EXISTENCE OF POSITIVE SOLUTIONS FOR NONLINEAR DIFFERENTIAL EQUATIONS

Huet-Lin Hong, Fu-Hsiang Wong* and Cheh-Chin Yef\#

Received July 17, 2000

Abstract. In this paper, we afford some sufficient conditions to guarantee the existence of positive solutions for the nonlinear boundary value problem
($B V P$)

$$
\left\{\begin{array}{l}
(E) \quad\left(\phi\left(u^{\prime}\right)\right)^{\prime}+f(t, u)=0, \quad 0<t<1 \\
(B C)\left\{\begin{array}{l}
u(0)-B_{0}\left(u^{\prime}(0)\right)=0 \\
u(1)+B_{1}\left(u^{\prime}(1)\right)=0
\end{array}\right.
\end{array}\right.
$$

1. Introduction

In this paper, we consider the boundary value problem of the form
(BVP)

$$
\left\{\begin{array}{l}
(E) \quad\left(\phi\left(u^{\prime}\right)\right)^{\prime}+f(t, u)=0, \quad 0<t<1 \\
(B C)\left\{\begin{array}{l}
u(0)-B_{0}\left(u^{\prime}(0)\right)=0 \\
u(1)+B_{1}\left(u^{\prime}(1)\right)=0
\end{array}\right.
\end{array}\right.
$$

where f, ϕ, B_{0}, B_{1} satisfy
$\left(H_{1}\right) \quad f \in C([0,1] \times[0, \infty) ;[0, \infty))$;
$\left(H_{2}\right) \quad \phi \in C^{1}(\mathbb{R} ; \mathbb{R})$ is an odd and strictly increasing function on \mathbb{R};
$\left(H_{3}\right) \quad B_{0}(v)$ and $B_{1}(v)$ are both increasing, continuous, odd functions defined on $(-\infty, \infty)$ and at least one of them satisfies the following condition: there exists a $\theta>0$ such that

$$
0 \leq B_{i}(v) \leq \theta v \quad \text { for all } v \geq 0, i=1 \text { or } 2
$$

The boundary value problem $(B V P)$ aries in many different areas of applied mathematics and physics; see [1-5, 8-9] and the references therein.

2. Main Results

Throughout this paper, we let Ψ be the inverse function of φ. In order to obtain our main results (Theorems 2.1 and 2.2), we need the following two lemmas:

[^0]Lemma 2.A (Kransnosel'skii [7], see, also Guo and Lakshmikantham [6]). Let X be a Banach space, and $K \subset X$ be a cone. Assume Ω_{1}, Ω_{2} are open subsets of X with $0 \in \Omega_{1}, \overline{\Omega_{1}} \subset \Omega_{2}$, and let $T: K \cap\left(\overline{\Omega_{2}} \backslash \Omega_{1}\right) \rightarrow K$ be a completely continuous operator such that either
(i) $\|T u\| \leq\|u\|, u \in K \cap \partial \Omega_{1}$ and $\|T u\| \geq\|u\|, u \in K \cap \partial \Omega_{2}$, or
(ii) $\|T u\| \geq\|u\|, u \in K \cap \partial \Omega_{1}$ and $\|T u\| \leq\|u\|, u \in K \cap \partial \Omega_{2}$,
then T has a fixed point in $K \cap\left(\overline{\Omega_{2}} \backslash \Omega_{1}\right)$. Here $\|\cdot\|$ stands for the sup norm.

Lemma 2.B. Assume that
$(H) \quad \phi$ is convex on $[0, \infty)$.
Then, we have the following results:
$\left(A_{1}\right) \quad \phi(x y) \leq x \phi(y)$ for $0 \leq x \leq 1$ and $y \geq 0$,
$\left(A_{2}\right) \quad \phi(x y) \geq x \phi(y)$ for $x \geq 1$ and $y \geq 0$,
$\left(A_{3}\right) \quad \Psi(x y) \geq x \Psi(y)$ for $0 \leq x \leq 1$ and $y \geq 0$,
$\left(A_{4}\right) \quad \Psi(x y) \leq x \Psi(y)$ for $x \geq 1$ and $y \geq 0$.
Proof. Let $F(t):=\phi(c t)-c \phi(t)$, where $c, t \in[0, \infty)$. Since ϕ is a convex function on $[0, \infty)$, $\phi^{\prime}(t)$ is increasing on $[0, \infty)$. Thus, we have

$$
F^{\prime}(t)=c \phi^{\prime}(c t)-c \phi^{\prime}(t)=c\left(\phi^{\prime}(c t)-\phi^{\prime}(t)\right)
$$

