a_1, a_2, ..., a_l))$$

for a sufficiently large N, where $B_n = A_n \cap (D \setminus J_n^a)$. Let $(\tau_n) = T(a, a_1, ..., a_l)$. Then we see that $\tau_n = \tau_n^0 / \exp(-\alpha_n)$ by (3). By (1.1), (1.2), and (1.4), it follows that

(1.6)
$$\exp(-\alpha_n) \le \tau_n^0(J_n^a) \le \tau_n^0(CB_n) \le \mu_n^0(CA_n \cap CJ_n^a) + \tau_n^0(J_n^a) \le (k_2 + l) \exp(-\alpha_n) .$$

Hence $(V(g_n))$ satisfies (K_2) .

Next we will show that $(V(g_n))$ satisfies (K_1) for $T(a, a_1, ..., a_l)$. Let B be a subset of D such that $\tau_n^0(CB_n) \ge \tau_n^0(B)$. By (1.4), (1.5), and(1.6), we find that

(1.7)
$$\tau_n^0(CB_n) \le (k_2 + l) \exp(-\alpha_n) \le ((k_2 + l)/k_1) \ \mu_n^0(CA_n) < c \ \mu_n^0(CA_n).$$

Therefore we have

(1.8)
$$\mu_n^0(B \cap CJ_n^a) = \tau_n^0(B \cap CJ_n^a) \le \tau_n^0(B) < c \ \mu_n^0(CA_n) \ .$$

Since $(V(g_n, \varepsilon_n, A_n))$ satisfies (K_1) for $T(a_1, a_2, ..., a_l)$, we have $m(B_0 \cap [-1/\varepsilon_n, 1/\varepsilon_n]) \leq \varepsilon_n$ for B_0 with $\mu_n^0(CA_n) \geq \mu_n^0(B_0)$. Hence, from $\rho_n > \varepsilon_n$, we obtain

(1.9)
$$\mathbf{m}(B \cap CJ_n^a \cap [-1/\rho_n, 1/\rho_n]) \le c \ \varepsilon_n.$$

Moreover, we get

(1.10)
$$m(B \cap J_n^a \cap [-1/\rho_n, 1/\rho_n]) \le m(J_n^a) = m(J_n) ,$$

so that $m(B \cap [-1/\rho_n, 1/\rho_n]) \leq \rho_n$. Thus $(V(g_n))$ satisfies (K_1) .

Finally, we will show that $(V(g_n))$ satisfies (K_3) . For any set $B \subseteq D$ with $\tau_n^0(CB_n) \ge \tau_n^0(B)$, we find by (1.8) that

$$\int_{B\cap CJ_n^a} |g_n(x)| dx \le c \ \varepsilon_n \ .$$

Hence we have

$$\int_{B} |g_{n}(x)| dx \leq c \varepsilon_{n} + \eta_{n} \leq \rho_{n},$$

which means that $(V(g_n))$ satisfies (K_3) . This completes the proof.

Proposition 2 Let $[f_n] \oplus g \in \Gamma_0(D) \bigoplus M_0(D)$ and let (g_n) be an element in $L^*_o(T((a_i)_1^l))$ such that there exists an L_o -Cauchy sequence $(V(g_n)) \in \mathbf{F}_0(T((a_i)_1^l))$ for g. If $\{b_1, b_2, ..., b_k\}$ contains $\{a_1, a_2, ..., a_l\}$ and $[f_n] \oplus g$ is $(E.R.T((a_i)_1^l))$ -integrable (Definition 4), then $[f_n] \oplus g$ is $(E.R.T((b_i)_1^k))$ -integrable and their integrals coincide.

Proof. By Proposition 1, we obtain $(g_n) \in L_o^*(T((b_i)_1^k))$. Hence, $[f_n] \oplus g$ is $(E.R.T((b_i)_1^k))$ integrable for $T((b_i)_1^k)$. We obtain

$$(E.R.T((a_i)_1^l)) \int_D [f_n] \oplus gdx = \lim_{n \to \infty} \int_D (f_n(x) + g_n(x))dx$$
$$= (E.R.T((b_i)_l^k)) \int_D [f_n] \oplus gdx.$$

Now we define a translation invariant integral in $\Gamma_0(D) \bigoplus M_0(D)$.

Definition 7 Let $[f_n] \oplus g \in \Gamma_0(D) \bigoplus M_0(D)$. Suppose that there exist two sequences (g_n) and $T((a_i)_1^l)$ such that (g_n) is an element in $L_o^*(T((a_i)_1^l))$ with an L_o -Cauchy sequence $(V(g_n)) \in \mathbf{F}_o(T((a_i)_1^l))$ for g. When $[f_n] \oplus g$ is $(E.R.T((a_i)_1^l))$ -integrable, $[f_n] \oplus g$ is said to be $(E.R.\mathcal{T})$ -integrable. The $(E.R.\mathcal{T})$ -integral

$$(E.R.\mathcal{T})\int_{D}[f_{n}]\oplus gdx$$

of $[f_n] \oplus g$ is defined to be the $(E.R.T((a_i)_1^l))$ -integral of $[f_n] \oplus g$.

