AN INTEGRAL PRESERVED BY A TRANSLATION ON THE SPACE $\Gamma_{0}(D) \bigoplus M_{0}(D)$

Keiko Nakagami

Received October 2, 2000; revised October 30, 2000

Abstract. In this paper, we introduce a translation invariant integral, called the (E.R. \mathcal{T})-integral, such that the (E.R)-integrable function defined by using the Cantor set by Kunugi is integrable.

1 Introduction In our paper [9], we defined the space $\Gamma_{0}(D) \bigoplus M_{0}(D)$ of generalized functions on an interval D. A generalized function is expressed by a pair of elements in $\Gamma_{0}(D)$ and $M_{0}(D)$. The set $\Gamma_{0}(D)$ is the singular part of $\Gamma_{0}(D) \bigoplus M_{0}(D)$ in the sense that it contains the δ-function together with it's higher derivatives. The set $M_{0}(D)$ consists of all real valued measurable functions on D, which is the regular part of $\Gamma_{0}(D) \bigoplus M_{0}(D)$. In our papers [9] and [6], the translation invariant (E.R.M)-integral over this space was defined. This integral was defined for a function g such that there exists a Cauchy sequence $\left(V\left(g_{n}, \varepsilon_{n}, A_{n}\right)\right)$ satisfying $\bigcap_{n=1}^{\infty} V\left(g_{n}, \varepsilon_{n}, A_{n}\right) \ni g$, where the sets A_{n} are restricted to the sets of the form $(-n, n) \backslash \bigcup_{k=1}^{m} B_{k}$ for some open intervals B_{k} with length $1 / n$. By this restriction to the sets A_{n}, the (E.R)-integrable function (Kunugi[1]), mentioned in Section 4 , defined by using the Cantor set is not (E.R.M $)$-integrable .

In this paper, we introduce another translation invariant integral called the (E.R.T)integral. The definition of the integral is independent of the above restriction. The above function due to Kunugi is (E.R.T)-integrable. In Section 2, we recall some terminologies and notations containing the definition of the (E.R.A)-integral in the paper [9]. In Section 3 , we give the definition of the $(E . R . \mathcal{T})$-integral. In Section 4, the (E.R. $\mathcal{T})$-integral is shown to be an extention of the (E.R)-integral.

2 Terminologies and notations Let $M_{0}(D)$ be the set of all real valued Lebesgue measurable functions defined on a finite or an infinite interval D. In what follows, we suppose that the set $M_{0}(D)$ is classified by the usual equivalence relation $f(x)=g(x)$ a.e. We denote measurable functions by symbols $f(x), g(x), \ldots$ and a class in $M_{0}(D)$ containing a measurable function $g(x)$ by the same symbol $g(x)$ or g. For each Lebesgue measurable subset A of D and $\varepsilon>0$, we define a pre-neighbourhood $V(f, \varepsilon, A)$ as

$$
V(f, \varepsilon, A)=\left\{g \in M_{0}(D): \int_{A}|f(x)-g(x)| d x \leq \varepsilon\right\}
$$

We denote $V(f, \varepsilon, A)$ by $V(f)$ if there is no fear of confusion.
Definition $1 A$ sequence $\left(V\left(f_{n}\right)\right)=\left(V\left(f_{n} . \varepsilon_{n}, A_{n}\right)\right)$ of preneighbourhoods in $M_{0}(D)$ is called a Cauchy sequence if
(i) $V\left(f_{1}\right) \sqsupseteq V\left(f_{2}\right) \sqsupseteq \ldots$, and
(ii) $\varepsilon_{n} \rightarrow 0$.

2000 Mathematics Subject Classification. 46F-99.
Key words and phrases. generalized function, integral by a translation .

For a Cauchy sequence $\left(V\left(f_{n}, \varepsilon_{n}, A_{n}\right)\right)$ on D, we consider the following two conditions:
$\left(T_{1}\right) \mathrm{m}\left(\left(D \backslash A_{n}\right) \cap\left[-1 / \varepsilon_{n}, 1 / \varepsilon_{n}\right]\right) \leq \varepsilon_{n} .{ }^{1}$
$\left(T_{2}\right) f_{n}(x)$ is decomposed into a sum of measurable functions $f_{1 n}(x)$ and $f_{2 n}(x)$ on D, where $\operatorname{supp} f_{1 n} \subseteq D \backslash A_{n}$, and

$$
\int_{D \backslash A_{n}}\left|f_{2 n}(x)\right| d x \leq \varepsilon_{n} .
$$

If $\left(V\left(f_{n}\right)\right)=\left(V\left(f_{n}, \varepsilon_{n}, A_{n}\right)\right)$ is a Cauchy sequence which satisfies conditions $\left(T_{1}\right)$ and $\left(T_{2}\right)$, the Cauchy sequence is called a G_{0}-Cauchy sequence on D. Let $G_{0}(D)$ be the set of sequences $\left(f_{n}\right)$ such that there exists a G_{0}-Cauchy sequence $\left(V\left(f_{n}\right)\right)$ with $0 \in \bigcap_{n=1}^{\infty} V\left(f_{n}\right)$.

