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THERE ARE NO CODIMENSION 1 LINEAR

ISOMETRIES ON THE BALL AND POLYDISK ALGEBRAS

Kazuhiro Kasuga
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Abstract. Let A be the ball algebra or the polydisk algebra in C
n . When n > 1,

there are no codimension 1 linear isometries on A. (via LaTeX2e)

1: Introduction:

Let X be a compact Hausdor� space and C(X) the Banach algebra of all complex-valued

continuous functions on X with the supremum norm. A uniformly closed subalgebra of

C(X) is called a function algebra on X if it separates the points of X and contains the

constants. Let Bn be the open unit ball of C n and Sn be the boundary of Bn. Let D and

T stand for B1 and S1 respectively. Let A(Sn) be the space of all f 2 C(Sn) which can

be extended holomorphically on Bn: The algebra A(Sn) is called the ball algebra. When

n = 1, the algebra A(T ) is called the disk algebra.

Let Dn be the unit polydisk and T
n be the torus. Let A(Tn) be the space of all

f 2 C(Tn) which can be extended holomorphically on Dn
: The algebra A(Tn) is called the

polydisk algebra. We note that A(Sn) is a function algebra on Sn and A(Tn) is a function

algebra on Tn.

Let H1(D) be the Banach algebra of all bounded holomorphic functions on D. Let

H
1 be the space of radial limits of functions in H

1(D). Let L1 be the algebra of all

essentially bounded measurable functions on T . Then H1 is an essential supremum norm

closed subalgebra of L1: A closed subalgebra of L1 containing H1 is said to be a Douglas

algebra.

Let E be a Banach space. A linear isometry T : E ! E is said to be of codimension 1

if the range of T has codimension 1 in E. In [2], Araujo and Font studied codimension 1

linear isometries on function algebras and on Douglas algebras. And they conjectured that

there are no codimension 1 linear isometries on proper Douglas algebras. In [4], Izuchi

gave a characterization of codimension 1 linear isometries of Douglas algebras. Also in [8],

Takayama and Wada characterized codimension 1 linear isometries on the disk algebra.

In this paper, we studied codimension 1 linear isometries on the ball and polydisk

algebras. Our theorem is the following.

Theorem Let A be A(Sn) or A(T
n). When n > 1, there are no codimension 1 linear

isometries on A.

2:Proof :

Suppose that T : A ! A is a codimension 1 linear isometry. We denote by @A the

Shilov boundary of A: We say that the range of T separates strongly the points of @A; if
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for given two elements of @A, x1 and x2, there exists f 2 T (A) such that jf(x1)j 6= jf(x2)j.

By [2, p.2277], Araujo and Font class�ed codimension 1 linear isometries T on function

algebras into three types:

Type I: The range of T separates strongly the points of @A, except two of them.

Type II: The range of T separates strongly the points of @A and there exists an element

x0 2 @A such that f(x0) = 0 for all f 2 T (A).

Type III: The range of T separates strongly the points of @A and, for each x 2 @A,

there exists f 2 T (A) such that f(x) 6= 0.

We shall prove that T is a codimension 1 linear isometry of type III. To prove this,

suppose �rst that T is a codimension 1 linear isometry of type I and let x1 and x2 be the

points which cannot be separated strongly. Then by [1, Corollary 5.1 and Lemma 2.1], @A

is homeomorphic to a quotient space of @A identi�ng with x1 and x2 in @A. But Sn and

T
n do not satisfy this condition. This is a contradiction.

Next suppose that T is a codimension 1 linear isometry of type II. Let x0 be the point

in @A such that f(x0) = 0 for all f 2 T (A). By [2, Theorem 6.1], x0 is isolated in @A.

This is absurd.

Hence, T is a codimension 1 linear isometry of type III. By [2, theorem A], there exists

a homeomorphism ' of @A onto @A and a continuous map  : @A! C such that j (x)j = 1

for all x 2 @A, and

(1) (Tf)(x) =  (x)f('(x)) for all x 2 @A and all f 2 A:

Since T1 =  2 A;  is an inner function in A:

CaseA = A(Sn)

Since there is no non-constant inner function extends continuously to Sn, TA = AÆ' �

A. Since the codimension of A Æ ' in A is 1,

A = A Æ '+ C g for some g 62 A Æ ':

Therefore

(2) A Æ '
�1 = A+ C g Æ '�1; g Æ '

�1
62 A:

By the above, A Æ'�1 is a function algebra on Sn and A is a proper subalgebra of A Æ'�1.