Remark 2 Let $[f_n] \oplus g \in \Gamma_0(D) \bigoplus M_0(D)$ and let (g_n) be an element in $L_0^*(T((a_i)_1^l))$ such that there exists an L_o -Cauchy sequence $(V(g_n)) \in \mathbf{F}_0(T((a_i)_1^l))$ for g. If $\{b_1, b_2, ..., b_k\}$ contains $\{a_1, a_2, ..., a_l\}$ and $[f_n] \oplus g$ is $\overline{\mathcal{P}}_c$ -differentiable for $T((a_i)_1^l)$ ([9], Definition 8), we can also prove easily that $[f_n] \oplus g$ is $\overline{\mathcal{P}}_c$ -differentiable for $T((b_i)_1^k)$ and they have the same derivatives.

Therefore, if $[f_n] \oplus g$ is $\overline{\mathcal{P}}_c$ -differentiable for $T((a_i)_1^l)$, $[f_n] \oplus g$ is said to be $\overline{\mathcal{P}}_c$ -differentiable for \mathcal{T} . The $\overline{\mathcal{P}}_c$ -derivative $([f_n] \oplus g)'_{\overline{\mathcal{P}}_c,\mathcal{T}}$ for \mathcal{T} is defined to be the $\overline{\mathcal{P}}_c$ -derivative of $[f_n] \oplus g$ for $T((a_i)_1^l)$.

Remark 3 In Definition in [9] and [6] (Section 4), we defined a translation invariant $(E.R.\mathcal{M})$ -integral in $\Gamma_0(D) \bigoplus M_0(D)$. In the similar way as Definition 7, this integral was defined for functions $g \in M_0(D)$ such that there exists an L_o -Cauchy sequence $(V(g_n, \varepsilon_n, A_n))$ satisfying $\bigcap_{n=1}^{\infty} V(g_n, \varepsilon_n, A_n) \ni g$, A_n are restricted to the form

$$A_n = D \setminus \bigcup_{i=1}^{l} (a_i - 1/(2n), a_i + 1/(2n)).$$

Owing to this restriction, the (E.R)-integrable function, mentioned in Section 4, defined by Kunugi by using Cantor set is not $(E.R.\mathcal{M})$ -integrable. In order to remove this restriction, we use (*)-condition for (g_n) .

Example 1 Let ν_n be a measure on **R** defined by

$$\nu_n(E) = \int_E k_n(x) dx,$$

where

$$k_n(x) = \begin{cases} \exp(-1/x)/x^2, & \text{on } J_n \\ 2\exp(-2|x|), & \text{on } E_n \\ 1, & \text{on } \mathbf{R} \setminus (J_n \cup E_n). \end{cases}$$

Let c be a number with 0 < c < 2. Put $J_n = [-1/(2n), 1/(2n)]$ and $a_1 = c$. There exists a number $n_0 \in N$ such that $c - 1/(2n_0), c + 1/(2n_0) \in [0,2]$. For each $n > n_0$, a function g_n on D = [0,2] is defined to be 1/(x-c) on A_n and 0 elsewhere, where $A_n = D \setminus J_n^c$. Then $(V(g_n, 2/n, A_n))_N^\infty \in \mathbf{F}_0(T(a_1))$ for a sufficiently large number $N > n_0$. It is easily verified that (g_n) satisfies (*)-condition. Hence we have

$$(E.R.\mathcal{T})\int_D 0\oplus \frac{1}{x-c}dx = \log((2-c)/c).$$

4 Relation to the (E.R)-integral. In the paper [1], Kunugi defined a function by using the Cantor set as follows :

Let S_1^0 be the open middle third of S = [0,1], $S_1^0 = (1/3, 2/3)$; let S_1^1 and S_2^1 be the open middle thirds of two closed intervals which make up $S \setminus S_1^0$, i.e. $S_1^1 = (1/9, 2/9)$ and $S_2^1 = (7/9, 8/9)$; let S_1^2, S_2^2, S_3^2 , and S_4^2 be the open middle thirds of the four closed intervals which make up $S \setminus \bigcup_{j=1}^2 S_j^1$ and so on ad infinitum. Putting $\bigcup_{j=1}^{2^n} S_j^n = U^n$, we have the Cantor set $S \setminus \bigcup_{n=0}^{\infty} U^n$. A function f is defined to be $(-1)^n 3^{(n+1)}/(2^n(n+1))$ on U^n for each n and 0 on $S \setminus \bigcup_{n=0}^{\infty} U^n$. It is shown by Kunugi that f is (E.R)-integrable.

In this section, we will show that the $(E.R.\mathcal{T})$ -integral is an extension of the (E.R)-integral. Here, we use the definition of the (E.R)-integral due to Okano. In the following, D is a finite open interval.