Hence

$$
F^{\prime}(t) \begin{cases}\leq 0, & \text { if } 0 \leq c \leq 1 \\ \geq 0, & \text { if } c \geq 1\end{cases}
$$

on $[0, \infty)$. It follows from $\phi(0)=F(0)=0$ that $F(t) \leq 0$ for $0 \leq c \leq 1$ and $F(t) \geq 0$ for $c \geq 1$ on $[0, \infty)$. Therefore, $\left(A_{1}\right)$ and $\left(A_{2}\right)$ hold.

Since ϕ is convex on $[0, \infty)$ and satisfies $\phi(0)=0, \Psi$ is concave on $[0, \infty)$ and satisfies $\Psi(0)=0$. Hence, $\Psi^{\prime}(t)$ is decreasing on $[0, \infty)$. Using the same argument, we can obtain the desired results $\left(A_{3}\right)$ and $\left(A_{4}\right)$.

We now are in a position to state and prove the following two main results.
Theorem 2.1. Assume that (H) holds and there exist two distinct positive constants R_{1} and R_{2} such that

$$
\begin{equation*}
f(t, u) \leq \phi\left(\frac{R_{1}}{\theta+1}\right) \quad \text { on }[0,1] \times\left[0, R_{1}\right] \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
f(t, u) \geq \phi\left(32 R_{2}\right) \quad \text { on }\left[\frac{1}{4}, \frac{3}{4}\right] \times\left[\frac{1}{4} R_{2}, R_{2}\right] \tag{2}
\end{equation*}
$$

Then $(B V P)$ has at least one positive solution $u(t)$ such that $\|u\|$ between R_{1} and R_{2}.
Proof. Without loss of generality, we may assume that $R_{1}<R_{2}$. First, we define a set K as follows:

$$
K:=\{u \in C[0,1] \mid u(t) \text { is a nonnegative concave function }\} .
$$

Clearly, K is a cone. It follows from Lemma 1 of Wang [9] that

$$
\begin{equation*}
u(t) \geq \frac{1}{4}\|u\| \quad \text { on }\left[\frac{1}{4}, \frac{3}{4}\right], \text { for all } u \in K \tag{3}
\end{equation*}
$$

Suppose that $u(t)$ is a solution of $(B V P)$, then it follows from the boundary condition $(B C)$ that $u^{\prime}(0) \geq 0$ and $u^{\prime}(1) \leq 0$. Therefore, for each given solution $u(t)$ of $(B V P)$, there exists a $\sigma \in[0,1]$ such that $u^{\prime}(\sigma)=0$.

Next, we define an operator $T: K \rightarrow C[0,1]$ by

$$
T u(t):=\left\{\begin{array}{l}
B_{0} \circ \Psi\left(\int_{0}^{\sigma} f(s, u(s)) d s\right)+\int_{0}^{t} \Psi\left(\int_{s}^{\sigma} f(r, u(r)) d r\right) d s, 0 \leq t \leq \sigma \\
B_{1} \circ \Psi\left(\int_{\sigma}^{1} f(s, u(s)) d s\right)+\int_{t}^{1} \Psi\left(\int_{\sigma}^{s} f(r, u(r)) d r\right) d s, \sigma \leq t \leq 1
\end{array}\right.
$$

It is clear that T is well-defined (see Wang [9]). By the definition of T, we see that

$$
(T u(t))^{\prime}= \begin{cases}\Psi\left(\int_{t}^{\sigma} f(r, u(r)) d r\right) \geq 0, \quad 0 \leq t \leq \sigma \\ -\Psi\left(\int_{\sigma}^{t} f(r, u(r)) d r\right) \leq 0, & \sigma \leq t \leq 1\end{cases}
$$

is continuous, decreasing on $[0,1]$ and satisfies $\left.(T u(t))^{\prime}\right|_{t=\sigma}=0$. Thus, $T u \in K$ for each $u \in$ K and $T u(\sigma)$ is the maximum of $T u(t)$ on $[0,1]$. This shows that $T K \subset K$. Furthermore, it is easy to check that $T: K \rightarrow K$ is completely continuous.