Definition $2 A$ decomposition $f_{n}=f_{1 n}+f_{2 n}$ in $\left(T_{2}\right)$ for a G_{0}-Cauchy sequence $\left(V\left(f_{n}\right)\right)$ is called an associated decomposition of f_{n}.

If $\left(f_{n}\right)$ and $\left(g_{n}\right)$ have associated decompositions $f_{1 n}+f_{2 n}$ and $g_{1 n}+g_{2 n}$ of f_{n} and g_{n} respectively such that there is an $n_{0} \in \mathbf{N}$ satisfying $f_{1 n}=g_{1 n}$ a.e. for each $n \geq n_{0}$, we say that $\left(f_{n}\right)$ and $\left(g_{n}\right)$ are equivalent. Let $\Gamma_{0}(D)$ be the quotient space of $G_{0}(D)$ classified by this equivalence relation, whose element containing $\left(f_{n}\right)$ is denoted by $\left[f_{n}\right]$.

The following set is the underling space of our whole theory:

$$
\Gamma_{0}(D) \bigoplus M_{0}(D)=\left\{\left(\left[f_{n}\right], g\right) ;\left[f_{n}\right] \in \Gamma_{0}(D), g \in M_{0}(D)\right\}
$$

In what follows, we denote the pair $\left(\left[f_{n}\right], g\right)$ by $\left[f_{n}\right] \oplus g$.
Let $\Lambda=\left(\lambda_{n}\right)$ be a sequence of finite absolutely continuous measures on \mathbf{R}. A Cauchy sequence $\left(V\left(g_{n}, \varepsilon_{n}, A_{n}\right)\right)$ is called an L_{0}-Cauchy sequence if it satisfies the following three conditions on D :
$\left(K_{1}\right)$ if B is a Lebesgue measurable subset of D with $\lambda_{n}\left(D \backslash A_{n}\right) \geq \lambda_{n}(B)$, then $\mathrm{m}(B \cap$ $\left.\left[-1 / \varepsilon_{n}, 1 / \varepsilon_{n}\right]\right) \leq \varepsilon_{n}$.
$\left(K_{2}\right)$ if $\mathrm{m}\left(D \backslash A_{n}\right)>0$ for all n, there exist $k, k^{\prime}>0$ such that

$$
k \leq \lambda_{n}\left(D \backslash A_{n}\right) \leq k^{\prime}
$$

for all n.
$\left(K_{3}\right)$ if B is a Lebesgue measurable subset of D with $\lambda_{n}\left(D \backslash A_{n}\right) \geq \lambda_{n}(B)$, then

$$
\int_{B}\left|g_{n}(x)\right| d x \leq \varepsilon_{n}
$$

Let $\mathbf{F}_{0}(\Lambda)$ be the set of L_{0}-Cauchy sequences on D and let $L_{0}(\Lambda)$ be the set of sequences $\left(g_{n}\right)$ in $L^{1}(D)$ such that there exists an L_{0}-Cauchy sequence $\left(V\left(g_{n}\right)\right)$.

Definition 3 A sequence $\left(V\left(g_{n}\right)\right) \in \mathbf{F}_{0}(\lambda)$ is called on L_{0}-Cauchy sequence for g if $\bigcap_{n=1}^{\infty} V\left(g_{n}\right)=$ $\{g\}$.

Definition 4 Let $\left(g_{n}\right)$ be a sequence in $L_{0}(\Lambda)$ with an L_{0}-Cauchy sequence for $g \in M_{0}(D)$. If

$$
\lim _{n \rightarrow \infty} \sup \int_{D} g_{n}(x) d x=\lim _{n \rightarrow \infty} \inf \int_{D} g_{n}(x) d x
$$

[^0]this common value is denoted by
$$
I(g, \Lambda)=(E . R . \Lambda) \int_{D} g(x) d x
$$
and $I(g, \Lambda)$ is called the (E.R. $\Lambda)$-integral of g on D. If $-\infty<I(g, \Lambda)<\infty, g$ is called to be (E.R. Λ)-integrable on D.

