
Scientiae Mathematicae Japonicae Online, Vol. 4, (2001), 577{586 577

COMPLEX ROTUNDITY OF MUSIELAK-ORLICZ SEQUENCE SPACES
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Abstract. The criteria for complex rotundity, complex local uniformly rotund points,

complex local uniform rotundity or complex uniform rotundity in complex Musielak-

Orlicz sequence spaces equipped with the Orlicz norm are given.

0. Introduction

In the recent years, many mathematicians have developed the investigations concerning

the geometric theory of complex Banach spaces, because its applications are irreplaceable

by the geometric theory of real Banach spaces. In 1967, E. Thorp and R. Whitley (see

[13]) �rst investigated the structure of complex extreme points. In 1975, J. Globevnik

(see [6]) investigated complex rotundity and complex uniform rotundity, and pointed out

that L1[0,1] is complex uniformly rotund (real space L1[0,1] is not even rotund). Many

mathematicians discussed complex convexity in general Banach spaces (see [1]-[2], [4]-[6],

[8], [10], [12], [14]). It is well known that into the class of Musielak-Orlicz spaces include a

lot of classical spaces such as Lp(1 � p � 1), Orlicz spaces etc.. At the end of 1980's, H.

Sun and C. Wu discussed complex extreme points, complex rotundity and complex uniform

rotundity (see [15]-[19]) in Musielak-orlicz spaces. Next T. Wang introduced the concepts of

complex locally uniformly rotund points and complex local uniform rotundity, and obtained

criteria for them in Musielak-Orlicz spaces. But the above discussion in Musielak-Orlicz

spaces was proceeded in the case of the Luxemburg norm. For the Orlicz norm, only one

result on complex extreme points in Musielak-Orlicz sequence spaces was given by C. Wu

and H. Sun (see [15]) in 1991. In this paper, we discuss complex rotundity, complex locally

uniformly rotund points, complex local uniform rotundity and complex uniform rotundity

in Musielak-Orlicz sequence spaces equipped with the Orlicz norm. The conclusions that we

get seem to be clear and they are much di�erent from the corresponding results concerning

the Luxemburg norm.

Let N denote the set of natural numbers,R, R+ and C denote the sets of real, nonnegative

real and complex numbers, respectively. Let (X; k �k) be a complex Banach space and S(X)

be the unit sphere of X. Let l0, lc be the space of all real or complex sequences, respectively.

A point x in S(X) is called a complex extreme point if for any y 2 X with y 6= 0 there

holds maxj�j�1 kx + �yk > 1: A complex Banach space X is called complex rotund (CR

for short) if every point x in S(X) is a complex extreme point. A point x in S(X) is called

a complex locally uniformly rotund point (CLUR point for short) if for any " > 0 there

exists a positive constant Æ = Æ(x; ") such that for all y in X satisfying kyk > ", there holds

maxj�j�1 kx+ �yk � 1 + Æ. A complex Banach space X is called complex locally uniformly
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rotund (CLUR for short) if every point x in S(X) is a CLUR point. A complex Banach

space X is called complex uniformly rotund (CUR for short) if for any " > 0 there exists a

positive constant Æ = Æ(") such that maxj�j�1 kx+ �yk � 1 + Æ holds for all x in S(X) and

y in X satisfying kyk > ".

A mapping M = (Mi)
1
i=1 : R �N ! [0;+1] is called a Musielak-Orlicz function if for

every i 2 N, Mi is an Orlicz function, i.e. Mi : R ! [0;+1] is even, convex, vanishing at

zero, left continuous on R+, Mi(1) = +1 and not identical equal to zero and in�nity.

For any Musielak-Orlicz M = (Mi)
1
i=1, we de�ne the complementary function N =

(Ni)
1
i=1 of M by

Ni(v) = sup
u�0

fujvj �Mi(u)g (8i 2 N; 8v 2 R):

N is also a Musielak-Orlicz function (see [3] and [11]).