Finally, we show that $T u$ has at least one fixed point on K by applying Theorem 2.A. Without loss of generality, we may assume that

$$
0 \leq B_{0}(v) \leq \theta v \quad \text { for all } v \geq 0
$$

Let

$$
\begin{aligned}
& \Omega_{1}:=\left\{u \in K \mid\|u\|<R_{1}\right\} \\
& \Omega_{2}:=\left\{u \in K \mid\|u\|<R_{2}\right\}
\end{aligned}
$$

Thus, for $u \in K$ with $\|u\|=R_{1}$, it follows from (1) that

$$
\begin{aligned}
\|T u\|=T u(\sigma) & \leq B_{0} \circ \Psi\left(\int_{0}^{1} f(s, u(s)) d s\right)+\Psi\left(\int_{0}^{1} f(r, u(r)) d r\right) d s \\
& \leq B_{0}\left(\frac{R_{1}}{\theta+1}\right)+\frac{R_{1}}{\theta+1} \\
& \leq \frac{\theta R_{1}}{\theta+1}+\frac{R_{1}}{\theta+1} \\
& =R_{1}=\|u\|
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\|T u\| \leq\|u\| \quad \text { for } u \in K \cap \partial \Omega_{1} . \tag{4}
\end{equation*}
$$

On the other hand, if $\frac{1}{2} \leq \sigma$, then it follows from $\left(A_{3}\right)$ of Lemma 2.1 and (2) that, for $u \in K$ with $\|u\|=R_{2}$,

$$
\begin{aligned}
T u\left(\frac{1}{2}\right) & \geq \int_{0}^{\frac{1}{2}} \Psi\left(\int_{s}^{\frac{1}{2}} f(r, u(r)) d r\right) d s \\
& \geq \int_{\frac{1}{4}}^{\frac{1}{2}} \Psi\left(\int_{s}^{\frac{1}{2}} f(r, u(r)) d r\right) d s \\
& \geq \int_{\frac{1}{4}}^{\frac{1}{2}} \Psi\left(\phi\left(32 R_{2}\right)\left(\frac{1}{2}-s\right)\right) d s \\
& \geq \int_{\frac{1}{4}}^{\frac{1}{2}}\left(\frac{1}{2}-s\right) \Psi\left(\phi\left(32 R_{2}\right)\right) d s \\
& =R_{2}=\|u\|
\end{aligned}
$$

Similarly, if $\sigma \leq \frac{1}{2}$, then, for $u \in K$ with $\|u\|=R_{2}$,

$$
\begin{aligned}
T u\left(\frac{1}{2}\right) & \geq \int_{\frac{1}{2}}^{1} \Psi\left(\int_{\frac{1}{2}}^{s} f(r, u(r)) d r\right) d s \\
& \geq \int_{\frac{1}{2}}^{\frac{3}{4}} \Psi\left(\phi\left(32 R_{2}\right)\left(s-\frac{1}{2}\right)\right) d s \\
& \geq \int_{\frac{1}{2}}^{\frac{3}{4}}\left(s-\frac{1}{2}\right) \Psi\left(\phi\left(32 R_{2}\right)\right) d s \\
& =R_{2}=\|u\| .
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\|T u\| \geq\|u\| \quad \text { for } u \in K \cap \partial \Omega_{2} \tag{5}
\end{equation*}
$$

Therefore, it follows from (4), (5) and Theorem 2.A that T has a fixed point $u \in K \cap$ $\left(\overline{\Omega_{2}} \backslash \Omega_{1}\right)$. This shows that the fixed point u is a positive solution of $(B V P)$.

