
Scientiae Mathematicae Japonicae Online, Vol. 4, (2001), 613{628 613

OPTIMAL IMPLEMENTATION OF ENVIRONMENTAL IMPROVEMENT POLICY

WITH IMPLEMENTATION COSTS �

Motoh Tsujimura
��

Received November 4, 2000; revised December 1, 2000

Abstract. Many environmental problems result from human activities and are subjects of increas-

ing concern in the world. Thus environmental improvement policies (EIPs) have become an issue

of increasing importance. In this paper we consider a problem in which an agent implements the

environmental improvement policy under uncertainty. If an emission level of a pollutant arrives at a

critical level, the agent has to decrease the emission to a certain level in order to improve environ-

ment. The agent problem is to minimize the expected total discounted cost which includes a cost

to implement the EIP and an associated damage from the pollutant under the assumption that a

state process of the pollutant follows a geometric Brownian motion. Then we �nd critical emission

levels of pollutant, an optimal implementation times, optimal sizes of implementation and evaluate

the optimal EIP (OEIP) by using an impulse control method. Some numerical examples are practiced

to illustrate our results.

1 Introduction The problem of environmental pollution results from human activities. Human ac-

tivities discharge harmful matter and pollutants; waste, greenhouse gases, and so on. For example,

increasing atmospheric greenhouse gases are contributing to climate change. According to IPCC [12], the

scienti�c assessment of climate changes estimated that the global mean surface atmospheric temperature

will increase by 1 to 3.5 degrees centigrade by the year 2100. It leads to a number of potentially serious

consequences. One could have an increase in the incidence of heat waves, oods, and droughts as the

global climate changes. These events signi�cantly a�ect on human welfare as well as natural ecosystems.

They are subjects of increasing concern in the world. To prevent damage from pollutants, we have to

employ the EIPs; environmental taxes, marketable permits, and subsidies. See, for example, Bertram,

Stephens, and Wallace [2] and Jenkins and Lamech [14]. They examine these market based policies.

In economic theory, one usually assumes free disposal condition and solves some problems. See Mas-

Colell, Whinston and Green [19]; Chapter 7 and Part 4. However by recognizing environmental problems,

one have to consider disposal cost. Hence, it costs to improve environment in order to reduce damage

from worsening environment. In this paper we consider the following EIP: If an emission level of a

pollutant arrives at a critical level, an agent has to decrease the emission to a certain level in order to

improve environment. If not, he receives higher damage. Thus he has to decide times to implement the

EIP (or the levels of a pollutant) and sizes of implementation of the EIP. Therefore we examine optimal

implementation times, optimal emission levels of pollutant, and optimal sizes of enforcing the EIP. We

also evaluate the OEIP. To this end, we use an impulse control method. Related works are as follows:

Neuman and Costanza [22] study the management of renewable resources by using an impulse contorl

method. However they study that the state of system is determicistic. On the contray, our anlyasis

assume the dynamics of the pollutant is stochatic. Willassen [24] studies the optimal cutting strategy for

an ongoing forest by using an impulse control method. Cortazor, Schwartz and Salinas [8], Zepapadeas

[25] and Tsujimura [23] also study environmental problems by using optimal stopping methods.

Other important �elds of applications of impulse control methods are portfolio management and the

problem of exchange rate. Portfolio managers may intervene to rebalance their portfolios. At that time

trading securities demands the transaction costs. This corresponds to disposal costs of environment
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problems. Constantinides and Richard [7] examine cash management problem by degenerating to the

inventory model when the cumulative demand for cash follows by a Brownian motion. They prove the

existence of an optimal policy. Eastham and Hastings [10] examine the problem of portfolio management

as the problem of maximizing total utility of consumption. Korn [17] discusses the portfolio optimization

with transaction costs by using an impulse control method in Chapter 5 and 6. Mizuta [20] studies con-

straints, necessary conditions and optimality conditions by comparing with Constantinides and Richard

[7], Harrrison et al [11] and Jeanblanc-Picqu�e [13]. Cadenillas [5] presents a survey of this �eld with

transaction costs. On the other hand, in the problem of exchange rate, authorities, i.e., central banks,

intervene the fundamental like money supply and try to maintain that the exchange rate keeps in given

target zone. Jeanblanc-Picqu�e [13] proves the existence of an optimal control with the constant and pro-

portional intervention cost. However he does not treat a running cost. Korn [16] examines the case that

intervention size is random. Cadenillas and Zapatero [6] treat a running cost and assume that exchange

rate follows geometric Brownian motion. And they show the numerical examples. But they don't show

the existence of an optimal solution. While this paper shows the existence of an optimal impulse control.

When they prove that a solution of QVI is the value function, they assume that conditions which include

determined parameters. On the other hand, we assume a condition expressed with given parameters

when we prove that. We also present the numerical examples. Korn [18] presents some applications of

impulse control.