For any i 2 N, we denote by p�;i(�) and pi(�) the left and right derivatives ofMi(�) on R+,

denote by q�;i(�) and qi(�) the left and right derivatives of Ni(�) on R+, respectively. It is

known that there holds the Young inequality juvj �Mi(u)+Ni(v) and juvj =Mi(u)+Ni(v)

if and only if p�;i(u) � jvj � pi(u) or q�;i(v) � juj � qi(v) (8i 2 N; 8u; v 2 R): For the

convenience, we write

(p� Æ u)(i) = p�;i(u(i)); (p Æ u)(i) = pi(u(i));

(q� Æ v)(i) = q�;i(v(i)); (q Æ v)(i) = qi(u(i))

for any u; v 2 l0 and i 2 N. For every i in N, de�ne

e(i) = supfu � 0 : Mi(u) = 0g;

E(i) = supfu � 0 : Mi(u) <1g;

a(i) = supfv � 0 : Ni(v) = 0g;

A(i) = supfv � 0 : Ni(v) <1g;

(p ÆE)(i) =1; (p� Æ u)(i) =1 for u > E(i);

(q ÆA)(i) =1; (q� Æ v)(i) =1 for v > A(i):

Given a Musielak-Orlicz functionM = (Mi)
1
i=1, if we de�ne the convex modular �M on lc

by �M (x) =
P1

i=1Mi(jx(i)j); then the linear space fx 2 lc : �M (�x) < 1 for some � > 0g

equipped with the Luxemburg norm

kxkM = inff� > 0 : �M (
x

�
) � 1g

or with the Amemiya-Orlicz norm

kxk0
M

= inf
k>0

1

k
(1 + �M (kx));

is a complex Banach space (see [3], [9] and [11]). We denote it by lM or l0
M
, respectively.

Note that if there exists M such that Mi(u) = M(u) for any u 2 R and i 2 N, then

lM becomes an Orlicz space (see [3], [9] and [11]). It is known that kxk0
M

= supfhjxj; jyji :

�N (y) � 1g which is called the Orlicz norm for any x 2 lM , where hjxj; jyji =
P1

i=1 jx(i)y(i)j

(see [3]).

The linear subspace hM of lM de�ned by

hM = fx = (x(i)) 2 lc : 8�>09i�2N

1X

i=i�

Mi(�jx(i)j) <1g
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equipped with the Luxemburg norm or with the Orlicz norm is also a complex Banach

space. We denote it by hM or h0
M
, respectively.

Let N0 be any in�nite subset of N: We say that a Musielak-Orlicz function M satis�es

the condition ÆN0

2 (M 2 ÆN0

2 for short) if for any h > 1, there exist a > 0, k > 1, i0 2 N

and a nonnegative sequence (ci) (i 2 N0; i > i0) with
P

i2N0;i>i0
ci <1 such that

Mi(hu) � kMi(u) + ci

holds whenever i 2 N0, i > i0 and Mi(u) � a. If M 2 ÆN2 , we write simply M 2 Æ2.

For any x 2 l0
M
, we de�ne

�M (x) = inff� > 0 : 9i�2N

1X

i=i�

Mi(
jx(i)j

�
) <1g;

k�
x
= inffk � 0 : �N (p Æ jkxj) � 1g;

k��
x

= supfk � 0 : �N(p Æ jkxj) � 1g:

It is known that kxk0
M

= 1
k
(1 + �M (kx)) if and only if k�

x
� k � k��

x
and 0 < k < 1 (see

[3]).

The following results will play a leading role in this paper.

Lemma 0.1 (see [19], Proposition 5.17). Let i be a complex number satisfying i2 = �1.

For any " > 0 there exists a positive constant Æ 2 (0; 1
2
) such that if u; v 2 C with

jvj �
"

8
max
j

ju+ jvj;

then

juj �
1� 2Æ

4

X

j

ju+ jvj;

where X

j

ju+ jvj := ju+ vj+ ju� vj+ ju+ ivj+ ju� ivj;

max
j

ju+ jvj := maxfju+ vj; ju� vj; ju+ ivj; ju� ivjg:

Lemma 0.2 (see [15], Theorem 1). Let 0 6= x 2 l0
M
.

(1 ) If �N(A�Sx ) > 1, then the only form for kxk0
M

is kxk0
M

= 1
k
(1 + �M (kx)),

(2 ) If �N(A�Sx ) � 1, then kxk0
M

= hjxj; Ai and if �N (A�Sx ) < 1, then it is the only

form for kxk0
M
, where Sx = fi 2 N : x(i) 6= 0g and �Sx is the characteristic function on

Sx.