Now we give the definition of the (E.R. Λ)-integration on $\Gamma_{0}(D) \bigoplus M_{0}(D)$.
Definition 5 Suppose that a sequence $\left(f_{n}\right)$ in $G_{0}(D)$ has an associated decomposition $f_{1 n}+$ $f_{2 n}$ of f_{n} such that the value

$$
I\left(\left[f_{n}\right] ; D\right)=\lim _{n \rightarrow \infty} \int_{D} f_{1 n}(x) d x
$$

exists and the (E.R. Λ)-integral $I(g, \Lambda)$ of $g \in M_{0}(D)$ exists, where the values of these integrals may be finite or infinite. Then, if $I\left(\left[f_{n}\right] ; D\right)+I(g, \Lambda)$ has a meaning, this sum is denoted by

$$
(E . R . \Lambda) \int_{D}\left[f_{n}\right] \oplus g d x=(E . R . \Lambda) \int_{D}\left(f_{n}(x)\right) \oplus g(x) d x
$$

and the common value is called the $(E . R . \Lambda)$-integral of $\left[f_{n}\right] \oplus g$ on D.
3 The (E.R.T)-integral . Our integral is considered on a finite or an infinite open interval D. We fix two increasing sequences $\alpha=\left(\alpha_{n}\right)$ and $\beta=\left(\beta_{n}\right)$ of real numbers with $\lim _{n \rightarrow \infty} \alpha_{n}=\infty$ and $\lim _{n \rightarrow \infty} \beta_{n}=\infty$, and a decreasing sequences $\left(J_{n}\right)$ of measurable subsets with $J_{n} \subseteq\left[-\beta_{n}, \beta_{n}\right]$ and $\lim _{n \rightarrow \infty} m\left(J_{n}\right)=0$. Now, we define a sequence $\left(\mu_{n}\right)$ of finite measures on \mathbf{R} as the following :
(1) Let ν_{n} be absolutely continuous measure on \mathbf{R} such that

$$
\begin{equation*}
\nu_{n}\left(E_{n}\right)=\exp \left(-\alpha_{n}\right) \tag{1.1}
\end{equation*}
$$

where $E_{n}=\mathbf{R} \backslash\left[-\beta_{n}, \beta_{n}\right]$, and , if $J_{n} \neq \phi$ for $\mathrm{n}=1,2,3, \ldots$,

$$
\nu_{n}\left(J_{n}\right)=\exp \left(-\alpha_{n}\right)
$$

We fix ν_{n} in the following .
(2) Denote $J_{n}+a=\left\{x+a ; x \in J_{n}\right\}$ by J_{n}^{a}. For any Lebesgue measurable subset E of \mathbf{R} and for any mutually diffrent points $a_{1}, a_{2}, \ldots, a_{l} \in D$, we set

$$
\begin{align*}
& \mu_{n}^{0}(E)=\sum_{i=1}^{l} \nu_{n}\left(\left(E \cap J_{n}^{a_{i}}\right)-a_{i}\right)+\nu_{n}\left(E \cap E_{n}\right) \tag{1.2}\\
& \quad+\mathrm{m}\left(E \cap\left(C E_{n} \backslash \cup_{i=1}^{l} J_{n}^{a_{i}}\right)\right) .^{2}
\end{align*}
$$

(3) Put, for $n=1,2,3, \ldots$,

$$
\begin{equation*}
\mu_{n}=\mu_{n}^{0} \backslash \exp \left(-\alpha_{n}\right) \tag{1.3}
\end{equation*}
$$

Then $\left(\mu_{n}\right)$ is called a sequence of measures defined for $a_{1}, a_{2}, . ., a_{l}$. We denote $\left(\mu_{n}\right)$ by $T\left(\left(a_{i}\right)_{1}^{l}\right)$ or $T\left(a_{1}, a_{2}, \ldots, a_{l}\right)$. If $J_{n_{0}}=\phi$ for some number $n_{0} \in \mathbf{N}$, for $n \geq n_{0}$, the measure μ_{n} is independent of the choice of a finite number of points $a_{1}, a_{2}, \ldots, a_{l}$.

As mentioned above, we fix sequences $\left(J_{n}\right),\left(\alpha_{n}\right)$, and $\left(\nu_{n}\right)$ in the following.
Let \mathcal{T} be the set of all sequences $T\left(\left(a_{i}\right)_{1}^{l}\right)$ of measures. The set \mathcal{T} is a direct set with respect to the order $T\left(\left(a_{i}\right)_{1}^{l}\right) \leq T\left(\left(b_{i}\right)_{1}^{k}\right)$ defined by $\left\{a_{1}, a_{2}, \ldots, a_{l}\right\} \subseteq\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$.