This paper is structured as follows: The next section shows the description of the problem. Section

3 analyzes the problem. Section 4 examines numerical examples and descirbe the comparative statics

analysis. Section 5 contains the conclusion of this paper.

2 The Model Consider a problem of an agent who implements the EIP. If he doesn't implement the

EIP, he receives damage from increasing a pollutant. So he must implement the EIP in order to reduce

damage. Since implementing the EIP makes him the irreversible expenses, he must �nd the optimal times

to implement the EIP, the optimal emission levels of pollutant and the optimal sizes of the EIP so as to

minimize the expected total discounted damage with expending the irreversible cost.

Let (
;F ; P ; fFtgt�0) denote a �ltered probability space satisfying the usual conditions, i.e., (
;F ; P )

is complete, F0 contains all P-null sets in F . Here Ft is generated by a Brownian motion, Wt, in R, i.e.,

Ft = �(Ws; s � t). Let 0 = �0 � �1 � �2 � � � � � �i � � � � be fFtgt�0-stopping times such that �i ! +1

as i! +1 a.s.. For each i, �i assigns an impulse �i 2 R+, where �i is F�i -measurable. Suppose that the

result of giving the impulse is that the state of the pollutant jumps immediately from x to a new state

�(x; �), where � : R++�R+! R++ is a given function. In this paper �(x; �) is given by x� �.

Let Xt be the state of the pollutant de�ned by the following stochastic di�erential equations:8><
>:
dXt = �Xtdt+ �XtdWt; �i � t < �i+1; 8i � 0;

X�i = �(X
�
�

i

; �i) = X
�
�

i

� �i;

X0 = x 2 R++;

(2.1)

where �(> 0) and �(> 0) are constants and

�0 := 0 and �
�

i+1 = �i if �i+1 = �i:(2.2)

An impulse control for the system is de�ned as a double sequence

v := (�1; �2; � � � ; �i; � � � ; �1; �2; � � � ; �i; � � � ):(2.3)

We interpret �1; �2; � � � as the implementation times, i.e., the times when the agent decides to implement

the EIP. Furthermore, for each implementation times he also decides the magnitude of the EIP, �1; �2; � � � .

De�nition 2.1 (Admissible Impulse Control). An impulse control, v, is called an admissible im-
pulse control, if the followings are satis�ed:

0 � �i � �i+1; P � a:s: 8i � 0;

�i is a fFtgt�0 � stopping time; 8i � 0;
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�i is F�i �measurable; 8i � 0;

P

h
lim
i!1

�i � T

i
= 0; 8T 2 [0;1):

Let V denote the set of admissible impulse controls. If the impulse control v is given by (2.3), then

the system, X x;v := fX
x;v

t gt�0 is given by8><
>:
dX

x;v

t = �X

x;v

t ds+ �X

x;v

t dWt; �i�1 � t < �i <1;

X
x;v
�i

= �(X
x;v

�
�

i

; �i) = X

x;v

�
�

i

� �i; i = 1; 2; � � � ;

X
x;v
�0

= x:

(2.4)

Let D : R++! R be a continuous function satisfying

E

�Z 1

0

e
�rt

D(X
x;v

t )dt

�
<1; x 2 R++; v 2 V;(2.5)

where E is the expectation w.r.t. P and r is a constant discount rate. We interpret that D(x) is the

damage function associated with the state of the pollutant and given by

D(x) := ax
2
; x 2 R++;(2.6)

where a > 0 is a constant. Let v0 represent a control which the agent does not implement forever. In

this case the expected present value of the ow of D(x) is written as

E

�Z 1

0

e
�rt

D(X
x;v0
t )dt

�
=

ax
2

r � 2�� �
2
; x 2 R++;(2.7)

By (2.5), we assume that

(A.1)

r � 2�� �
2
> 0:

Let K : R+! R++ represent the cost to implement the EIP and is given by

K(�) := c+ b�; � 2 R+;(2.8)

where b(> 0) and c(> 0) are constants. Note that

K(� + �
0) � K(�) +K(� 0); for � � �

0
:(2.9)

This leads that fFtgt�0-stopping times hold strictly increasing sequences, i.e., 0 = �0 < �1 < �2 < � � � <

�i < � � � . The damage function, D(x), consists of a part of proportional to x2 and does not contain

constant. Because in general damage from pollutants occurs when one discharges pollutants. Therefore

we de�ne the damage function as eq. (2.6). On the other hand, the implementation cost, K(�), involves

the constant cost parameter, c. For example, it represents the cost to decide to implement the EIP or

not. The implementation cost contains the constant cost, since making decision requires researches on

the magnitude of damage, forecast of future environmental conditions and so on. �ksendal [21] studies

the e�ect of the constant cost in impulse control problems and shows it has big e�ects. Needless to say,

the characteristics of the damage function and the state of pollutant can vary with the type of pollutant

in question. Then the expected total discounted cost function associated with the control v is de�ned by

J
v(x) = E

"Z 1

0

e
�rt

D(X
x;v

t )dt+

1X
i=1

e
�r�i

K(X
x;v

�
�

i

;X
x;v
�i

)1f�i<1g

#
; x 2 R++:(2.10)

Therefore the agent's problem is to �nd the value function J� de�ned by

J
�(x) = inf

v2V
J
v(x); x 2 R++;(2.11)

and �nds the OEIP, i.e., an optimal admissible impulse control v� 2 V such that

J
�(x) = J

v
�

(x); x 2 R++:(2.12)
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3 Analysis In this section we prove that a QVI-control which is introduced later is an optimal impulse

control for the problem (2.11) and (2.12). Then we show the existence of an optimal impulse control.

