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EFFICIENT SOLUTIONS OF MULTICRITERIA LOCATION PROBLEMS
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Abstract. A multicriteria location problem with rectilinear norm inR3 is considered.

We propose an algorithm to �nd all eÆcient solutions of the location problem.

1. Introduction. Given demand points in R3, a problem to locate a new facility in

R3 is called a single facility location problem. The problem is usually formulated as a

minimization problem with an objective function involving distances between the facility

and demand points. It is assumed that m demand points di � (d1i , d
2
i , d

3
i )
T 2 R3, i 2 M

� f1, 2, � � � , mg and rectilinear norm k � k1 de�ned on R3 are given. Let x � (x1, x2, x3)T

2 R3 be the variable location of the facility. We put D � fd1, d2, � � � , dmg. Without loss

of generality, it is assumed that D 6� f(x1, x2, x3)T 2 R3: xj = x0g for each j 2 J � f1, 2,

3g and any x0 2 R. If its assumption is not satis�ed, then our three-dimensional problems

reduce to one or two-dimensional problems as in [2, 3]. Our main problem is a multicriteria

location problem formulated as follows:

(P) min
x2R3

f(x) � (kx� d1k1; kx� d2k1; � � � ; kx� dmk1)
T
:

(P) is a problem to �nd an eÆcient solution. A point x0 2 R
3 is called an eÆcient solution

of (P) if there is no x 2 R3 such that f(x) � f(x0) and f(x) 6= f (x0). Let E(D) be the

set of all eÆcient solutions of (P). By the de�nition of the eÆciency, each demand point is

eÆcient in (P). We also consider a minisum location problem formulated as follows:

(P�) min
x2R3

g(x) �

mX
i=1

�
i
kx� dik1

where �i is a positive weight for each di, i 2M . We put � � (�1, �2, � � � , �m)T and denote

the set of all optimal solutions of (P�) as S
�(�).

In R2, the set of all eÆcient solutions of (P) can be determined by using an algorithm

in [2]. (P�) can be solved by using an algorithm in [3]. (P) and (P�) with another norm or

distance instead of rectilinear norm in R2 are considered in [3, 6, 10-12]. In this article, we

consider (P) and (P�) with rectilinear norm in R3. First, we characterize eÆcient solutions

of (P) by using optimal solutions of (P�). Next, we give another characterization of eÆcient

solutions of (P). Then we propose the Frame Generating Algorithm to �nd E(D), which

requires O(m4) computational time.

In section 2, we give some properties of optimal solutions of (P�). In section 3, we give

some properties of eÆcient solutions of (P). In section 4, we propose the Frame Generating

Algorithm to �nd E(D), which requires O(m4) computational time. Finally, in section 5,

we give some conclusions.
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2. Optimality of (P�). In this section, we give some properties of optimal solutions of

(P�).

The following theorem gives the relation between eÆcient solutions of (P) and optimal

solutions of (P�).

Theorem 1.(See [7].) A point x0 2 R
3
is eÆcient in (P) if and only if x0 is optimal in

(P�) for some � > 0.

From Theorem 1, E(D) can be expressed as

(1) E(D) = fx� 2 R3 : x� 2 S
�(�) for some � > 0g:

Thus, in the following, we investigate properties of optimal solutions of (P�).

Since the objective function of (P�), g, can be rewritten as

g(x) =

mX
i=1

�
i
kx� dik1 =

mX
i=1

�
i

3X
j=1

jx
j
� d

j
i j =

3X
j=1

mX
i=1

�
i
jx
j
� d

j
i j;

(P�) reduces to three independent one-dimensional problems. Namely, x� � (x1�, x2�,

x
3�)T 2 S

�(�) if and only if each x
j�, j 2 J is an optimal solution of the following one-

dimensional problem:

(Pj) min
x2R

gj(x) �

mX
i=1

�
i
jx� d

j
i j:

These one-dimensional problems can be solved by using an algorithm in [3]. For each j 2

J , we denote all optimal solutions of (Pj) for � as S�j (�). In the following, we concentrate

on (P1). In other (Pj), j 2 f2, 3g, we have the same results as in (P1).