Definition 8 [Okano[2]] Let $(V(f_n, \varepsilon_n, A_n))$ be a Cauchy sequence on D satisfying the following three conditions:

- (i) $m(CA_n) \leq \varepsilon_n$,
- (ii) For each n, there exists k > 0 such that $k \operatorname{m}(CA_{n+1}) \ge \operatorname{m}(CA_n)$.
- (iii) For any Lebesgue measurable subset B of D with $m(CA_n) \ge m(B)$,

$$\int_{B} |f_n(x)| dx \le \varepsilon_n$$

Let (f_n) be a sequence with a Cauchy sequence $(V(f_n, \varepsilon_n, A_n))$ such that $\bigcap_{n=1}^{\infty} V(f_n, \varepsilon_n, A_n) \ni f$. If

$$\lim_{n \to \infty} \sup \int_D f_n(x) dx = \lim_{n \to \infty} \inf \int_D f_n(x) dx,$$

the common value is called the (E.R)-integral of f on D and is denoted by

$$(E.R)\int_D f(x)dx.$$

Theorem 1 If f is (E.R)-integrable on D, then f is $(E.R.\mathcal{T})$ -integrable on D.

Proof. Let $(V(f_n, \varepsilon_n, A_n))$ be a Cauchy sequence satisfying conditions (i), (ii), and (iii). We may assume that $0 < \varepsilon_n < 1$ for every $n \in \mathbf{N}$. Let $\bigcap_{n=1}^{\infty} V(f_n, \varepsilon_n, A_n) \ni f$. Put $J_n = \phi, \ \beta_n = n$, and $\alpha_n = -\log \gamma_n$, where $\gamma_n = \mathrm{m}(CA_n)$. Let ν_n be a measure on \mathbf{R} such that

$$\nu_n(E) = \int_E h_n(x) dx$$

where

$$h_n(x) = \begin{cases} 1, & \text{on } \mathbf{R} \setminus E_r \\ -\alpha_n \exp(-\alpha_n |x|/n)/(2n), & \text{on } E_n. \end{cases}$$

Then we have

$$\mu_n^0(E) = \mathbf{m}(E \cap (-n, n)) + \nu_n(E \cap E_n)$$

for any $E \subseteq \mathbf{R}$, and

$$\mu_n(E) = \mu_n^0(E) / \exp(-\alpha_n) \qquad (n = 1, 2, 3, ...).$$

There exists a number $n_0 \in \mathbf{N}$ such that $[-n, n] \supset D$ for any $n \ge n_0$,

We will show that $(V(f_n))_{n_0}^{\infty} = (V(f_n, \varepsilon_n, A_n))_{n_0}^{\infty}$ is an L_0 -Cauchy sequence.

Let B be any subset of D such that $\mu_n^0(CA_n) \ge \mu_n^0(B)$. Then we have, by (i),

$$m(B \cap [-1/\varepsilon_n, 1/\varepsilon_n]) \le m(B) \le m(CA_n) \le \varepsilon_n$$

for any $n \ge n_0$. Hence, (K_1) is satisfied. It holds that

$$\mu_n(CA_n) = \mu_n^0(CA_n) / \exp(-\alpha_n) = \operatorname{m}(CA_n) / \gamma_n = 1 ,$$

so (K_2) is satisfied.

Moreover, from (iii), (K_3) is satisfied. This completes the proof.

Acknowledgement. The author would like to thank Professor M. Washihara for useful discussions and comments.

References

- K.Kunugi. Sur une gènèralisation de l'integrale, Fundamental and Applied Aspects of Math. 1 (1959), 1-30.
- H.Okano. Sur une gènèralisation de l'integrale (E.R.) et un théoréme gènèral de l'integration par parties, J.Math.Soc.Japan. 14 (1962), 432-442.
- [3] K.Nakagami. Integration and differentiation of δ -function I, Math. Japon. 26 (1981), 297-317.
- [4] K.Nakagami. Integration and differentiation of δ -function II, Math. Japon. 28 (1983), 519-533.

KEIKO NAKAGAMI

- [5] K.Nakagami. Integration and differentiation of δ -function III, Math. Japon. 28 (1983), 703-709.
- [6] K.Nakagami. Integration and differentiation of δ -function IV, Math. Japon. **32** (1987), 621-641.
- [7] K.Nakagami. Integration and differentiation of δ -function V, Math. Japon. 33 (1988), 751-761.
- [8] K.Nakagami. Integration and differentiation of δ -function VI, Math. Japon. **34** (1989), 235-251.
- [9] K.Nakagami. The space $\Gamma_o(D) \bigoplus M_o(D)$ of generalized functions, Math. Japon. **40** (1994),381-387.
- [10] K.Nakagami. A hyperbolic differential equation in the space $\Gamma_0(D) \bigoplus M_0(D)$, Math. Japon. 48 (1998),31-41.

DEPARTMENT OF COMPUTER SCIENCES, KYOTO SANGYO UNIVERSITY, KAMIGAMO, KITA-KU, KYOTO, 603-8555