1. Results

Theorem 1.1. The space l0
M

is complex rotund if and only if e(j) > 0 implies

�N(A�Nnfjg) < 1 or �N(A�Nnfjg) = 1 and �M (q� ÆA�Nnfjg) =1:

Proof. Necessity. Let �rst e(j) > 0 and �N (A�Nnfjg) > 1. We can �nd x 2 S(l0
M
) with

Sx = fi 2 N : i 6= jg. By Lemma 0.2, there exists k > 0 such that kxk0
M

= 1
k
(1 + �M (kx)).
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But kjx(j)j = 0 < e(j): So x is not a complex extreme point (see Theorem 2 in [15]), i.e. if

l0
M

is CR and e(j) > 0, then

�N (A�Nnfjg) � 1:(1)

Assume that e(j) > 0, �N(A�Nnfjg) = 1 and �M (q� Æ A�Nnfjg) < 1: De�ne x with

coordinates

x(i) = (q� ÆA)(i) for Nnfjg and x(j) = 0:

Then x 2 l0
M
. From the Young inequality, we have

kxk0
M
� 1 + �M (x) = �N (A�Nnfjg) + �M(q� ÆA�Nnfjg) = hjxj; A�Nnfjgi � kxk0

M
:

So, kxk0
M

= 1 + �M (x) and 1 2 K(x). But x(j) = 0 < e(j): Hence x is not a complex

extreme point, which means that if l0
M

is CR and e(j) > 0, then

�N (A�Nnfjg) 6= 1 or �M (q� ÆA�Nnfjg) =1:(2)

So the necessity is proved, which follows by inequalities (1) and (2).

SuÆciency. Let x 2 S(l0
M
) and kxk0

M
= 1

k
(1+�M (kx)): If there exists a natural number

j (without loss of generality we assume that j = 1) such that 0 � kjx(1)j < e(1); then

there exists a positive constant " such that the inequality k(1+ �)jx(1)j < e(1) holds for all

0 � � � ". Then

1 � �N (p Æ (1 + �)kjxj) = �N (p Æ (1 + �)kjxj�Nnf1g) � �N (A�Nnf1g) � 1:

So �N(A�Nnf1g) = 1 and pÆ (1+�)kjxj)(i) = A(i) (i 2 Nnf1g). Since � 2 (0; 1) is arbitrary

and pi(�) is right continuous, we get p Æ kjxj(i) = A(i) (i 2 Nnf1g). Therefore,

1 = �M (q� ÆA�Nnf1g) = �M (q� Æ (p Æ kjxj)�Nnf1g)

= �M (kjxj�Nnf1g) = �M (kx) = k � 1;

which is a contradiction. This completes the proof. 2

Theorem 1.2. The following assertions are equivalent:

(1 ) l0
M

is CUR,

(2 ) l0
M

is CLUR,

(3 ) l0
M

is CR and if �N(A) > 1, then M 2 Æ2:

Proof. The implications (1 ) ) (2 ) and (2 ) )\ l0
M

is CR" are trivial. Assume that

l0
M

is CLUR and �N (A) > 1 but M =2 Æ2:

Take i0 large enough such that �N (A�fi�i0g) > 1: Take x with coordinates

x(i) > 0 for 1 � i � i0 and x(i) = 0 for i > i0

such that x 2 S(l0
M
). By Lemma 0.2, there exists a constant k > 1 such that kxk0

M
=

1
k
(1+ �M (kx)). Since M =2 Æ2, there exists a real sequence z 2 l0

M
such that �M (z) � 1 and

�M (z) = 1 (see [7]). De�ne yn with

yn(i) = 0 for 1 � i � n and yn(i) =
z(i)

k
for i > n (8n 2 N):



COMPLEX ROTUNDITY OF MUSIELAK-ORLICZ SEQUENCE SPACES 581

Then for n > i0, there holds

kx+ �ynk
0
M
�

1

k
(1 + �M (k(x+ �yn))) =

1

k
(1 + �M (kx�fi�ng) + �M (z�fi>ng))

= kxk0
M

+
1

k
�M (z�fi>ng)! 1:

But kynk
0
M
� 1

k
� �M (z) = 1

k
(8n 2 N). This means that x is not a CLUR point. So the

implication (2 ) ) (3 ) is proved.