Let f : R �! R be a convex function. We denote its left and right derivatives and

subdi�erential, respectively, as
df(x)

dx�
;
df(x)

dx+
and @f(x). Namely,

df(x)

dx�
= lim

�"0

f(x+ �)� f(x)

�
;
df(x)

dx+
= lim

�#0

f(x+ �)� f(x)

�

and

@f(x) =

�
df(x)

dx�
;
df(x)

dx+

�
�

�
y 2 R :

df(x)

dx�
� y �

df(x)

dx+

�
:

Note that if f is di�erentiable at x0, then @f(x0) =
n
df(x0)

dx

o
, and that x0 minimizes f over

R if and only if 0 2 @f(x0) (see, for example, [5]).

For x 2 R, we put L(x) � fi 2 M : d1i < xg, R(x) � fi 2 M : d1i > xg and I(x) � fi

2 M : d1i = xg. The objective function of (P1), g1, is a piecewise linear convex function.

It is not di�erentiable only at each d
1
k, k 2 M , and we have

(2)
dg1(x)

dx+

����
x=d1

k

=
X

i2L(d1
k
)[I(d1

k
)

�
i
�

X
i2R(d1

k
)

�
i
;
dg1(x)

dx�

����
x=d1

k

=
X

i2L(d1
k
)

�
i
�

X
i2R(d1

k
)[I(d1

k
)

�
i

and

@g1(d
1
k) =

2
4 X
i2L(d1

k
)

�
i
�

X
i2R(d1

k
)[I(d1

k
)

�
i
;

X
i2L(d1

k
)[I(d1

k
)

�
i
�

X
i2R(d1

k
)

�
i

3
5 :
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We put dmin � minfd1i : i 2 Mg and dmax � maxfd1i : i 2 Mg. Note that

(3)
dg1(x)

dx�

����
x=d1

k

=
dg1(x)

dx+

����
x=d1

`

=
dg1(x)

dx
; x 2 (d1` ; d

1
k) � fy 2 R : d1` < y < d

1
kg

for d1k and d
1
` , where d

1
k > dmin and d

1
` = maxfd1i : d

1
i < d

1
k, i 2 Mg. From (2),

dg1(x)

dx
=

�
Pm

i=1 �
i
< 0 for x < dmin and

dg1(x)

dx
=
Pm

i=1 �
i
> 0 for x > dmax. Thus, we have the

following lemma.

Lemma 1. For any �xed � > 0, S�1 (�) � [dmin, dmax].

From (2), (3) and Lemma 1, (i) S�1 (�) = fd1kg for some d1k, k 2 M ; or (ii) S�1 (�) = [d1k, d
1
` ]

for some d1k, d
1
` , k, ` 2 M such that d1k < d

1
` and that d1i � d

1
k or d1` � d

1
i for any d

1
i , i 2

M .

3. Properties of eÆcient solutions. In this section, we give some properties of eÆcient

solutions of (P) by using properties of optimal solutions of (P�).

For x0 � (x10, x
2
0, x

3
0)
T 2 R3, x0 is called an intersection point if x

j
0 2 fd

j
i : i 2 Mg, j

2 J . We denote the set of all intersection points as I , and put

d
j

min � minfd
j
i : i 2Mg; d

j
max � maxfd

j
i : i 2Mg; j 2 J:

Then

B � f(x1; x2; x3)T 2 R3 : d
j

min � x
j
� d

j
max; j 2 Jg

is called the intersection box (see Figure 1). From Theorem 1 and Lemma 1, E(D) � B.
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d1 = (4; 0;�1)T

d2 = (0; 0; 2)T

d3 = (0; 2;�2)T

d4 = (2; 4; 0)T

the intersection box

(three-dimensional) boxintersection points

@@R

��
��:

Figure 1. Intersection points, the intersection box, a box.
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We put e1 � (1, 0, 0)T , e2 � (0, 1, 0)T , e3 � (0, 0, 1)T 2 R3 and xk � (x1k , x
2
k, x

3
k)

T ,

xh � (x1h, x
2
h, x

3
h)

T 2 I . For each j 2 J , we call xk an ej-oriented intersection point (resp.

a �ej-oriented intersection point) adjacent to xh if x
j

k > x
j

h (resp. x
j

k < x
j

h), x
j0

k = x
j0

h , j
0

6= j and there is no xs � (x1s , x
2
s, x

3
s)
T 2 I such that x

j

h < x
j
s < x

j

k (resp. x
j

k < x
j
s < x

j

h).

For each j 2 J , let d
j

[1]
, d

j

[2]
, � � � , d

j

[mj ]
be all distinct real numbers among d

j
1, d

j
2, � � � ,

d
j
m such that dj

[1]
< d

j

[2]
< � � � < d

j

[mj ]
, and we put

F
j

2k�1 �

n
d
j

[k]

o
; k = 1; 2; � � � ;mj

and

F
j

2k �

h
d
j

[k]
; d

j

[k+1]

i
; k = 1; 2; � � � ;mj � 1:

For each kj 2 f1, 2, � � � , 2mj � 1g, j 2 J , F 1
k1
� F

2
k2
� F

3
k3

is called a box. Moreover, if k

numbers are odd among k1, k2, k3, then F
1
k1
� F

2
k2
�F 3

k3
is called k-dimensional box (see

Figure 1).

For any �xed � > 0, S�(�) = F
1
k1
� F

2
k2
� F

3
k3

for some kj 2 f1, 2, � � � , 2mj � 1g, j 2

J . Therefore, E(D) is the union of some boxes. The union of all one-dimensional boxes in

E(D) is called the frame of E(D).

Theorem 2. ([13]) Let h1(w) and h2(w) be convex functions de�ned on R, where hi is

minimized at wi, i = 1, 2 and w1 < w2. Then, given any w 2 [w1; w2], there exists � 2 [0,

1] such that w minimizes �h2(w) + (1 � �)h1(w).

Corollary 1. For x1 � (x11, x
2
1, x

3
1)
T , x2 � (x12, x

2
2, x

3
2)
T 2 B, it is assumed that x

j0
1 6=

x
j0
2 for some j0 2 J and x

j
1 = x

j
2, j 6= j0. We put x� � �x1 + (1 � �)x2, � 2 (0, 1). If

x1, x2 2 E(D), then x� 2 E(D).

Proof. Without loss of generality, we assume that

x
1
1 < x

1
2; x

j
1 = x

j
2; j 2 f2; 3g:

Since x1, x2 2 E(D), x1 2 S
�(�1) and x2 2 S

�(�2) for some �1 > 0 and �2 > 0 by

Theorem 1. Thus, x11 2 S
�
1 (�1), x

1
2 2 S

�
1(�2) and x

j
1, x

j
2 2 S

�
j (�1)

T
S
�
j (�2), j 2 f2, 3g.

For each j 2 f2, 3g, if we put xj� � �x
j
1 + (1 � �)xj2, then x

j� 2 S
�
j (��1 + (1 � �)�2) for

any � 2 [0, 1]. We put x1� � � x
1
1 + (1 � �)x12. Since x

1
1 < x

1�
< x

1
2, there exists �1 2 [0,

1] such that x1� 2 S
�
1 (�1�1 + (1 � �1)�2) by Theorem 2. Since x� = (x1�, x2�, x3�)T 2

S
�(�1�1 + (1 � �1)�2), x

� 2 E(D) by Theorem 1. 2

Theorem 3. Let h1(w) and h2(w) be convex functions de�ned on R, where hi is

minimized at wi, i = 1, 2 and w1 � w2. Then, given any w 2 [w1; w2],

H � f� 2 [0; 1] : w minimizes �h2(w) + (1� �)h1(w)g

is a closed interval.