Lastly we verify a solution of QVI is the value function for the agent problem. To this end we �rst

introduce some notations.

Let M denote the implementation operator on the space of functions � : R++! R de�ned by

M�(x) = inf
�2[0;x)

f�(�(x; �)) +K(�)g; x 2 R++:(3.1)

Suppose that for each x 2 R++ there exists at least one �̂ 2 R+ such that the in�mum in (3.1) is attained

and that a measurable selection �̂ =  �(x) of such minimum points �̂ exists. Then we have

M�(x) = �(�(x;  �(x))) +K( �(x)); x 2 R++:(3.2)

Furthermore assume that � is a twice continuously di�erentiable function on R. Let us de�ne the

in�nitesimal generator L of the X v as follows:

[L�](x) := lim
t#0

e
�rt

E[�(X
x;v

t )]� �(x)

t

; x 2 R++:

Then, by Ito formula, we obtain

[L�](x) =
1

2
�
2
x
2
�
00(x) + �x�

0(x) � r�(x):(3.3)

We cannot apply the classical Dynkin formula for �, since � is not C2 on the boundary of the continuous

region. However we can apply a generalized Dynkin formula for � if � is stochastically C2. That is, we

use a generalized Dynkin formura on the set which has a Green measure of X v zero. Here the Green

measure of X v is the expected total occupation measure G(�; x) de�ned by

G(F; x) = E

�Z 1

0

X

x;v

t 1F dt

�
; F � R++; x 2 R++;(3.4)

where 1F is the indicator of a Borel set F . A continuous function � : R++ ! R is called stochastically

C
2 w.r.t. X x;v if [L�](x) is well de�ned pointwise for almost all x with respect to the Green measure

G(�; x). The following equality which is called the generalized Dynkin formula will be used in the proof

of Theorem 3.1.

E[e�r�
�

�(X
x;v

��
)] = E[e�r�i�(Xx;v

�i
)] +E

"Z �
�

�i

e
�rt[L�](X

x;v

t )dt

#
; x 2 R++;(3.5)

for all i, all bounded stopping times � such that �i � � � �i+1. See Brekke and �ksendal [3] for more

details.

De�nition 3.1 (QVI). The following relations are called the quasi-variational inequalities for the prob-
lem (2.11) and (2.12);(See Bensoussan and Lions [1] for more details.)

[L�](x) +D(x) � 0; for a.a. x w.r.t. G(�; x); x 2 R++:(3.6)

�(x) �M�(x); x 2 R++:(3.7)

[[L�](x) +D(x)][�(x) �M�(x)] = 0; for a.a. x w.r.t. G(�; x); x 2 R++:(3.8)

De�nition 3.2 (QVI-control). Let � be a solution of the QVI. Then the impulse control v̂ = (�̂1; �̂2; � � � ; �̂1; �̂2; � � � )

is called a QVI-control:

(�̂0; �̂0) = (0; 0);(3.9)
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�̂i+1 = infft � �̂i;X
x;v̂

t =2 Hg;(3.10)

�̂i+1 =  �(X
x;v̂

�̂
�

i+1

):(3.11)

Here H is the continuous region de�ned by

H := fx;�(x) <M�(x)g;(3.12)

and X

x;v̂

t is the result of applying the impulse control v̂ = (�̂1; �̂2; � � � ; �̂i; �̂1; �̂2; � � � ; �̂i), i = 1; 2; � � � to
X x;v.

The following Theorem 3.1 is a minor modi�cation of Theorem 3.1. in Brekke and �ksendal [4]. Since

we use it to prove Theorem 3.3, we present it.

Theorem 3.1. (I) Let a continuous function � : R++ ! R be a solution of the QVI and satisfy the
followings:

� is stochastically C2 w.r.t. X x;v;(3.13)

lim
t!1

e
�rt

�(X
x;v

t ) = 0; P � a:s:; x 2 R++; v 2 V;(3.14)

the family f�(Xx;v
� )g�<1 is uniformly integrable w.r.t. P; x 2 R++; v 2 V:(3.15)

Then we obtain

�(x) � J
v(x) x 2 R++; v 2 V:(3.16)

(II) Suppse that, in addition to (3.6){(3.8) and (3.13){(3.15), we have

[L�](x) +D(x) = 0; x 2 H:(3.17)

Furthermore, suppose v̂ 2 V, i.e., the impulse control is a QVI-control. Then we obtain

�(x) = J
v̂(x); x 2 R++:(3.18)

Hence we have

�(x) = J
�(x) = J

v̂(x);(3.19)

and therefore v̂ is an optimal impulse control.