[^1]Definition 6 Suppose that a sequence $\left(g_{n}\right)$ of functions in $M_{0}(D)$ satisfies the following condition which is called the $(*)$-condition for $a_{1}, a_{2}, \ldots, a_{l}$:

For any $a \in D$ with $a \neq a_{i}(i=1,2, \ldots, l)$,

$$
\lim _{n \rightarrow \infty} \int_{J_{n}^{a} \cap D}\left|g_{n}(x)\right| d x=0
$$

Let $L_{0}^{*}\left(T\left(\left(a_{i}\right)_{1}^{l}\right)\right)\left(\right.$ or $\left.L_{0}^{*}\left(T\left(a_{1}, a_{2}, \ldots, a_{l}\right)\right)\right)$ be the set of all sequences $\left(g_{n}\right)$ in $L^{1}(D)$ satisfying the $(*)$-condition for $a_{1}, a_{2}, \ldots, a_{l}$ for which an L_{0}-Cauchy sequence $\left(V\left(g_{n}\right)\right)$ exists.

Remark 1 In the paper [9] and [6], we give a concrete expression for measures ν_{n} and sets A_{n}. However, in this paper, their expressions are more general.

Proposition 1 If $\left(g_{n}\right) \in L_{0}^{*}\left(T\left(a_{1}, a_{2}, \ldots, a_{l}\right)\right)$, then $\left(g_{n}\right) \in L_{0}^{*}\left(T\left(a, a_{1}, \ldots, a_{l}\right)\right)$ for any $a \in D$ with $a \neq a_{i}(i=1,2, . ., l)$.

Proof. Let $J_{n} \neq \phi$ for $n=1,2,3, \ldots$, and let $\left(g_{n}\right) \in L_{o}^{*}\left(T\left(a_{1}, a_{2}, \ldots, a_{l}\right)\right)$. Then there exists an L_{0}-Cauchy sequence $\left(V\left(g_{n}, \varepsilon_{n}, A_{n}\right)\right) \in \mathbf{F}_{0}\left(T\left(a_{1}, a_{2}, \ldots, a_{l}\right)\right)$ and $\left(g_{n}\right)$ satisfies the (*)-condition. Let $\left(\mu_{n}\right)=T\left(a_{1}, a_{2}, \ldots, a_{l}\right)$. Then we have $\mu_{n}=\mu_{n}^{0} / \exp \left(-\alpha_{n}\right)$ by (3). By virtue of $\left(K_{2}\right)$, there exist $k_{1}, k_{2}>0$ such that

$$
\begin{equation*}
k_{1} \leq \mu_{n}\left(C A_{n}\right) \leq k_{2} \tag{1.4}
\end{equation*}
$$

There exists an integer $c>1$ such that

$$
\begin{equation*}
\left(k_{2}+l\right) / k_{1}<c \tag{1.5}
\end{equation*}
$$

Put $\rho_{n}=c \varepsilon_{n}+\mathrm{m}\left(J_{n}\right)+\eta_{n}$, where

$$
\eta_{n}=\sup _{k \geq n} \int_{J_{k}^{a} \cap D}\left|g_{k}(x)\right| d x
$$

We will show that

$$
\left(V\left(g_{n}\right)\right)_{N}^{\infty}=\left(V\left(g_{n}, \rho_{n}, B_{n}\right)\right)_{N}^{\infty} \in \mathbf{F}_{0}\left(T\left(a_{1}, a_{2}, \ldots, a_{l}\right)\right)
$$

for a sufficiently large N, where $B_{n}=A_{n} \cap\left(D \backslash J_{n}{ }^{a}\right)$. Let $\left(\tau_{n}\right)=T\left(a, a_{1}, \ldots, a_{l}\right)$. Then we see that $\tau_{n}=\tau_{n}^{0} / \exp \left(-\alpha_{n}\right)$ by (3). By (1.1), (1.2), and (1.4), it follows that

$$
\begin{gather*}
\exp \left(-\alpha_{n}\right) \leq \tau_{n}^{0}\left(J_{n}^{a}\right) \leq \tau_{n}^{0}\left(C B_{n}\right) \leq \mu_{n}^{0}\left(C A_{n} \cap C J_{n}^{a}\right)+ \tag{1.6}\\
\tau_{n}{ }^{0}\left(J_{n}^{a}\right) \leq\left(k_{2}+l\right) \exp \left(-\alpha_{n}\right)
\end{gather*}
$$