Proof. Fix any w 2 [w1, w2]. If w1 = w2, then H = [0, 1]. Thus, we assume that w1 <

w2. For � 2 [0, 1], w minimizes �h2(w) + (1 � �)h1(w) if and only if

0 2 @(�h2(w) + (1� �)h1(w)) = �@h2(w) + (1� �)@h1(w):

Holding the above equality is proven in [5]. If y1 2 @h1(w) and w > w1, then y1 � 0. If y2
2 @h2(w) and w < w2, then y2 � 0. These follow from the fact that w0

< w
00, y0 2 @h(w0)

and y
00 2 @h(w00) imply y0 � y

00 for any convex function h de�ned on R (see [5]).
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(i) First, we suppose that w = w1. In this case, @h1(w) = [a1, a2] and @h2(w) = [�b2,

�b1] for some a1, a2, b1, b2 2 R such that a1 � 0 � a2 and 0 � b1 � b2. If b1 > 0, then we

have H = [0, a2=(b1 + a2)], otherwise H = [0, 1].

(ii) Next, we suppose that w = w2. In this case, @h1(w) = [a1, a2] and @h2(w) = [b1,

b2] for some a1, a2, b1, b2 2 R such that 0 � a1 � a2 and b1 � 0 � b2. If a1 > 0, then we

have H = [a1=(a1 � b1), 1], otherwise H = [0, 1].

(iii) Finally, we suppose that w1 < w < w2. In this case, @h1(w) = [a1, a2] and @h2(w)

= [�b2, �b1] for some a1, a2, b1, b2 2 R such that 0 � a1 � a2 and 0 � b1 � b2. If a1 +

b2 6= 0 and b1 + a2 6= 0, then we have H = [a1=(a1 + b2), a2=(b1 + a2)], otherwise H = [0,

1]. 2

By Corollary 1, if all vertices of a box are eÆcient in (P), then any point in the box is

eÆcient in (P).

Corollary 2. For xh � (x1h, x
2
h, x

3
h)

T , xk � (x1k , x
2
k, x

3
k)

T 2 E(D)
T

I , it is assumed

that J0 � fj 2 J : x
j

h 6= x
j

kg 6= ;. For each j 2 J0, let yj � (y1j , y
2
j , y

3
j )

T
be an ej-oriented

intersection point (resp. a �ej-oriented intersection point) adjacent to xk if x
j

h > h
j

k (resp.

x
j

h < x
j

k). Then there exists j0 2 J0 such that yj0 2 E(D).

Proof. Without loss of generality, we assume that x
j

h < x
j

k , j = 1, � � � , s (� 3) and x
j

h =

x
j

k, j = s+1, � � � , 3. We shall show only the case x1h < x
1
k , x

2
h < x

2
k and x3h = x

3
k. In other

cases, it can be shown similarly.

Since xh, xk 2 E(D), xh 2 S
�(�h) and xk 2 S

�(�k) for some �h � (�1h, �
2
h, � � � , �

m
h )

T

> 0 and �k � (�1k, �
2
k , � � � , �

m
k )

T
> 0 by Theorem 1. Then, for any j 2 J , x

j

h 2 S
�
j (�h)

and x
j

k 2 S
�
j (�k). Since x

1
h � y

1
1 � x

1
k, there exists �1 = minf� 2 [0, 1] : y11 2 S

�
1(��h +

(1 � �)�k)g by Theorem 3. Then we shall show that x1k 2 S
�
1 (Æ�h + (1 � Æ)�k) for any Æ

2 [0, �1]. It is trivial when �1 = 0. Thus, we assume that �1 > 0. We put

� �
Æ

�1
and �1 � �1�h + (1� �1)�k:

Then

Æ�h + (1� Æ)�k; Æ 2 [0; �1]

can be expressed as

��1�h + (1� ��1)�k = ��1 + (1� �)�k; � 2 [0; 1]:

We put

f1(x) �

mX
i=1

�
i
1jx� d

1
i j and fk(x) �

mX
i=1

�
i
k jx� d

1
i j

where �i1 � �1�
i
h + (1 � �1)�

i
k , i 2 M . Since y11 2 S

�
1 (�1) and x

1
k 2 S

�
1 (�k), @f1(y

1
1) = [a1,

a2] and @fk(x
1
k) = [b1, b2] for some a1, a2, b1, b2 2 R such that a1 � 0 � a2 and b1 � 0

� b2. Since y
1
1 < x

1
k, @f1(x

1
k) = [a01, a

0
2] and @fk(y

1
1) = [b01, b

0
2] for some a01, a

0
2, b

0
1, b

0
2 2 R

such that a2 � a
0
1 � a

0
2 and b

0
1 � b

0
2 � b1. For � 2 [0; 1], we put

G(�) � �@f1(x
1
k) + (1� �)@fk(x

1
k) = [b1 + �(a01 � b1); b2 + �(a02 � b2)]

and

H(�) � �@f1(y
1
1) + (1� �)@fk(y

1
1) = [b01 + �(a1 � b

0
1); b

0
2 + �(a2 � b

0
2)]:
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By de�nitions of �1 and �,

(4) 0 2 H(1); 0 =2 H(�); � 2 [0; 1] n f1g:

Thus, it needs that a2 = 0 and b
0
2 < 0. By Theorem 2, for x0 2 (y11 , x

1
k), there exists �0

2 [0, 1] such that x0 2 S
�
1 (�0�1 + (1 � �0)�k). In this case, [y11 , x

1
k] � S

�
1 (�0�1 + (1 �

�0)�k). Thus, we have

0 2 G(�0)
\

H(�0):

From (4), it needs that �0 = 1. Since it needs that a01 = 0, 0 2 G(�) for any � 2 [0, 1]. By

the de�nition of G(�), x1k 2 S
�
1 (��1 + (1 � �)�k) for any � 2 [0, 1]. Namely, by de�nitions

of � and �1, x
1
k 2 S

�
1 (Æ�h + (1 � Æ)�k) for any Æ 2 [0, �1]. Similarly, there exists �2 =

minf� 2 [0, 1] : y22 2 S
�
2 (��h + (1 � �)�k)g by Theorem 3. Then x

2
k 2 S

�
2 (Æ�h + (1 �

Æ)�k) for any Æ 2 [0, �2].

On the other hand, since x3k 2 S
�
3 (�h)

T
S
�
3 (�k), x

3
k 2 S

�
3 (��h + (1 � �)�k) for any �

2 [0, 1]. We put

�j0 � minf�1; �2g and �j0 � �j0�h + (1� �j0)�k:

Then y
j
j0
2 S

�
j (�j0), j 6= j0 and y

j0
j0
2 S

�
j0
(�j0) by the de�nition of �j0 . Since yj0 2 S

�(�j0),

yj0 2 E(D) by Theorem 1. 2

From Corollary 1 and 2, there exists \zig-zag path" between any two eÆcient solutions of

(P). Moreover, the frame of E(D) is connected. If the frame of E(D) is determined, then

E(D) can be constructed. Thus, we give an algorithm to �nd the frame of E(D) in the

next section.

4. Algorithm to Find All EÆcient Solutions. In this section, we propose the Frame

Generating Algorithm to �nd the frame of E(D), which requires O(m4) computational time.

In the Frame Generating Algorithm, checking that an intersection point is eÆcient in

(P) or not is needed. Thus, in the following, we state how to check it.