Proof. (I) Assume that � satis�es (3.13){(3.15). Choose v 2 V. Let �i+1 := �i _ (�i+1 ^ s) for any

s 2 R+. Then by the generalized Dynkin formula, (3.5), we obtain

E[e�r�
�

i+1
�(X

x;v

�
�

i+1

)] = E[e�r�i�(Xx;v
�i

)] +E

"Z �i+1

�i

e
�rt[L�](X

x;v

t )dt

#
:(3.20)

Hence from (3.6) we obtain

E[e�r�
�

i+1
�(X

x;v

�
�

i+1

)] � E[e�r�i�(Xx;v
�i

)]�E

"Z �i+1

�i

e
�rt

D(X
x;v

t )dt

#
:(3.21)

Taking lims!1 we have by the dominated convergence theorem

E[e�r�
�

i+1
�(X

x;v

�
�

i+1

)]�E[e�r�i�(Xx;v
�i

)] � �E

�Z �i+1

�i

e
�rt

D(X
x;v

t )dt

�
:(3.22)
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Summing from i = 0 to i =m yields

�(x) +

mX
i=1

E[e�r�i�(Xx;v
�i

)� e
�r�

�

i
�(X

x;v

�
�

i

)]

�E[e�r�
�

m+1
�(X

x;v

�
�

m+1

)] � E

�Z �m+1

0

e
�rt

D(X
x;v

t )dt

�
:

(3.23)

Since after giving the impulse the state of the system jumps immediately from X

x;v

�
�

i

to a new state

�(X
x;v

�
�

i

; �i) for all �i <1, by eq. (3.1) and �(X
x;v

�
�

i

; �i) = X
x;v
�i

we obtain

�(�(X
x;v

�
�

i

; �i)) �M�(X
x;v

�
�

i

) �K(�i); �i <1:(3.24)

Therefore we have

(3.25) �(x) +

mX
i=1

E[[e�r�iM�(X
x;v

�
�

i

)� e
�r�

�

i
�(X

x;v

�
�

i

)]1f�i<1g]

� E

"Z �m+1

0

e
�rt

D(X
x;v

t )dt+ e
�r�

�

m+1
�(X

x;v

�
�

m+1

) +

mX
i=1

e
�r�i

K(�i)1f�i<1g

#
:

By eq. (3.7) we have

M�(X
x;v

�
�

i

)� �(X
x;v

�
�

i

) � 0:(3.26)

Hence we obtain

�(x) � E

"Z �m+1

0

e
�rt

D(X
x;v

t )dt+ e
�r�

�

m+1
�(X

x;v

�
�

m+1

) +

mX
i=1

e
�r�i

K(�i)1f�i<1g

#
:(3.27)

Taking limm!1 we obtain by using (3.14), (3.15) and the dominated convergence theorem

�(x) � E

"Z 1

0

e
�rt

D(X
x;v

t )dt+

1X
i=1

e
�r�i

K(�i)1f�i<1g

#
:(3.28)

Therefore eq. (3.16) is proved.

(II) Assume that eq. (3.17) holds and v̂ = (�̂1; �̂2; � � � ; �̂1; �̂2; � � � ) is the QVI-control. Then repeat the

argument in part (i) for v = v̂. Then all the ineqs. (3.21)-(3.28) become equalities. Thus we obtain

�(x) = E

"Z 1

0

e
�rt

D(Xx;v̂

t )dt +

1X
i=1

e
�r�i

K(Xx;v̂

�
�

i

;X
x;v̂
�i

)1f�i<1g

#
:(3.29)

Hence we get by eq. (3.18). Combining eq. (3.18) with ineq. (3.16), we obtain

�(x) � inf
v2V

J
v(x) � J

v̂(x) = �(x):(3.30)

Therefore �(x) = J
�(x) and v� = v̂ is optimal.

Let us return to our problem. We consider the following EIP. When the pollutant level reaches at a

threshold, x, the agent implements the EIP. As a result of it, the pollutant level, x, immediately decreases

to �. Then we conjecture that there exists an optimal solution v�(��; ��) characterized by parameters

(�; x) with 0 < � < x <1 such that

�
�

i := infft > �
�

i�1;X
x;v

�

t�
=2 (0; x)g;(3.31)
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X

x;v
�

��
i

:= X

x;v
�

�
��

i

� �
�

i = �;(3.32)

i.e., eq. (2.4) becomes to8><
>:
dX

x;v
�

t = �X

x;v
�

t dt+ �X

;xv
�

t dWt; �
�
i�1 � t < �

�
i <1;