(3 )) (1 ). Otherwise, there exist two sequences (xn) and (yn) in l
0
M

satisfying kxnk
0
M

=

1 and kynk
0
M

> " > 0, but

kxn + tynk � 1 +
1

n
(n 2 N; jtj � 1):

If

En = fi 2 N : jyn(i)j �
"

8
max
t

jxn(i) + tyn(i)jg;

then by Lemma 0.1, for i 2 En there holds

jxn(i)j � (1 � 2Æ)
1

4

X

t

jxn(i) + tyn(i)j:

Similarly, we can prove that kyn�NnEnk
0
M

< 2
3
" and kyn�Enk

0
M

> "

3
(n � 3): In the re-

maining part of the proof we discuss three cases.

I. k(1
4

P
t
jxn + tynj)k

0
M

= h1
4

P
t
jxn + tynj; Ai (n 2 N). Then for n large enough, there

holds

1 = kxnk
0
M
� hjxnj; Ai = hjxnj; A�NnEn i+ hjxnj; A�Eni

� h
1

4

X

t

jxn + tynj; A�NnEn i+ (1� 2Æ)h
1

4

X

t

jxn + tynj; A�En i

= h
1

4

X

t

jxn + tynj; Ai � 2Æh
1

4

X

t

jxn + tynj; A�En i

�
1

4
� 4(1 +

1

n
) � 2Ækyn�Enk

0
M

< 1 +
1

n
� 2Æ �

"

3
< 1:(3)

This is a contradiction.

II. k(1
4

P
t
jxn + tynj)k

0
M

= 1
kn
(1 + �M (kn

4

P
t
jxn + tynj)) (n 2 N) and kn ! 1. Then

for n large enough, there holds

1 = kxnk
0
M
�

1

kn
(1 + �M(knxn�NnEn) + �M (knxn�En))

�
1

kn
(1 + �M (

kn

4

X

t

jxn + tynj�NnEn) + (1 � 2Æ)�M (
kn

4

X

t

jxn + tynj�En ))

� k(
1

4

X

t

jxn + tynj)k
0
M
�

2Æ

kn
(1 + �M (

kn

4

X

t

jxn + tynj�En)) +
2Æ

kn

� k(
1

4

X

t

jxn + tynj)k
0
M
� 2Ækyn�Enk

0
M

+
2Æ

kn
� 1 +

1

n
� 2Æ �

"

3
+

2Æ

kn
< 1;(4)

which is a contradiction.

III. k(1
4

P
t
jxn + tynj)k

0
M

= 1
kn
(1 + �M (kn

4

P
t
jxn + tynj)) (n 2 N) and kn ! k <1.
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If �N(A) � 1, the proof can be proceeded in the same way as the proof in case I.

If �N (A) > 1, then M 2 Æ2: So, there exist D > 1 and a > 0, i0 2 N and a nonnegative

sequence (ci) (i > i0) with
P

i>i0
ci �

1
2
such that

Mi(
24

"k
u) � DMi(u) + ci (i > i0;Mi(u) � a):

Take � > 0 such that the sequence x with coordinates

x(i) = � for 1 � i � i0 and x(i) = 0 for i > i0

satis�es kxk0
M

< "

6
. Then for any z 2 l0

M
, there holds kz�F k

0
M

< "

6
; where F = fi 2 N :

1 � i � i0; jz(i)j < �g: De�ne

Fn = fi 2 N : 1 � i � i0 and jyn(i)j � � or i > i0 and jyn(i)j �
"

8
max
t

jxn(i) + tyn(i)jg:

Then EnnFn = fi : 1 � i � i0 and jyn(i)j < �g and kyn�EnnFnk
0
M

< "

6
, kyn�Fnk

0
M

> "

6
for

any n � 3: By (4), there holds

kxnk
0
M
� 1 +

1

n
�

2Æ

kn
�M (

kn

4

X

t

jxn + tynj�Fn):(5)

If fi : 1 � i � i0; e(i) = 0g 6= ;, denote d1 = minfMi(
k�

2
) : 1 � i � i0; e(i) = 0g and

if fi : 1 � i � i0; e(i) > 0g 6= ;, denote d2 = minfMi(
e(i)

1�Æ
) : 1 � i � i0; e(i) > 0g: It is

obvious that d1; d2 > 0. Notice that Fn 6= ; for any n 2 N. De�ne

N1 = fn 2 N : Min
(knjyn(in)j) > a for some in 2 Fng;

N2 = fn 2 N : Min
(knjyn(in)j) � a (8in 2 Fn) and in > i0 for some in 2 Fng;

