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Abstract. In this paper, we a�ord some suÆcient conditions to guarantee the existence of

positive solutions for the nonlinear boundary value problem

(BV P )

8>><
>>:
(E)

�
�(u0)

�
0

+ f(t; u) = 0; 0 < t < 1;

(BC)

(
u(0) �B0

�
u0(0)

�
= 0;

u(1) +B1
�
u0(1)

�
= 0:

1. Introduction

In this paper, we consider the boundary value problem of the form

(BV P )

8>><
>>:
(E)

�
�(u0)

�
0

+ f(t; u) = 0; 0 < t < 1;

(BC)

(
u(0)�B0

�
u0(0)

�
= 0;

u(1) +B1

�
u0(1)

�
= 0;

where f; �; B0; B1 satisfy

(H1) f 2 C([0; 1]� [0;1); [0;1));

(H2) � 2 C1(R;R) is an odd and strictly increasing function on R;

(H3) B0(v) and B1(v) are both increasing, continuous, odd functions de�ned on (�1;1)

and at least one of them satis�es the following condition: there exists a � > 0 such

that

0 � Bi(v) � �v for all v � 0; i = 1 or 2:

The boundary value problem (BV P ) aries in many di�erent areas of applied mathematics

and physics; see [1-5, 8-9] and the references therein.

2. Main Results

Throughout this paper, we let 	 be the inverse function of '. In order to obtain our

main results (Theorems 2.1 and 2.2), we need the following two lemmas:

1991 Mathematics Subject Classi�cation. Primary 34B15.

Key words and phrases. positive solutions, existence, concavity, �xed point theorem in cones.



592 H.L. HONG, F{H. WONG AND C.{C. YEH

Lemma 2.A (Kransnosel'skii [7], see, also Guo and Lakshmikantham [6] ). Let

X be a Banach space, and K � X be a cone. Assume 
1;
2 are open subsets of X with

0 2 
1; 
1 � 
2; and let T : K \ (
2n
1)! K be a completely continuous operator such

that either

(i) jjTujj � jjujj; u 2 K \ @
1 and jjTujj � jjujj; u 2 K \ @
2, or

(ii) jjTujj � jjujj; u 2 K \ @
1 and jjTujj � jjujj; u 2 K \ @
2,

then T has a �xed point in K \ (
2n
1). Here jj � jj stands for the sup norm.

Lemma 2.B. Assume that

(H) � is convex on [0;1).

Then, we have the following results:

(A1) �(xy) � x�(y) for 0 � x � 1 and y � 0;

(A2) �(xy) � x�(y) for x � 1 and y � 0;

(A3) 	(xy) � x	(y) for 0 � x � 1 and y � 0;

(A4) 	(xy) � x	(y) for x � 1 and y � 0:

Proof. Let F (t) := �(ct)�c�(t), where c; t 2 [0;1). Since � is a convex function on [0;1),

�0(t) is increasing on [0;1). Thus, we have

F 0(t) = c�0(ct)� c�0(t) = c
�
�0(ct)� �0(t)):

Hence

F 0(t)

(
� 0; if 0 � c � 1;

� 0; if c � 1

on [0;1). It follows from �(0) = F (0) = 0 that F (t) � 0 for 0 � c � 1 and F (t) � 0 for

c � 1 on [0;1). Therefore, (A1) and (A2) hold.

Since � is convex on [0;1) and satis�es �(0) = 0, 	 is concave on [0;1) and satis�es

	(0) = 0. Hence, 	0(t) is decreasing on [0;1): Using the same argument, we can obtain

the desired results (A3) and (A4):

We now are in a position to state and prove the following two main results.

Theorem 2.1. Assume that (H) holds and there exist two distinct positive constants R1

and R2 such that

(1) f(t; u) � �
� R1

� + 1

�
on [0; 1]� [0; R1]

and

(2) f(t; u) � �(32R2) on
�1
4
;
3

4

�
� [

1

4
R2; R2]:

Then (BV P ) has at least one positive solution u(t) such that jjujj between R1 and R2.

Proof. Without loss of generality, we may assume that R1 < R2. First, we de�ne a set K

as follows:

K := fu 2 C[0; 1]j u(t) is a nonnegative concave functiong:
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Clearly, K is a cone. It follows from Lemma 1 of Wang [9] that

(3) u(t) �
1

4
jjujj on

�1
4
;
3

4

�
; for all u 2 K:

Suppose that u(t) is a solution of (BV P ), then it follows from the boundary condition

(BC) that u0(0) � 0 and u0(1) � 0. Therefore, for each given solution u(t) of (BV P ), there

exists a � 2 [0; 1] such that u0(�) = 0.