X

x;v
�

��
i

= �(X
x;v

�

�
��

i

; �
�
i ); i = 1; 2; � � � ;

X
x;v

�

�0
= x;

(3.33)

Therefore in this case the value function seems to satisfy

J
�(x) = J

�(�(x; ��)) +K(��)

= J
�(�) + c+ b(x � �); x 2 [x;1):

(3.34)

Assume that J� is a stochastically C2(R)-function w.r.t. X x;v
�

. Furthermore assume that an impulse

control is as follows. Once the pollutant level within the continuous region (0; x), it remains in that region

thereafter. Howerver if the initial level of the pollutant x is x = x + ", where " > 0, then the optimal

impulse control is � = (x + ") � �. Thus we have

J
�(x + ") = J

�(�) + c+ b(x + " � �):(3.35)

Replacing x into x in eq. (3.34) and subtracting from eq. (3.35), we obtain

J
�(x + ") � J

�(x) = b":(3.36)

Dividing eq. (3.36) by " and taking lim"!0 in eq. (3.36), we get

J
�
0

(x) = b:(3.37)

By (3.31) and (3.32), eq (3.34) is minimized at � = x � �. Hence by the �rst order condition for the

minimization @[J�(�(x; �)) +K(�)]=@� j
�=x�� = 0 we obtain

J
�
0

(�) = b;(3.38)

since J� is a stochastically C2(R)-function. Dixit [9] and Constantinides and Rechard [7] discussed similar

equations of eqs. (3.37) and (3.38) for more details. Furthermore, we can conjecture that eq. (3.17) holds

in the continuous region (0; x). Following the standard methods of ordinary di�erential equations we

have the general solution of eq (3.17) given by

�(x) = A1x
�1 +A2x

�2 +
ax

2

r � 2�� �
2
; x 2 (0; x);(3.39)

where A1 and A2 are constants to be determined, and �1 and �2 are the solutions to the characteristic

equation,

(�) =
1

2
�
2
�
2 +

�
��

1

2
�
2

�
�� r = 0; � 2 R:(3.40)

Hence we get

�1 =
1

2
�

�

�
2
+

"�
�

�
2
�
1

2

�2

+
2r

�
2

# 1
2

;(3.41)

�2 =
1

2
�

�

�
2
�

"�
�

�
2
�
1

2

�2

+
2r

�
2

# 1
2

:(3.42)

Since �2 < 0, to prevent the value from diverging, we set the coeÆcient A2 = 0. Thus we have

�(x) = A1x
�1 +

ax
2

r � 2�� �
2
; x 2 (0; x):(3.43)
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Remark 3.1. The �rst term on the right-hand side of eq. (3.43) is the value of the option to implement
the EIP for some times in the future. In other words, when the state process of the pollutant X x;v

�

hits
the threshold x, the agent exercises the option and implements the EIP. Then we can evaluate the value
of the EIP by calculating the �rst term on the right-hand side of eq. (3.43). Since our problem is the
cost minimization problem, we evaluate the value of the EIP by changing the sign of the �rst term on the
right-hand side of eq. (3.43). Hence we calculate the value of the EIP by the form

EIP = �A1x
�1
:(3.44)

The second term, ax2=(r� 2�� �2), is the expected present value of the ow of D(x) when we ignore
the barrier at x by eq. (2.7).

Let us de�ne �(x) by

�(x) :=

(
A1x

�1 + ax
2

r�2���2
; x 2 (0; x);

�(�) + c+ b(x � �); x 2 [x;1):
(3.45)

Here A1; x; � are parameters which are uniquely determined by following simultaneous equations:

�(x) = �(�) + c+ b(x � �);(3.46)

�
0(x) = b;(3.47)

�
0(�) = b:(3.48)

In order to study how x and � depends on A1 later, let us de�ne �(x) as

�(x) := A1[x
�1 � �

�1] +
a(x2 � �

2)

r � 2�� �
2
� c� b(x � �);(3.49)

where we �x A1 < 0. See Figure 1. The �rst, second and third derivative of eq. (3.49) are given by

�0(x) = �1A1x
�1�1 +

2ax

r � 2�� �
2
� b;(3.50)

�00(x) = �1(�1 � 1)A1x
�1�2 +

2a

r � 2�� �
2
;(3.51)

�000(x) = �1(�1 � 1)(�1 � 2)A1x
�1�3

:(3.52)

See Figure 2, 3 and 4, respectively. Since �1 > 2 and A1 < 0, �000(x) is negative. Hence �0(x) has its

unique maximum point, �x(A1). From eq. (3.51) �00(x) = 0 i�

A1 = �
1

�1(�1 � 1)
x
2��1

2a

r � 2�� �
2
:(3.53)

From eq. (3.50), �0(�x(A1)) > 0 i�

�x >
r � 2�� �

2

2a

�1 � 1

�1 � 2
b

=: ~x:

(3.54)

Thus �0(�x(A1)) > 0 i� �x > ~x. This implies that

�1A1�x
�1�1

> �1
~
A1~x

�1�1 or A1 >
~
A1;
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where by (3.53) and (3.54) ~
A1 is given by

~
A1 = �

1

�1(�1 � 1)

�
r � 2�� �

2

2a

�1��1 �
�1 � 1

�1 � 2
b

�2��1

:(3.55)

Note that �0(0) = �b < 0. Therefore for any ~
A1 < A1 < 0, eqs. (3.47) and (3.48) have two solutions

x(A1) and �(A1) such that 0 < �(A1) < �x(A1) < x(A1).