For x 2 R3, we put Bdi
(x) = fy 2 R3: ky � dik1 � kx � dik1g, i 2 M and B(x) =Tm

i=1 Bdi
(x). By the de�nition of the eÆciency, x0 2 E(D) if and only if B(x0) does not

intersect the interior of any Bdi
(x0). For " > 0 and x 2 R3, we put D"(x) � N"(x)

T
B(x), where N"(x) is an "-neighbourhood of x. Then we have the following lemma.

Lemma 2. A point x0 2 R3
is eÆcient in (P) if and only if D"(x0) does not intersect the

interior of any Bdi
(x0) for some " > 0.

Proof. If x0 2 E(D), then D"(x0) does not intersect the interior of any Bdi
(x0) for any

" > 0 by the de�nition of the eÆciency.

Assume that x0 =2 E(D). Then there exists y 2 R3 such that ky � dik1 � kx0 � dik1,

i 2 M and ky � dkk1 < kx0 � dkk1 for some k 2 M . For � 2 (0, 1), k(1 � �)x0 + �y �

dik1 � kx0 � dik1, i 2 M by the convexity of k � k1. Since ky � dkk1 < kx0 � dkk1, y is

an interior point of Bdk
(x0). Thus, we have k(1 � �)x0 + �y � dkk1 < kx0 � dkk1. For

any " > 0, if � is suÆciently small, then (1 � �)x0 + �y 2 D"(x0) is an interior point of

Bdk
(x0). 2

Following [12], we introduce the concept of the summary diagram in order to check that

an intersection point is eÆcient in (P) or not by applying Lemma 2. In [12], the summary

diagram is introduced for multicriteria location problems with one-in�nity norm in R2. We
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put

O1 � f(x1; x2; x3)T 2 R3 : x1 � 0; x2 � 0; x3 � 0g;

O2 � f(x1; x2; x3)T 2 R3 : x1 � 0; x2 � 0; x3 � 0g;

O3 � f(x1; x2; x3)T 2 R
3 : x1 � 0; x2 � 0; x3 � 0g;

O4 � f(x1; x2; x3)T 2 R3 : x1 � 0; x2 � 0; x3 � 0g

and O�� � �O�, � = 1, 2, 3, 4. For x 2 R
3, the summary diagram of x, SD(x), is de�ned

as follows:

SD(x) � f� 2 f�1;�2;�; 3;�4g : di 2 O�(x) for some ig:

Conveniently, SD(x) is represented in diagram form as follows: First, we draw the cube

with vertices v1 � (1, 1, 1)T , v2 � (�1, 1, 1)T , v3 � (�1, �1, 1)T , v4 � (1, �1, 1)T and

v�� � �v�, � = 1, 2, 3, 4; Next, for each � 2 f�1, �2, �3, �4g, dot v� if � 2 SD(x).

For example, SD(x) = f2, 3, 4, �2, �3g for d1 = (3; 0; 4)T , d2 = (4; 2; 0)T , d3 = (2; 1; 3)T ,

d4 = (0; 4; 5)T , d5 = (1; 5; 2)T and x = (3; 2; 1)T . Figure 2 shows its summary diagram in

diagram form.
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Figure 3. Patterns of summary diagrams of an intersection point.

For x0 � (x10, x
2
0, x

3
0)
T 2 I , SD(x0) coincides with one of patterns illustrated in Figure

3, where we identify summary diagrams in diagram form if they are the same pattern by

rotation.

If the pattern of SD(x0) is one of (i)-(v) in Figure 3, then the D"(x0) = fx0g for " > 0.