Lemma 2.C. Assume that
$\left(H^{*}\right) \quad \phi$ is sub-multiplicative on $[0, \infty)$, i.e., ϕ satisfies

$$
\phi(x y) \leq \phi(x) \phi(y) \quad \text { for all } x, y \geq 0
$$

Then,
$\left(R_{5}\right) \quad \Psi$ is supermultiplicative on $[0, \infty)$, i.e., Ψ satisfies

$$
\Psi(x y) \geq \Psi(x) \Psi(y) \quad \text { for all } x, y \geq 0
$$

Proof. Suppose to the contrary that there exist $x_{0}, y_{0} \geq 0$ such that

$$
\Psi\left(x_{0} y_{0}\right)<\Psi\left(x_{0}\right) \Psi\left(y_{0}\right)
$$

Since Ψ is the inverse function of ϕ and ϕ is strictly increasing,

$$
x_{0} y_{0}<\phi\left(\Psi\left(x_{0}\right) \Psi\left(y_{0}\right)\right) \leq \phi\left(\Psi\left(x_{0}\right)\right) \phi\left(\Psi\left(y_{0}\right)\right)=x_{0} y_{0}
$$

which gives a contradiction.

Theorem 2.2.

Assume that (H^{*}) holds and there exist two distinct positive constants R_{1} and R_{2} such that conditions (1) and (2) hold. Then ($B V P$) has at least one positive solution $u(t)$ such that $\|u\|$ between R_{1} and R_{2}.

Proof. The proof is quite similar to that of Theorem 2.1, therefore, we omit the details.

Now, for the convenience, we introduce the following notations. Let

$$
\begin{aligned}
& \max f_{0}:=\lim _{u \rightarrow 0^{+}} \max _{t \in[0,1]} \frac{f(t, u)}{\phi(u)} \\
& \min f_{0}:=\lim _{u \rightarrow 0^{+}} \min _{t \in\left[\frac{1}{4}, \frac{3}{4}\right]} \frac{f(t, u)}{\phi(u)} \\
& \max f_{\infty}:=\lim _{u \rightarrow \infty} \max _{t \in[0,1]} \frac{f(t, u)}{\phi(u)} \\
& \min f_{\infty}:=\lim _{u \rightarrow \infty} \min _{t \in\left[\frac{1}{4}, \frac{3}{4}\right]} \frac{f(t, u)}{\phi(u)}
\end{aligned}
$$

From the above definitions, we have the following
Remark 2.3. Let $\phi(u):=|u|^{p-2} u$ for $u \in \mathbb{R}$, where $p>1$ is a constant.
(i) Suppose that max $f_{0}=C_{1} \in\left[0, \phi\left(\frac{1}{\theta+1}\right)\right)$. Taking $\varepsilon=\phi\left(\frac{1}{\theta+1}\right)-C_{1}>0$, there exists a $R_{1}>0$ (R_{1} can be chosen small arbitrarily) such that

$$
\max _{t \in[0,1]} \frac{f(t, u)}{\phi(u)} \leq \varepsilon+C_{1}=\phi\left(\frac{1}{\theta+1}\right) \quad \text { for } u \in\left[0, R_{1}\right]
$$

Hence,

$$
f(t, u) \leq \phi\left(\frac{1}{\theta+1}\right) \phi(u) \leq \phi\left(\frac{1}{\theta+1}\right) \phi\left(R_{1}\right)=\phi\left(\frac{R_{1}}{\theta+1}\right) \quad \text { on }[0,1] \times\left[0, R_{1}\right]
$$

which satisfies the hypothesis (1) of Theorems 2.1 and 2.2.
(ii) Suppose that $\min f_{\infty}=C_{2} \in(\phi(128), \infty]$. Taking $\varepsilon=C_{2}-\phi(128)>0$, there exists $R_{2}>0$ (R_{2} can be chosen large arbitrarily) such that

$$
\min _{t \in\left[\frac{1}{4}, \frac{3}{4}\right]} \frac{f(t, u)}{\phi(u)} \geq-\varepsilon+C_{2}=\phi(128) \quad \text { for } u \in\left[\frac{1}{4} R_{2}, \infty\right)
$$