Hereafter we assume that ~
A1 < A1 < 0. In oder to show existence of an optimal impulse control, we

study how x and � depend on A1. We refer to �ksendal [21] Lemma 2.3. To this end we �rst di�erentiate

eq. (3.47) w.r.t. A1 and obtain

x
0(A1) = �

�
�1(�1 � 1)A1x

�1�2 +
2a

r � 2�� �
2

��1
�1x(A1)

�1�1
> 0:(3.56)

Since �1(�1 � 1)A1x
�1�2 + 2a=(r � 2� � �

2) = �00(x(A1)) < 0, inequality of (3.56) holds. (3.56) means

x(A1) increases in A1. Thus by eq. (3.47) we have

lim
A1!0

�1A1x(A1)
�1�1 +

2ax(A1)

r � 2�� �
2
� b = lim

A1!0

2ax(A1)

r � 2�� �
2
� b:(3.57)

It follows that

lim
A1!0

x(A1) = +1:(3.58)

Note that �0(�x(A1)) > 0 i� �x(A1) > ~x or A1 >
~
A1 and x(A1) > �x(A1). If A1 decreases to ~

A1, x(A1)

decreases to ~x, i.e.,

lim
A1!

~A1

x(A1) = ~x:(3.59)

Similarly we di�erentiate eq. (3.48) w.r.t. A1 and by �00(�(A1)) > 0 obtain

�
0(A1) < 0:(3.60)

(3.60) implies �(A1) decreases in A1. Thus by eq. (3.48) we have

lim
A1!0

�1A1�(A1)
�1�1 +

2a�(A1)

r � 2�� �
2
� b = lim

A1!0

2a�(A1)

r � 2�� �
2
� b:(3.61)

From (3.61) we obtain

lim
A1!0

�(A1) =
r � 2�� �

2

2a
b:(3.62)

Furthermore we have

lim
A1!

~A1

�(A1) = ~x:(3.63)

Now we are ready to show the existence of an optimal impulse control. Here we assume that

(A.2)

a

r � 2�� �
2
> b;

where a=(r � 2� � �
2) is the present value of damege per the state of pullutant. If the above inequality

does not hold, it will never be optimal to implement the EIP as far as c > 0.
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Theorem 3.2. Assume that (A.1) and (A.2) hold. � satis�es eqs. (3.46) { (3.48). Then there exists an
optimal impulse control v�(��; ��) characterized by (�(A1); x(A1)) with 0 < �(A1) < x(A1) < +1 such
that (3.31) and (3.32).

Proof. By eq. (3.46) we obtain

g(x(A1); �(A1); A1) = c;(3.64)

where g(x(A1); �(A1); A1) := A1[x(A1)
�1��(A1)

�1 ]+a[x(A1)
2��(A1)

2]=(r�2���2)�b[x(A1)��(A1)].

The derivative of g w.r.t. A1 is

@g

@A1

= [x(A1)
�1 � �(A1)

�1 ] +A1[�1x(A1)
�1�1

x
0(A1)� �1�(A1)

�1�1
�
0(A1)]

+
2a

r � 2�� �
2
[x(A1)x

0(A1)� �(A1)�
0(A1)]� b[x0(A1)� �

0(A1)]:

(3.65)

From (3.56) and (3.60), the �rst and third terms are positive, while the second and fourth terms are

negative. The sign of (3.65) depends on the relation to these terms. To investigate the relation, �rstly,

we suppose that

x(A1)
�1 � �(A1)

�1 � b[x0(A1)� �
0(A1)] > 0:(3.66)

(3.58) and (3.62) reveal that the left-hand side of (3.66) is positive. From (3.59) and (3.63), it follows

that (3.66) is zero. Hence ineq. (3.66) holds. Secondly suppose that

A1[�1x(A1)
�1�1

x
0(A1) � �1�(A1)

�1�1
�
0(A1)] +

2a

r � 2�� �
2
[x(A1)x

0(A1)� �(A1)�
0(A1)] > 0:(3.67)

To show ineq. (3.67) we require that

2a

r � 2�� �
2
x(A1)

2��1
> �A1�1;(3.68)

2a

r � 2�� �
2
�(A1)

2��1
> A1�1:(3.69)

By (3.58) and (3.59), we have

1 >
1

�1(�1 � 1)
:(3.70)

Since it is obvious that ineq. (3.70) holds, we obtain ineq. (3.68). On the other hand, eqs. (3.62) and

(3.63) implies tha the minmum of �(A1) is attained when A1 goes to 0. Then we obtain

�
r � 2�� �

2

2a

�1��1

b
2��1

> 0:(3.71)

Since it is clear that ineq. (3.71) holds, we have ineq. (3.69). Thus it follows ineq. (3.67). Both ineqs.