Hence $\left(V\left(g_{n}\right)\right)$ satisfies $\left(K_{2}\right)$.
Next we will show that $\left(V\left(g_{n}\right)\right)$ satisfies $\left(K_{1}\right)$ for $T\left(a, a_{1}, \ldots, a_{l}\right)$. Let B be a subset of D such that $\tau_{n}^{0}\left(C B_{n}\right) \geq \tau_{n}^{0}(B)$. By (1.4), (1.5), and(1.6), we find that

$$
\begin{equation*}
\tau_{n}^{0}\left(C B_{n}\right) \leq\left(k_{2}+l\right) \exp \left(-\alpha_{n}\right) \leq\left(\left(k_{2}+l\right) / k_{1}\right) \mu_{n}^{0}\left(C A_{n}\right)<c \mu_{n}^{0}\left(C A_{n}\right) \tag{1.7}
\end{equation*}
$$

Therefore we have

$$
\begin{equation*}
\mu_{n}^{0}\left(B \cap C J_{n}^{a}\right)=\tau_{n}^{0}\left(B \cap C J_{n}^{a}\right) \leq \tau_{n}^{0}(B)<c \mu_{n}^{0}\left(C A_{n}\right) \tag{1.8}
\end{equation*}
$$

Since $\left(V\left(g_{n}, \varepsilon_{n}, A_{n}\right)\right)$ satisfies $\left(K_{1}\right)$ for $T\left(a_{1}, a_{2}, \ldots, a_{l}\right)$, we have $\mathrm{m}\left(B_{0} \cap\left[-1 / \varepsilon_{n}, 1 / \varepsilon_{n}\right]\right) \leq \varepsilon_{n}$ for B_{0} with $\mu_{n}^{0}\left(C A_{n}\right) \geq \mu_{n}^{0}\left(B_{0}\right)$. Hence, from $\rho_{n}>\varepsilon_{n}$, we obtain

$$
\begin{equation*}
\mathrm{m}\left(B \cap C J_{n}^{a} \cap\left[-1 / \rho_{n}, 1 / \rho_{n}\right]\right) \leq c \varepsilon_{n} \tag{1.9}
\end{equation*}
$$

Moreover, we get

$$
\begin{equation*}
\mathrm{m}\left(B \cap J_{n}^{a} \cap\left[-1 / \rho_{n}, 1 / \rho_{n}\right]\right) \leq \mathrm{m}\left(J_{n}^{a}\right)=\mathrm{m}\left(J_{n}\right) \tag{1.10}
\end{equation*}
$$

so that $\mathrm{m}\left(B \cap\left[-1 / \rho_{n}, 1 / \rho_{n}\right]\right) \leq \rho_{n}$. Thus $\left(V\left(g_{n}\right)\right)$ satisfies $\left(K_{1}\right)$.
Finally, we will show that $\left(V\left(g_{n}\right)\right)$ satisfies $\left(K_{3}\right)$. For any set $B \subseteq D$ with $\tau_{n}^{0}\left(C B_{n}\right) \geq$ $\tau_{n}^{0}(B)$, we find by (1.8) that

$$
\int_{B \cap C J_{n}^{a}}\left|g_{n}(x)\right| d x \leq c \varepsilon_{n}
$$

Hence we have

$$
\int_{B}\left|g_{n}(x)\right| d x \leq c \varepsilon_{n}+\eta_{n} \leq \rho_{n}
$$

which means that $\left(V\left(g_{n}\right)\right)$ satisfies $\left(K_{3}\right)$. This completes the proof.
Proposition $2 \operatorname{Let}\left[f_{n}\right] \oplus g \in \Gamma_{0}(D) \bigoplus M_{0}(D)$ and let $\left(g_{n}\right)$ be an element in $L_{o}^{*}\left(T\left(\left(a_{i}\right)_{1}^{l}\right)\right)$ such that there exists an L_{o}-Cauchy sequence $\left(V\left(g_{n}\right)\right) \in \mathbf{F}_{0}\left(T\left(\left(a_{i}\right)_{1}^{l}\right)\right)$ for g. If $\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$ contains $\left\{a_{1}, a_{2}, \ldots, a_{l}\right\}$ and $\left[f_{n}\right] \oplus g$ is $\left(E . R . T\left(\left(a_{i}\right)_{1}^{l}\right)\right)$-integrable (Definition 4), then $\left[f_{n}\right] \oplus$ g is $\left(E . R . T\left(\left(b_{i}\right)_{l}^{k}\right)\right)$-integrable and their integrals coincide.