Hence,

$$
\begin{aligned}
f(t, u) & \geq \phi(128) \phi(u) \geq \phi(128) \phi\left(\frac{1}{4} R_{2}\right) \\
& =\phi\left(32 R_{2}\right) \quad \text { on }\left[\frac{1}{4}, \frac{3}{4}\right] \times\left[\frac{1}{4} R_{2}, R_{2}\right] \subset[0,1] \times\left[\frac{1}{4} R_{2}, \infty\right)
\end{aligned}
$$

which satisfies the hypothesis (2) of Theorems 2.1 and 2.2 .
(iii) Suppose that $\min f_{0}=C_{3} \in(\phi(128), \infty]$. Taking $\varepsilon=C_{3}-\phi(128)>0$, there exists $R_{2}>0\left(R_{2}\right.$ can be chosen large arbitrarily) such that

$$
\min _{t \in\left[\frac{1}{4}, \frac{3}{4}\right]} \frac{f(t, u)}{\phi(u)} \geq-\varepsilon+C_{3}=\phi(128) \quad \text { for } u \in\left(0, R_{2}\right]
$$

Hence,

$$
\begin{aligned}
f(t, u) & \geq \phi(128) \phi(u) \geq \phi(128) \phi\left(\frac{1}{4} R_{2}\right) \\
& =\phi\left(32 R_{2}\right) \quad \text { on }\left[\frac{1}{4}, \frac{3}{4}\right] \times\left[\frac{1}{4} R_{2}, R_{2}\right] \subset[0,1] \times\left[0, R_{2}\right]
\end{aligned}
$$

which satisfies the hypothesis (2) of Theorems 2.1 and 2.2 .
(iv) Suppose that max $f_{\infty}=C_{4} \in\left[0, \phi\left(\frac{1}{\theta+1)}\right)\right)$. Taking $\varepsilon=\phi\left(\frac{1}{\theta+1}\right)-C_{4}>0$, there exists a $\delta>0$ (δ can be chosen large arbitrarily) such that

$$
\begin{equation*}
\max _{t \in[0,1]} \frac{f(t, u)}{\phi(u)} \leq \varepsilon+C_{4}=\phi\left(\frac{1}{\theta+1}\right) \quad \text { for } u \in[\delta, \infty) \tag{6}
\end{equation*}
$$

Thus, we have the following two cases:
Case (a). Assume that $\max _{t \in[0,1]} f(t, u)$ is bounded, say

$$
f(t, u) \leq M \quad \text { on }[0,1] \times[0, \infty)
$$

where $M \geq \phi\left(\frac{1}{\theta+1}\right)$ is a constant. Taking $R_{1}=\left(\frac{M}{\phi\left(\frac{1}{\theta+1}\right)}\right)^{\frac{1}{p-1}}$ (since M can be chosen large arbitrarily, R_{1} can be chosen large arbitrarily, too). Then,

$$
\begin{aligned}
f(t, u) \leq M & =R_{1}^{p-1} \phi\left(\frac{1}{\theta+1}\right) \\
& =\phi\left(\frac{R_{1}}{\theta+1}\right) .
\end{aligned}
$$

Case (b). Assume that $\max _{t \in[0,1]} f(t, u)$ is unbounded. Thus, there exists a $R_{1}>\delta\left(R_{1}\right.$ can be chosen large arbitrarily) and $t_{0} \in[0,1]$ such that

$$
f(t, u) \leq f\left(t_{0}, R_{1}\right) \quad \text { on }[0,1] \times\left[0, R_{1}\right] .
$$

It follows from $R_{1}>\delta$ and (6) that

$$
f(t, u) \leq f\left(t_{0}, R_{1}\right) \leq R_{1}^{p-1} \phi\left(\frac{1}{\theta+1}\right)=\phi\left(\frac{R_{1}}{\theta+1}\right) \quad \text { on }[0,1] \times\left[0, R_{1}\right]
$$

By cases (a) and (b), the hypothesis (1) of Theorems 2.1 and 2.2 is satisfied.

Now, we consider the following p-Laplacian boundary value problem
$\left(B V P^{*}\right) \quad\left\{\begin{array}{l}\left(E^{*}\right) \quad\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}+f(t, u)=0, \quad 0<t<1, p>1, \\ (B C)\left\{\begin{array}{l}u(0)-B_{0}\left(u^{\prime}(0)\right)=0, \\ u(1)+B_{1}\left(u^{\prime}(1)\right)=0 .\end{array}\right.\end{array}\right.$
It follows from Remark 2.3 that we obtain the following corollaries hold, immediately.