(3.66) and (3.67) imply that ineq. (3.65) is positive. Therefore it follows that

lim
A1!0

g(x(A1); �(A1); A1) = +1;(3.72)

lim
A1!

~A1

g(x(A1); �(A1); A1) = 0:(3.73)

From eqs. (3.72) and (3.73) there exists A1 such that g(x(A1); �(A1); A1) = c by using the mean value

theorem. Therefore we conclude that there exists an optimal impulse control v�(��; ��) de�ned by (3.31)

and (3.32).
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For simplicity we put x = x(A1) and � = �(A1). We show � is the value function of the agent problem

eqs. (2.11) and (2.12). To this end we �rst show that the followings. For x 2 (0; x), by (3.45) the �rst

and second derivative of �(x) are respectively

�
0(x) = �1A1x

�1�1 +
2ax

r � 2�� �
2
;(3.74)

�
00(x) = �1(�1 � 1)A1x

�1�2 +
2a

r � 2�� �
2
:(3.75)

Note that eq. (3.75) equals to eq. (3.51). It is obvious that there exist A1 such that �0(x(A1)) =

�0(�(A1)) = 0 from Theorem 3.2. It follows that �0(x) = �
0(�) = b. Furthemore, since �0(x(A1)) has a

unique maximum point,

�0(x)

8><
>:
< 0; x 2 (0; �) or (x;1);

= 0; x = � or x;

> 0; x 2 (�; x):

(3.76)

Therefore it follows that

�
0(x)

8><
>:
< b; x 2 (0; �) or (x;1);

= b; x = � or x;

> b; x 2 (�; x):

(3.77)

Theorem 3.3. Assume that (A.1) and (A.2) hold. Let A1; x; and � with 0 < � < x <1 be solutions
of the simultaneous equations (3.46){(3.48). Here we assume that the implementation cost satis�es the
following:

(A.3)

(r � 2�� �
2)

�
�1 � 1

�1 � 2

�
b

> (r � �)b +

�
(r � �)2b2 + 4ar

�
r � 2�� �

2

2a

�
�

(�1 � 1)2

2�1(�1 � 2)

�
b
2 + c

�� 1
2

� de�ned by (3.45) is a solution of the QVI. Then � is the value function of the agent problem eqs. (2.11)
and (2.12). Furthermore, an optimal impulse control is given by (3.31) and (3.32).

Proof. First we show � is a solution of the QVI. To accomplish this we con�rm that � satis�es eqs. (3.6)

{ (3.8).

(I) Consider eq. (3.6) under two distinct cases, x 2 (0; x) or x 2 [x;1).

(i) If x 2 (0; x), by (3.45) and the derivation of eq. (3.43) it is clear that

[L�](x) +D(x) = 0:

(ii) If x 2 [x;1), by (3.45) we have

[L�](x) +D(x) = �xb � r[�(�) + c+ b(x � �)] + ax
2
:(3.78)

If (3.78) is positive, we have

x(A1) >
1

2a

n
(r � �)b +

�
(r � �)2b2 + 4ar [�(�(A1)) + c� b�(A1)]

�1
2

o
(3.79)

Cadenillas and Zapatero [6] assume that similar inequalities to ineq. (3.79) hold to prove The-

orem 4.1 in Cadenillas and Zapatero [6]. While we express ineq. (3.79) with given parameters.

Note that �0(�x(A1)) > 0 i� �x > ~x implies A1 >
~
A1. Taking lim

A1!
~A1

both sides of ineq.

(3.79), by (3.54), (3.55), (3.59), (3.72) and (A.3) we obtain (3.78) is positive.
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Therefore � satis�es ineq. (3.6).

(II) Next we show ineq. (3.7). We divide the region into (0; �), [�; x) and [x;1).

(i) For x 2 (0; �) , by (3.77) � = 0 is optimal. Then we have

M�(x) = inf
�2(0;�)

f�(�(x; �)) +K(�)g

= [�(�(x; �)) +K(�)]�=0

= �(x) + c

> �(x):

(ii) For x 2 [�; x) , since equality in (3.77) holds at x = �, � = x � � is optimal. Thus we obtain

M�(x) = inf
�2(0;x��]

f�(�(x; �)) +K(�)g

= [�(�(x; �)) +K(�)]�=x��

= �(�) + c+ b(x � �)

> �(x):

Inequality holds by eq. (3.46) and (3.76).