For a function f on Sn and � 2 Sn; put f�(�) = f(��); � 2 T: Since g Æ '�1 62 A, there

exists a point �0 in Sn such that (g Æ '�1)�0 62 A(T ), see [6, p.6]. Put (A Æ '�1)�0 =

ff�0(�) : f 2 (A Æ '�1)g. Then (A Æ '�1)�0 is a closed subalgebra of C(T ). Since

A(S)�0 = A(T ), A(T ) $ (A Æ '�1)�0 � C(T ): By Wermer's maximality theorem [3, p.214],

C(T ) = (A Æ '�1)�0 . Therefore

(3) C(T ) = A(T ) + C (g Æ '�1)�0 :

Hence �z = h1 + a(g Æ '�1)�0 and �z2 = h2 + b(g Æ '�1)�0 for some h1; h2 2 A(T ); a; b 2 C :
Since (g Æ '�1)�0 62 A(T ); a 6= 0: Then �z2 � b

a
�z = h2 �

b

a
h1: The right-hand side belongs

to A(T ), but the left-hand side does not. This is a contradiction. Hence, when n > 1,

there are no codimension 1 linear isometries on A(Sn).
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CaseA = A(Tn)

Let Z be the set of all integers and Z+ the set of all nonnegative integers. Let Zn and Zn

+ be

the sets of all � = (�1; : : : ; �n) with �i 2 Z and �i 2 Z+ for every 1 � i � n; respectively.

Let f̂(k) be the k-th Fourier coeÆcient of a function f on Tn, that is

f̂(k) =

Z
Tn

f(w) �wk
dmn(w) (k 2 Zn)

where �wk = �w1
k1
: : : �wn

kn and dmn = 1
(2�)n

d�1 : : : d�n:

By (1),

(4) TA =  (A Æ ') � A:

Furthermore

(5) A Æ ' � A:

To prove this, let B be a closed subalgebra of C(Tn) generated by A and A Æ '. By

(4),  B � A. Suppose A Æ ' 6� A. Then there exists a function f0 in B such that

f0 does not belong to A. By [5, Theorem 2.2.1], there exists k = (k1; : : : ; kn) 2 ZnnZn

+

such that f̂0(k) 6= 0. We may assume k1 < 0. Then there exists a point w0 2 T
n�1

such that f0(�;w0) 62 A(T ): To see this, suppose that f0(�;w) 2 A(T ) for all w 2 T
n�1

:

Then
R
T
f0(�;w)��

k1
dm1(�) = 0. Now integrate this with respect to w and conclude that

f̂0(k1; : : : ; kn) = 0. This is a contradiction.

For a subspace L of C(Tn), let Lw0
= ff(�;w0) : f 2 Lg: Then Bw0

is a closed subal-

gebra of C(T ). Since A(Tn)w0
= A(T ); A(T ) $ Bw0

. By Wermer's maximality theorem,

Bw0
= C(T ): Since  B � A, then  w0

C(T ) = A(T ); where  w0
(�) =  (�;w0): Since  

is an inner function, j w0
j = 1 on T: Hence  w0

C(T ) = C(T ): This is a contradiction.

Hence (5) holds.

First, suppose that  is invertible in A: Since  is inner,  is a constant function. By

(4), the codimension of A Æ ' in A is 1: Then

A = A Æ '+ C g for some g 2 A; g 62 A Æ ':

Therefore

A Æ '
�1 = A+ C g Æ '�1; g Æ '

�1
62 A:

Hence A Æ '�1 is a function algebra on Tn
; and A is a proper subalgebra of A Æ '�1: In

the same way as the proof of (5), there exist a point w0 2 T
n�1 such that

(A+ C g Æ '�1)w0
= C(T ):

Therefore

A(T ) + C (g Æ '�1)w0
= C(T ):

This leads a contradiction as the case A = A(Sn):

Hence  is not invertible in A: Then there exists a point x0 2 �
D
nnTn such that  (x0) =

0: By (4) and (5), f(x0) = 0 for every f 2 TA: Let Ax0
be the set of all f 2 A such that

f(x0) = 0: Then TA � Ax0
and Ax0

has codimension 1 in A. Since the codimension of

TA in A is 1, TA = Ax0
: Therefore  A � Ax0

= TA =  (A Æ ') �  A: Hence the

codimension of  A in A is 1; so that A =  A+ C h for some h 2 A and h 62  A:
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Then
�
 A = A+ C �

 h;
�
 

2
A = A+ C �

 h; and �
 h 62 A:

Hence

�
 = h1 + a

�
 h; for some h1 2 A and a 2 C :

�
 

2 = h2 + b
�
 h; for some h2 2 A and b 2 C :

Since �
 h 62 A; a 6= 0; so that

�
 

2
�
b

a

�
 = h2 �

b

a

h1:

The right-hand side belongs to A: Since  is an inner function in A and b

a
2 C , the left-hand

side does not. This is a contradiction. Hence when n > 1, there are no codimension 1

linear isometries on A(Tn). �
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