N3 = fn 2 N : in � i0 (8in 2 Fn) and e(in) = 0 for some in 2 Fng;

N4 = fn 2 N : in � i0 and e(in) > 0 (8in 2 Fn)g:

If n 2 N1, then there exists in 2 Fn such that Min
(knjyn(in)j) > a. So

�M (
kn

4

X

t

jxn + tynj�Fn) �Min
(knjyn(in)j) > a:(6)

If n 2 N2, then from kyn�FnkM � 1
2
kyn�Fnk

0
M
� "

12
(see [3]), we have �M(12

"
yn�Fn) � 1:

For n large enough, we get

1 � �M (
12

"
yn�Fn) � �M (

24

"k
knyn�Fn )

� D�M (knyn�Fn) +
X

i2Fn

ci � D�M (knyn�Fn ) +
1

2
:

Therefore,

�M (knyn�Fn ) �
1

2D
:(7)

If n 2 N3, then there exists in 2 Fn satisfying i � i0 and e(in) = 0: So

�M (
kn

4

X

t

jxn + tynj�Fn) �Min
(kn�) �Min

(
k�

2
) � d1:(8)
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Consider the case n 2 N4. Without loss of generality we assume that N4 is an in�nite

subset of N and in 2 Fn (n 2 N4). For the convenience, we assume that N4 = N. Write

i
0

= in. Now, we prove that

lim inf
n!1

knjxn(i
0

)j � e(i
0

):(9)

From

1 +
1

n
�

1

kn
(1 + �M (

kn

4

X

t

jxn + tynj)) �
1

kn
(1 + �M (knxn)) � kxnk

0
M

= 1;

we have

lim
n!1

1

kn
(1 + �M (knxn)) = 1:

Let kxnk
0
M

= 1
hn
(1 + �M (hnxn)) for some hn > 0 (we write hn =1 if kxnk

0
M

= hjxnj; Ai).

If (9) does not hold, then there exists � > 0 such that (1 + �)knjxn(i
0

)j � e(i
0

): Since

l0
M

is CR, so xn is a complex extreme point (n 2 N). Therefore e(i
0

) � hnjxn(i
0

)j: Thus

1

n
�

1

kn
(1 + �M (knxn)) �

1

hn
(1 + �M (hnxn))

�
1

kn
(1 + �M (knxn)) �

1

(1 + �)kn
(1 + �M ((1 + �)knxn))

=
�

(1 + �)kn
(1�

1 + �

�
(�M ((1 + �)knxn)� �M (knxn)) + �M ((1 + �)knxn))

�
�

(1 + �)kn
(1�

1 + �

�
h�knjxnj; p Æ (1 + �)knjxnji + �M ((1 + �)knxn))

=
�

(1 + �)kn
(1� �N (p Æ (1 + �)knjxnj)):

In virtue of kn ! k <1, we get �N(p Æ (1 + �)knjxnj)! 1: From

1 � �N (A�Nnfi0 g) � �N (p Æ (1 + �)knjxnj�Nnfi0g) = �N(p Æ (1 + �)knjxnj)! 1;

we get �N(A�Nnfi0g) = 1 and (p Æ (1 + �)knjxnj)(i) ! A(i) (i 2 Nnfi
0

g): Moreover,

1 +
1

n
�

1

kn
(1 + �M (knxn)) �

1

(1 + �)kn
(1 + �M ((1 + �)knxn)):

Therefore

�M ((1 + �)knxn) � �M ((1 + �)knxn�Nnfi0g)! �M (q� ÆA�
Nnfi0g) =1

and

�M ((1 + �)knxn) � (1 +
1

n
)kn(1 + �)� 1! k(1 + �)� 1:

This is a contradiction. So, by (9) we have for n large enough,

�M (
kn

4

X

t

jxn + tynj�Fn ) �M
i
0 (
knxn(i

0

)

1� 2Æ
) �M

i
0 (
e(i

0

)

1� Æ
) � d2:(10)

Combining (5), (6), (7), (8), (10) and N = [4
i=1Ni, we get for n large enough

1 � 1 +
1

n
�

2Æ

kn
minfa; d1; d2;

1

2D
g < 1;
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which is a contradiction �nishing the proof. 2

Theorem 1.3. If x 2 S(l0
M
), then x is a CLUR point if and only if for k > 0 satis-

fying kxk0
M

= 1
k
(1 + �M (kx)) there holds

(1 ) fi 2 N : kjx(i)j < e(i)g = ;,

(2 ) If there exist s 2 (0; 1) and an in�nite subset N0 of N satisfying �M ( kx

1�s�N0
) <1,

then M 2 ÆN0

2 :

Proof. Necessity. The implications that \x is a CLUR point" ) \x is a complex ex-

treme point" and \x is a complex extreme point" ) (1 ) are trivial.