(iii) For x 2 [x;1), since equality in (3.77) holds at x = x or �. Hence either � = x�x or � = x��

is optimal. Therefore we have

M�(x) = min

�
inf

�2(0;x�x]
f�(�(x; �)) +K(�)g; inf

�2(x�x;x)
f�(�(x; �)) +K(�)g

�
= min [[�(�(x; �)) +K(�)]�=x�x; [�(�(x; �)) +K(�)]�=x��]

= �(�) + c+ b(x � �)

= �(x):

Here third equality holds by eq. (3.46).

Therefore � satis�es ineq. (3.7).

(III) It follows immediately from foregoing consideration that � also satis�es eq.(3.8).

Hence � is a solution of the QVI. Thus, by Theorem 3.1, � is the value function of the agent problem

eqs. (2.11) and (2.12). Furthermore an optimal impulse control is given by (3.31) and (3.32). The proof

completes.

4 Numerical Examples and Comparative Statics In this section we calculate A1, x and � by

using a numerical method and evaluate the optimal implementation size, �� and the OEIP. Furthermore

we present comparative statics for ��, � and the OEIP by changing parameters. Because to evaluate them

gives us economic intuitions. When the agent decides to implement the EIP, these results are useful.

The base case parameters used are listed in Table 1. The results of the numerical examples are pre-

sented in Table 2. There we vary parameters by �10%. Furthermore Table 2 illustrates the comparative

statics. First, we �nd the results from comparative statics to ��: The optimal implementation size �� is
increasing in the discount rate, r, the di�usion parameter, �, the proportional cost parameter, b and the
constant cost parameter, c. On the other hand, �� is decreasing in the drift parameter, � and the propor-
tional damage parameter, a. They mean as follows. When the discount rate is high, the future damage

from the pollutant is more serious. Hence the optimal implementation size increases in the discount

rate. Since the di�usion parameter means uncertainty on damage, an increase in uncertainty raises the

optimal implementation size. The optimal implementation size also increases in the cost to implement

the OEIP. On the other hand, since the drift parameter means the growth rate of the pollutant, the

higher growth rate of pollutant decreases the optimal implementation size. Similarly the proportional

damage parameter decreases the optimal implementation size.
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Secondly the comparative statics to the OEIP give us the following results: An increase in the growth
rate of the pollutant, uncertainty, the proportional cost and the constant cost raises the value of the OEIP.
While an increase in the discount rate and the proportional damage parameter decrease the value of the
OEIP. From the results we have the following implications. Since �1, A1 and x a�ect the OEIP, the

comparative statics for the OEIP are complicated. Although �1; A1 and x don't have the same e�ect

of a change in the parameters, we have plausible results. The OEIP increases in the growth rate of

the pollutant, uncertainty, the proportional implementation cost and the constant implementation cost.

While the OEIP decreases in the discount rate and the proportional damage parameter. Since the OEIP

leads to exibility to the agent's decision from Remark 3.1, higher uncertainty rises the value of the OEIP.

The proportional and the constant implementation cost lead to the same direction e�ect.

5 Conclusion In this paper, we study the general environmental improvement policy by using an im-

pulse control method. Furthermore, by using numerical results we describe the comparative statics. They

give us some economic implications. One of the main implications of this paper is that the threshold

of X v, implementation size and the value of the OEIP increase in uncertainty. The paper considers one

pollutant for simplicity. However there are a lot of pollutants in the world. Thus it is important to ex-

tend to a multi pollutants model. Other interesting extension of this paper are to consider technological

progressive, which improve environment, generalization of damege function like D(x) := ax
�
; � > 0 and

nonlinear implementation cost function. Nevertheless the model of this paper provides a useful �rst step

for the future works.
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Table 1: Base Case Parameters

r � � a b c

0.06 0.01 0.15 0.25 5 5

Table 2: The results of numerical examples.

�1 �A1 x � �
� OEIP

base case 2.3656 8.3385 2.1946 0.3217 1.8729 53.533

r : +10% 2.4783 5.1543 2.3255 0.3769 1.9486 41.7354

: �10% 2.2472 15.2801 2.0599 0.2675 1.7924 77.5109

� : +10% 2.3205 10.0666 2.1727 0.3077 1.8650 60.9423

: �10% 2.4116 6.9882 2.2167 0.3360 1.8808 47.65

� : +10% 2.2363 13.6144 2.2634 0.3122 1.9513 84.602

: �10% 2.5178 5.5399 2.1256 0.3314 1.7942 36.9834

a : +10% � 9.4114 2.0611 0.2893 1.7717 52.0798

: �10% � 7.2921 2.3538 0.3618 1.9920 55.2498

b : +10% � 8.1951 2.2657 0.3617 1.9039 56.73

: �10% � 8.4902 2.1238 0.2827 1.8411 50.4375

c : +10% � 8.2628 2.2672 0.3183 1.9489 57.2877

: �10% � 8.4206 2.1184 0.3256 1.7928 49.7248

Notes:�1 is independent of parameters a, b, and c.

OEIP is calculated by �A1x
�1.
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