Next, we de�ne an operator T : K ! C[0; 1] by

Tu(t) :=

8>>><
>>>:
B0 Æ	

�Z �

0

f
�
s; u(s)

�
ds
�
+

Z t

0

	
�Z �

s

f
�
r; u(r)

�
dr
�
ds; 0 � t � �;

B1 Æ	
�Z 1

�

f
�
s; u(s)

�
ds
�
+

Z 1

t

	
�Z s

�

f
�
r; u(r)

�
dr
�
ds; � � t � 1:

It is clear that T is well-de�ned (see Wang [9]). By the de�nition of T , we see that

(Tu(t))0 =

8>><
>>:
	
�Z �

t

f
�
r; u(r)

�
dr
�
� 0; 0 � t � �;

�	
�Z t

�

f
�
r; u(r)

�
dr
�
� 0; � � t � 1

is continuous, decreasing on [0; 1] and satis�es (Tu(t))0jt=� = 0. Thus, Tu 2 K for each u 2

K and Tu(�) is the maximum of Tu(t) on [0; 1]. This shows that TK � K. Furthermore,

it is easy to check that T : K ! K is completely continuous.

Finally, we show that Tu has at least one �xed point on K by applying Theorem 2.A.

Without loss of generality, we may assume that

0 � B0(v) � �v for all v � 0:

Let


1 := fu 2 Kj jjujj < R1g;


2 := fu 2 Kj jjujj < R2g:

Thus, for u 2 K with jjujj = R1, it follows from (1) that

jjTujj = Tu(�) � B0 Æ	
�Z 1

0

f
�
s; u(s)

�
ds
�
+	

�Z 1

0

f
�
r; u(r)

�
dr
�
ds

� B0

� R1

� + 1

�
+

R1

� + 1

�

�R1

� + 1
+

R1

� + 1

= R1 = jjujj:

Hence,

(4) jjTujj � jjujj for u 2 K \ @
1:
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On the other hand, if 1
2
� �, then it follows from (A3) of Lemma 2.1 and (2) that, for

u 2 K with jjujj = R2,

Tu
�1
2

�
�

Z 1
2

0

	
�Z 1

2

s

f
�
r; u(r)

�
dr
�
ds

�

Z 1
2

1
4

	
�Z 1

2

s

f
�
r; u(r)

�
dr
�
ds

�

Z 1
2

1
4

	
�
�(32R2)(

1

2
� s)

�
ds

�

Z 1
2

1
4

(
1

2
� s)	

�
�(32R2)

�
ds

= R2 = jjujj:

Similarly, if � � 1
2
, then, for u 2 K with jjujj = R2,

Tu
�1
2

�
�

Z 1

1
2

	
�Z s

1
2

f
�
r; u(r)

�
dr
�
ds

�

Z 3
4

1
2

	
�
�(32R2)(s�

1

2
)
�
ds

�

Z 3
4

1
2

(s�
1

2
)	
�
�(32R2)

�
ds

= R2 = jjujj:

Thus,

(5) jjTujj � jjujj for u 2 K \ @
2:

Therefore, it follows from (4), (5) and Theorem 2.A that T has a �xed point u 2 K \

(
2n
1). This shows that the �xed point u is a positive solution of (BV P ).

Lemma 2.C. Assume that

(H�) � is sub-multiplicative on [0;1), i.e., � satis�es

�(xy) � �(x)�(y) for all x; y � 0:

Then,

(R5) 	 is supermultiplicative on [0;1), i.e., 	 satis�es

	(xy) � 	(x)	(y) for all x; y � 0:

Proof. Suppose to the contrary that there exist x0; y0 � 0 such that

	(x0y0) < 	(x0)	(y0):

Since 	 is the inverse function of � and � is strictly increasing,

x0y0 < �
�
	(x0)	(y0)

�
� �

�
	(x0)

�
�
�
	(y0)

�
= x0y0;

which gives a contradiction.
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Theorem 2.2.

Assume that (H�) holds and there exist two distinct positive constants R1 and R2 such

that conditions (1) and (2) hold. Then (BV P ) has at least one positive solution u(t) such

that jjujj between R1 and R2.

Proof. The proof is quite similar to that of Theorem 2.1, therefore, we omit the details.

Now, for the convenience, we introduce the following notations. Let

max f0 := lim
u!0+

max
t2[0;1]

f(t; u)

�(u)
;

min f0 := lim
u!0+

min
t2[ 1

4
; 3
4
]

f(t; u)

�(u)
;

max f1 := lim
u!1

max
t2[0;1]

f(t; u)

�(u)
;

min f1 := lim
u!1

min
t2[ 1

4
; 3
4
]

f(t; u)

�(u)
:

From the above de�nitions, we have the following

Remark 2.3. Let �(u) := jujp�2u for u 2 R, where p > 1 is a constant.