Assume now that (2 ) does not hold, i.e. there exist s 2 (0; 1) and an in�nite subset N0

of N with �M ( kx

1�s�N0
) <1 andM =2 ÆN0

2 . So there exists a sequence z 2 l0
M

with Sz = N0

satisfying �M (z) � 1 and �M (z) = 1 (see [7]). De�ne yn with coordinates

yn(i) =
s

k
z(i) (i 2 N0; i > n); yn(i) = 0 (i � n):

Then

kx+ tynk
0
M
�

1

k
(1 + �M (k(x + tyn)))

�
1

k
(1 + �M (kx) + �M (kx�fi>ng) + �M (sz�fi>ng)

� 1 +
1

k
((1 � s)�M (

kx

1 � s
�fi>ng) + s�M (z�fi>ng))! 1:

But kynk
0
M
� s

k
� �M (z) = s

k
, a contradiction.

SuÆciency. Otherwise, there exists a sequence (yn) in l0
M

with kynk
0
M

> " > 0 (n 2 N)

satisfying

kx+ tynk
0
M
� 1 +

1

n
(n 2 N; jtj � 1):

Denote

En = fi 2 N : jyn(i)j �
"

8
max
t

jx(i) + tyn(i)jg:

Then kyn�TnEnk
0
M
� "

2
(1 + 1

n
) < 2"

3
(n � 3). Therefore kyn�Enk

0
M

> "

3
(n � 3). If i 2 En,

then

jx(i)j < (1 � 2Æ)
1

4

X

t

jx(i) + tyn(i)j;

where Æ 2 (0; 1
2
): The remaining part of the proof will be discussed in three cases.

I. k(1
4

P
t
jx + tynj)k

0
M

= h
P

t
jx + tynj; Ai (n 2 N): Then in virtue of (1) for n large

enough, we conclude that

1 = kxk0
M
� 1 +

1

n
� 2Ækyn�Enk

0
M
�

2Æ"

3
:

This is a contradiction.

II. k( 1
4

P
t
jx+ tynj)k

0
M

= 1
kn
(1 + �M (kn

4

P
t
jx+ tynj)) (n 2 N) and kn !1: In virtue

of (2) for n large enough, we obtain

1 = kxk0
M
� 1 +

1

n
�

2Æ

kn
�M (

kn

4

X

t

jx+ tynj�En) � 1 +
1

n
�

2Æ

kn
�M (knyn�En )

� 1 +
1

n
� 2Ækyn�Enk

0
M

+
2Æ

kn
� 1�

2Æ"

3
;
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which is a contradiction.

III. k(1
4

P
t
jx+ tynj)k

0
M

= 1
kn
(1+�M (kn

4

P
t
jx+ tynj)) (n 2 N) and kn ! k <1: From

1 +
1

n
� k(

1

4

X

t

jx+ tynj)k
0
M

=
1

kn
(1 + �M (

kn

4

X

t

jx + tynj))

�
1

kn
(1 + �M (knx)) � kxk0

M
= 1;

taking n!1, we get 1 = kxk0
M

= 1
k
(1 + �M (kx)):

III-1. infn �M ( kx

1�Æ
�En) = a > 0: Then in virtue of (2), we get for n large enough,

kxk0
M
� 1 +

1

n
�

2Æ

kn
�M (

kx

1� Æ
�En) � 1 +

1

n
�

2Æ

kn
a � 1�

2Æa

k
;

which is a contradiction.

III-2. infn �M ( kx

1�Æ
�En) = 0: Passing to a subsequence of (En) if necessary we can

assume that
1X

n=1

�M (
kx

1 � Æ
�En ) <1:

Denote E = [1
n=1En: Then �M ( kx

1�Æ
�E) < 1. By the assumption, we have M 2 ÆE2 . The

remaining part of the proof is similar to the proof of case III in Theorem 1.2, so we omit it

here. The proof is �nished. 2
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