Proof. By Proposition 1, we obtain $\left(g_{n}\right) \in L_{o}^{*}\left(T\left(\left(b_{i}\right)_{1}^{k}\right)\right)$. Hence, $\left[f_{n}\right] \oplus g$ is $\left(E . R . T\left(\left(b_{i}\right)_{1}^{k}\right)\right)-$ integrable for $T\left(\left(b_{i}\right)_{1}^{k}\right)$. We obtain

$$
\begin{gathered}
\left(E . R . T\left(\left(a_{i}\right)_{1}^{l}\right)\right) \int_{D}\left[f_{n}\right] \oplus g d x=\lim _{n \rightarrow \infty} \int_{D}\left(f_{n}(x)+g_{n}(x)\right) d x \\
=\left(E . R . T\left(\left(b_{i}\right)_{l}^{k}\right)\right) \int_{D}\left[f_{n}\right] \oplus g d x .
\end{gathered}
$$

Now we define a translation invariant integral in $\Gamma_{0}(D) \bigoplus M_{0}(D)$.
Definition 7 Let $\left[f_{n}\right] \oplus g \in \Gamma_{0}(D) \bigoplus M_{0}(D)$. Suppose that there exist two sequences $\left(g_{n}\right)$ and $T\left(\left(a_{i}\right)_{1}^{l}\right)$ such that $\left(g_{n}\right)$ is an element in $L_{o}^{*}\left(T\left(\left(a_{i}\right)_{1}^{l}\right)\right)$ with an L_{o}-Cauchy sequence $\left(V\left(g_{n}\right)\right) \in \mathbf{F}_{o}\left(T\left(\left(a_{i}\right)_{1}^{l}\right)\right)$ for g. When $\left[f_{n}\right] \oplus g$ is $\left(E . R . T\left(\left(a_{i}\right)_{1}^{l}\right)\right)$-integrable, $\left[f_{n}\right] \oplus g$ is said to be (E.R.T)-integrable. The (E.R.T)-integral

$$
(E . R . \mathcal{T}) \int_{D}\left[f_{n}\right] \oplus g d x
$$

of $\left[f_{n}\right] \oplus g$ is defined to be the $\left(E . R . T\left(\left(a_{i}\right)_{1}^{l}\right)\right)$-integral of $\left[f_{n}\right] \oplus g$.
Remark $2 \operatorname{Let}\left[f_{n}\right] \oplus g \in \Gamma_{0}(D) \bigoplus M_{0}(D)$ and let $\left(g_{n}\right)$ be an element in $L_{0}^{*}\left(T\left(\left(a_{i}\right)_{1}^{l}\right)\right)$ such that there exists an L_{o}-Cauchy sequence $\left(V\left(g_{n}\right)\right) \in \mathbf{F}_{0}\left(T\left(\left(a_{i}\right)_{1}^{l}\right)\right)$ for g. If $\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$ contains $\left\{a_{1}, a_{2}, \ldots, a_{l}\right\}$ and $\left[f_{n}\right] \oplus g$ is $\overline{\mathcal{P}}_{c}$-differentiable for $T\left(\left(a_{i}\right)_{1}^{l}\right)$ ([9], Definition 8$)$, we can also prove easily that $\left[f_{n}\right] \oplus g$ is $\overline{\mathcal{P}}_{c}$-differentiable for $T\left(\left(b_{i}\right)_{1}^{k}\right)$ and they have the same derivatives.

Therefore, if $\left[f_{n}\right] \oplus g$ is $\overline{\mathcal{P}}_{c}$-differentiable for $T\left(\left(a_{i}\right)_{1}^{l}\right),\left[f_{n}\right] \oplus g$ is said to be $\overline{\mathcal{P}}_{c}$ differentiable for \mathcal{T}. The $\overline{\mathcal{P}}_{c}$-derivative $\left(\left[f_{n}\right] \oplus g\right)_{\overline{\mathcal{P}}_{c}, \mathcal{T}}$ for \mathcal{T} is defined to be the $\overline{\mathcal{P}}_{c}$-derivative of $\left[f_{n}\right] \oplus g$ for $T\left(\left(a_{i}\right)_{1}^{l}\right)$.

Remark 3 In Definition in [9] and [6] (Section 4), we defined a translation invariant (E.R.M)-integral in $\Gamma_{0}(D) \bigoplus M_{0}(D)$. In the similar way as Definition 7, this integral was defined for functions $g \in M_{0}(D)$ such that there exists an L_{o}-Cauchy sequence $\left(V\left(g_{n}, \varepsilon_{n}, A_{n}\right)\right)$ satisfying $\bigcap_{n=1}^{\infty} V\left(g_{n}, \varepsilon_{n}, A_{n}\right) \ni g, A_{n}$ are restricted to the form

$$
A_{n}=D \backslash \bigcup_{i=1}^{l}\left(a_{i}-1 /(2 n), a_{i}+1 /(2 n)\right)
$$

Owing to this restriction, the (E.R)-integrable function, mentioned in Section 4, defined by Kunugi by using Cantor set is not (E.R.M)-integrable. In order to remove this restriction, we use $(*)$-condition for $\left(g_{n}\right)$.