(i) Suppose that max f0 = C1 2
�
0; �( 1

�+1
)
�
. Taking " = �

�
1

�+1

�
�C1 > 0, there exists a

R1 > 0 (R1 can be chosen small arbitrarily) such that

max
t2[0;1]

f(t; u)

�(u)
� "+ C1 = �

� 1

� + 1

�
for u 2 [0; R1]:

Hence,

f(t; u) � �
� 1

� + 1

�
�(u) � �

� 1

� + 1

�
�(R1) = �

� R1

� + 1

�
on [0; 1]� [0; R1];

which satis�es the hypothesis (1) of Theorems 2.1 and 2.2.

(ii) Suppose that min f1 = C2 2
�
�(128);1

�
. Taking " = C2 � �(128) > 0, there exists

R2 > 0 (R2 can be chosen large arbitrarily) such that

min
t2[ 1

4
; 3
4
]

f(t; u)

�(u)
� �"+ C2 = �(128) for u 2 [

1

4
R2;1):

Hence,

f(t; u) � �
�
128)�(u) � �

�
128)�

�1
4
R2

�
= �(32R2) on [

1

4
;
3

4
]� [

1

4
R2; R2] � [0; 1]� [

1

4
R2;1);

which satis�es the hypothesis (2) of Theorems 2.1 and 2.2.

(iii) Suppose that min f0 = C3 2
�
�(128);1

�
. Taking " = C3 � �(128) > 0, there exists

R2 > 0 (R2 can be chosen large arbitrarily) such that

min
t2[ 1

4
; 3
4
]

f(t; u)

�(u)
� �"+ C3 = �(128) for u 2 (0; R2]:
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Hence,

f(t; u) � �(128)�(u) � �(128)�
�1
4
R2

�
= �(32R2) on [

1

4
;
3

4
]� [

1

4
R2; R2] � [0; 1]� [0; R2];

which satis�es the hypothesis (2) of Theorems 2.1 and 2.2.

(iv) Suppose that max f1 = C4 2
�
0; �( 1

�+1)
)
�
. Taking " = �

�
1

�+1

�
� C4 > 0, there exists

a Æ > 0 (Æ can be chosen large arbitrarily) such that

(6) max
t2[0;1]

f(t; u)

�(u)
� "+ C4 = �

� 1

� + 1

�
for u 2 [Æ;1):

Thus, we have the following two cases:

Case (a). Assume that max
t2[0;1]

f(t; u) is bounded, say

f(t; u) �M on [0; 1]� [0;1);

where M � �
�

1
�+1

�
is a constant. Taking R1 =

�
M

�( 1
�+1

)

� 1
p�1

(since M can be chosen

large arbitrarily, R1 can be chosen large arbitrarily, too). Then,

f(t; u) �M = R
p�1
1 �

� 1

� + 1

�
= �

� R1

� + 1

�
:

Case (b). Assume that max
t2[0;1]

f(t; u) is unbounded. Thus, there exists a R1 > Æ (R1 can be

chosen large arbitrarily) and t0 2 [0; 1] such that

f(t; u) � f(t0; R1) on [0; 1]� [0; R1]:

It follows from R1 > Æ and (6) that

f(t; u) � f(t0; R1) � R
p�1
1 �

� 1

� + 1

�
= �

� R1

� + 1

�
on [0; 1]� [0; R1]:

By cases (a) and (b), the hypothesis (1) of Theorems 2.1 and 2.2 is satis�ed.

Now, we consider the following p�Laplacian boundary value problem

(BV P �)

8>><
>>:
(E�)

�
ju0jp�2u0

�
0

+ f(t; u) = 0; 0 < t < 1; p > 1;

(BC)

(
u(0)�B0

�
u0(0)

�
= 0;

u(1) +B1

�
u0(1)

�
= 0:

It follows from Remark 2.3 that we obtain the following corollaries hold, immediately.
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Corollary 2.4. Let A := (� + 1)1�p and B := (128)p�1. Then, (BV P �) has at least one

positive solution if

(a) maxf0 = C1 2 [0; A) and minf1 = C2 2 (B;1]; or

(b) minf0 = C3 2 (B;1] and maxf1 = C4 2 [0; A):

Corollary 2.5. Let A := (� + 1)1�p and B := (128)p�1. Then, (BV P �) has at least two

positive solutions u1 and u2 such that

0 < jju1jj < R < jju2jj;

if the following hypotheses hold:

(a) minf1 = C2; minf0 = C3 2 (B;1];

(b) there exists a R > 0 such that

f(t; u) �
� R

� + 1

�p�1
on [0; 1]� [0; R]

Corollary 2.6. Let A := (� + 1)1�p and B := (128)p�1. Then, (BV P �) has at least two

positive solutions u1 and u2 such that

0 < jju1jj < R < jju2jj;

if the following hypotheses hold:

(a) maxf0 = C1; maxf1 = C4 2 [0; A);

(b) there exists a R > 0 such that

f(t; u) � (32R)p�1 on
�1
4
;
3

4

�
� [

1

4
R;R]:
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