Corollary 2.4. Let $A:=(\theta+1)^{1-p}$ and $B:=(128)^{p-1}$. Then, $\left(B V P^{*}\right)$ has at least one positive solution if
(a) $\max f_{0}=C_{1} \in[0, A)$ and $\min f_{\infty}=C_{2} \in(B, \infty]$, or
(b) $\min f_{0}=C_{3} \in(B, \infty]$ and $\max f_{\infty}=C_{4} \in[0, A)$.

Corollary 2.5. Let $A:=(\theta+1)^{1-p}$ and $B:=(128)^{p-1}$. Then, $\left(B V P^{*}\right)$ has at least two positive solutions u_{1} and u_{2} such that

$$
0<\left\|u_{1}\right\|<R<\left\|u_{2}\right\|
$$

if the following hypotheses hold:
(a) $\min f_{\infty}=C_{2}, \min f_{0}=C_{3} \in(B, \infty]$,
(b) there exists a $R>0$ such that

$$
f(t, u) \leq\left(\frac{R}{\theta+1}\right)^{p-1} \quad \text { on }[0,1] \times[0, R]
$$

Corollary 2.6. Let $A:=(\theta+1)^{1-p}$ and $B:=(128)^{p-1}$. Then, $\left(B V P^{*}\right)$ has at least two positive solutions u_{1} and u_{2} such that

$$
0<\left\|u_{1}\right\|<R<\left\|u_{2}\right\|,
$$

if the following hypotheses hold:
(a) $\max f_{0}=C_{1}, \max f_{\infty}=C_{4} \in[0, A)$,
(b) there exists a $R>0$ such that

$$
f(t, u) \geq(32 R)^{p-1} \quad \text { on }\left[\frac{1}{4}, \frac{3}{4}\right] \times\left[\frac{1}{4} R, R\right]
$$

References

[1] C. Bandle, C. V. Coffman and M. Marcus, Nonlinear elliptic problems in annular domains, J. Diff. Equs. 69 (1987), 322-345.
[2] C. Bandle and M. K. Kwong, Semilinear elliptic problems in annular domains, J. Appl. Math. Phys. 40 (1989), 245-257.
[3] C. V. Coffman and M. Marcus, Existence and uniqueness results for semilinear Dirichlet problems in annuli, Arch. Rational Mech. Anal. 108 (1989), 293-307.
[4] L. H. Erbe and H. Wang, On the existence of positive solutions of ordinary differential equations, Proc. Amer. Math. Soci. 120 (1994), 743-748.
[5] X. Garaizar, Existence of positive radial solution for semilinear elliptic equations in the annunus, J. Diff. Equs. 70 (1987), 69-92.
[6] D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, 1988.
[7] M. A. Krasnosel'skii, Positive solutions of operator equations, Noordhoff, Gronigen, the Netherlands, 1964.
[8] W. C. Lian, F. H. Wong and C. C. Yeh, On the existence of the positive solutions of nonlinear second order differential equations, Proc. Amer. Math. Soc. 124 (1996), 1117-1126.
[9] J. Wang, The existence of positive solutions for the one-dimensional p-Laplacian, Proc. Amer. Math. Soc. 125 (1997), 2275-2283.

Department of Applied Foreign Languages, Nanya Junior College, Chung-Li, 320 Taiwan, Republic of China
E-mail: hong@nanya.edu.tw
*)Department of Mathematics, National Taipei Teacher's College, 134, Ho-Ping E. Rd. Sec. 2, Taipei 10659, Taiwan, Republic of China
E-mail: wong@tea.ntptc.edu.tw
\# Department of Mathematics, National Central University, Chung-Li, 32054 Taiwan, Republic of China
E-mail: Yeh@wangwei.math.ncu.edu.tw

[^0]: 1991 Mathematics Subject Classification. Primary 34B15.
 Key words and phrases. positive solutions, existence, concavity, fixed point theorem in cones.