Example 1 Let ν_{n} be a measure on \mathbf{R} defined by

$$
\nu_{n}(E)=\int_{E} k_{n}(x) d x
$$

where

$$
k_{n}(x)= \begin{cases}\exp (-1 / x) / x^{2}, & \text { on } J_{n} \\ 2 \exp (-2|x|), & \text { on } E_{n} \\ 1, & \text { on } \mathbf{R} \backslash\left(J_{n} \cup E_{n}\right)\end{cases}
$$

Let c be a number with $0<c<2$. Put $J_{n}=[-1 /(2 n), 1 /(2 n)]$ and $a_{1}=c$. There exists a number $n_{0} \in N$ such that $c-1 /\left(2 n_{0}\right), c+1 /\left(2 n_{0}\right) \in[0,2]$. For each $n>n_{0}$, a function g_{n} on $D=[0,2]$ is defined to be $1 /(x-c)$ on A_{n} and 0 elsewhere, where $A_{n}=D \backslash J_{n}^{c}$. Then $\left(V\left(g_{n}, 2 / n, A_{n}\right)\right)_{N}^{\infty} \in \mathbf{F}_{0}\left(T\left(a_{1}\right)\right)$ for a sufficiently large number $N>n_{0}$. It is easily verified that $\left(g_{n}\right)$ satisfies $(*)$-condition. Hence we have

$$
(E . R . \mathcal{T}) \int_{D} 0 \oplus \frac{1}{x-c} d x=\log ((2-c) / c)
$$

4 Relation to the (E.R)-integral. In the paper [1], Kunugi defined a function by using the Cantor set as follows :

Let S_{1}^{0} be the open middle third of $S=[0,1], S_{1}^{0}=(1 / 3,2 / 3)$; let S_{1}^{1} and S_{2}^{1} be the open middle thirds of two closed intervals which make up $S \backslash S_{1}^{0}$, i.e. $S_{1}^{1}=(1 / 9,2 / 9)$ and $S_{2}^{1}=(7 / 9,8 / 9)$; let $S_{1}^{2}, S_{2}^{2}, S_{3}^{2}$, and S_{4}^{2} be the open middle thirds of the four closed intervals which make up $S \backslash \bigcup_{j=1}^{2} S_{j}^{1}$ and so on ad infinitum. Putting $\bigcup_{j=1}^{2^{n}} S_{j}^{n}=U^{n}$, we have the Cantor set $S \backslash \bigcup_{n=0}^{\infty} U^{n}$. A function f is defined to be $(-1)^{n} 3^{(n+1)} /\left(2^{n}(n+1)\right)$ on U^{n} for each n and 0 on $S \backslash \bigcup_{n=0}^{\infty} U^{n}$. It is shown by Kunugi that f is (E.R)-integrable.

In this section, we will show that the (E.R.T)-integral is an extension of the (E.R)integral. Here, we use the definition of the ($E . R$)-integral due to Okano. In the following, D is a finite open interval.

Definition 8 [Okano[2]] Let $\left(V\left(f_{n}, \varepsilon_{n}, A_{n}\right)\right)$ be a Cauchy sequence on D satisfying the following three conditions:
(i) $\mathrm{m}\left(C A_{n}\right) \leq \varepsilon_{n}$,
(ii) For each n, there exists $k>0$ such that $k \mathrm{~m}\left(C A_{n+1}\right) \geq \mathrm{m}\left(C A_{n}\right)$.
(iii) For any Lebesgue measurable subset B of D with $\mathrm{m}\left(C A_{n}\right) \geq \mathrm{m}(B)$,

$$
\int_{B}\left|f_{n}(x)\right| d x \leq \varepsilon_{n}
$$

Let $\left(f_{n}\right)$ be a sequence with a Cauchy sequence $\left(V\left(f_{n}, \varepsilon_{n}, A_{n}\right)\right)$ such that $\bigcap_{n=1}^{\infty} V\left(f_{n}, \varepsilon_{n}, A_{n}\right) \ni$ f. If

$$
\lim _{n \rightarrow \infty} \sup \int_{D} f_{n}(x) d x=\lim _{n \rightarrow \infty} \inf \int_{D} f_{n}(x) d x
$$

the common value is called the (E.R)-integral of f on D and is denoted by

$$
(E . R) \int_{D} f(x) d x
$$

Theorem 1 If f is (E.R)-integrable on D, then f is (E.R.T)-integrable on D.
Proof. Let $\left(V\left(f_{n}, \varepsilon_{n}, A_{n}\right)\right)$ be a Cauchy sequence satisfying conditions $(i),(i i)$, and (iii). We may assume that $0<\varepsilon_{n}<1$ for every $n \in \mathbf{N}$. Let $\bigcap_{n=1}^{\infty} V\left(f_{n}, \varepsilon_{n}, A_{n}\right) \ni f$. Put $J_{n}=\phi, \beta_{n}=n$, and $\alpha_{n}=-\log \gamma_{n}$, where $\gamma_{n}=\mathrm{m}\left(C A_{n}\right)$. Let ν_{n} be a measure on \mathbf{R} such that

$$
\nu_{n}(E)=\int_{E} h_{n}(x) d x
$$

where

$$
h_{n}(x)= \begin{cases}1, & \text { on } \mathbf{R} \backslash E_{n} \\ -\alpha_{n} \exp \left(-\alpha_{n}|x| / n\right) /(2 n), & \text { on } E_{n}\end{cases}
$$

Then we have

$$
\mu_{n}^{0}(E)=\mathrm{m}(E \cap(-n, n))+\nu_{n}\left(E \cap E_{n}\right)
$$

for any $E \subseteq \mathbf{R}$, and

$$
\mu_{n}(E)=\mu_{n}^{0}(E) / \exp \left(-\alpha_{n}\right) \quad(n=1,2,3, \ldots)
$$

There exists a number $n_{0} \in \mathbf{N}$ such that $[-n, n] \supset D$ for any $n \geq n_{0}$,
We will show that $\left(V\left(f_{n}\right)\right)_{n_{0}}^{\infty}=\left(V\left(f_{n}, \varepsilon_{n}, A_{n}\right)\right)_{n_{0}}^{\infty}$ is an L_{0}-Cauchy sequence .
Let B be any subset of D such that $\mu_{n}^{0}\left(C A_{n}\right) \geq \mu_{n}^{0}(B)$. Then we have, by (i),

$$
\mathrm{m}\left(B \cap\left[-1 / \varepsilon_{n}, 1 / \varepsilon_{n}\right]\right) \leq \mathrm{m}(B) \leq \mathrm{m}\left(C A_{n}\right) \leq \varepsilon_{n}
$$

for any $n \geq n_{0}$. Hence, $\left(K_{1}\right)$ is satisfied. It holds that

$$
\mu_{n}\left(C A_{n}\right)=\mu_{n}^{0}\left(C A_{n}\right) / \exp \left(-\alpha_{n}\right)=\mathrm{m}\left(C A_{n}\right) / \gamma_{n}=1
$$

so $\left(K_{2}\right)$ is satisfied.
Moreover, from (iii), (K_{3}) is satisfied. This completes the proof.
Acknowledgement. The author would like to thank Professor M. Washihara for useful discussions and comments.

References

[1] K.Kunugi. Sur une gènèralisation de l'integrale, Fundamental and Applied Aspects of Math. 1 (1959), 1-30.
[2] H.Okano. Sur une gènèralisation de l'integrale (E.R.) et un thèoréme gènèral de l'integration par parties, J.Math.Soc.Japan. 14 (1962), 432-442.
[3] K.Nakagami. Integration and differentiation of δ-function I, Math. Japon. 26 (1981), 297-317.
[4] K.Nakagami. Integration and differentiation of δ-function II, Math. Japon. 28 (1983), 519-533.
[5] K.Nakagami. Integration and differentiation of δ-function III, Math. Japon. 28 (1983), 703709.
[6] K.Nakagami. Integration and differentiation of δ-function $I V$, Math. Japon. 32 (1987), 621641.
[7] K.Nakagami. Integration and differentiation of δ-function V, Math. Japon. 33 (1988), 751-761.
[8] K.Nakagami. Integration and differentiation of δ-function VI, Math. Japon. 34 (1989), 235251.
[9] K.Nakagami. The space $\Gamma_{o}(D) \bigoplus M_{o}(D)$ of generalized functions, Math. Japon. 40 (1994),381387.
[10] K.Nakagami. A hyperbolic differential equation in the space $\Gamma_{0}(D) \bigoplus M_{0}(D)$, Math. Japon. 48 (1998),31-41.
DEPARTMENT OF COMPUTER SCIENCES, KYOTO SANGYO UNIVERSITY, KAMIGAMO, KITA-KU, KYOTO, 603-8555

[^0]: ${ }^{1}$ We denote the Lebesgue measure of the set A by $\mathrm{m}(\mathrm{A})$.

[^1]: ${ }^{2}$ We denote $\mathbf{R} \backslash A$ by $C A$.