In this case, x0 2 E(D) by Lemma 2. If the pattern of SD(x0) is (xii) in Figure 3, then

the interior of D"(x0) is not empty. In this case, x0 =2 E(D) by Lemma 2. If the pattern

of SD(x0) is one of (vi)-(xi) in Figure 3, then x0 =2 E(D) if and only if there exists i 2 M

satisfying one of conditions in Table 1, where it is assumed that di � x0, i 2M are rotated

to �t the pattern of the summary diagram. In Table 1, we put

sij �

8<
:

+ if d
j

i � x
j
0 > 0;

0 if d
j
i � x

j
0 = 0;

� if d
j
i � x

j
0 < 0

for i 2 M and j 2 J . For example, when SD(x0) = f1, 2, 3, 4, �3, �4g whose pattern is

(vi), x0 =2 E(D) if and only if there exists i 2 M such that (si1, si2, si3) = (0, +, +) or (+,

+,+) or (�, +, +).

Given x0 2 I , the pattern of SD(x0) can be determined in O(m) computational time

by comparing components of x0 and each di, i 2 M . Namely, checking that x0 2 E(D) or

not requires O(m) computational time.

Table 1. Necessary and suÆcient conditions of x0 =2 E(D) in patterns (vi)-(xi).

Pattern (si1; si2; si3)

(vi) (a) (0;+;+) (b) (+;+;+) (c) (�;+;+)

(vii) (a) (+; 0;+) (b) (0;+;+) (c) (+;+;+) (d) (+;�;+) (e) (�;+;+)

(viii) (a) (�; 0;+) (b) (�;+; 0) (c) (�;+;+)

(ix) (a) (+;+; 0) (b) (+; 0;+) (c) (+;+;+)

(x) (a) (0;�;+) (b) (+;�;+) (c) (�;�;+)

(xi) (a) (+; 0;+) (b) (+;+;+) (c) (+;�;+)

Remark. In view of the fact that the frame of E(D) is the union of all one-dimensional

boxes in E(D), which is connected, we can construct a connected graph (V;E), where V

= I
T

E(D) and E is the set of all arcs in the graph. Given x1, x2 2 I
T

E(D), the

arc a(x1;x2) which connects x1 and x2 is in E if and only if x1 and x2 are adjacent and

eÆcient in (P). This concept will be the guide for describing an algorithm to locate the

frame of E(D).

In the Frame Generating Algorithm, we put

Vi � f(d1[k]; d
2
[`]; d

3
[i])

T
2 R3 : k 2 f1; 2; � � � ;m1g; ` 2 f1; 2; � � � ;m2gg; i = 1; 2; � � � ;m3:
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We use r as a counter which represents the number of iterations. For each r 2 f1, 2, � � � ,

m3g, the Frame Generating Algorithm �nds one-dimensional boxes in the frame of E(D),

which are connected with any initial point dkr 2 Vr through only intersection points in

Vr

T
E(D). Lr � Vr is the set of checked intersection points which are connected with

the initial point through only intersection points in Vr

T
E(D). Sr � Lr is the set of

intersection points which have been checked that one-dimensional boxes connected with

them are contained E(D) or not. Dr, Gr � Vr are the sets of checked intersection points

which are eÆcient and not eÆcient in (P), respectively. We use T as the union of one-

dimensional boxes in E(D) which have been checked before. Moreover, for x;y 2 R3, we

put [x;y] � f(1� �)x+ �y : � 2 [0; 1]g.

The Frame Generating Algorithm

Step 0. Set Si = ;, Gi = ;, Di = D
T
Vi, i = 1, 2, � � � , m3. For each i 2 f1, 2, � � � , m3g,

choose any dki 2 Di and set Li = fdkig. Set T = ; and r = 1.

Step 1. If Lr = Sr, then set r = r + 1. If r > m3, then stop. (T is the frame of E(D).)

Step 2. Choose any x0 = (d1
[k]
, d2

[`]
, d3

[r]
)T 2 Lr n Sr and set Sr = Sr

S
fx0g.

Step 3. Set W = ;.

(a) If k > 1, then set x�1 = (d1[k�1], d
2
[`], d

3
[r])

T and W = W
S
fx�1g.

(b) If k < m1, then set x1 = (d1[k+1], d
2
[`], d

3
[r])

T and W = W
S
fx1g.

(c) If ` > 1, then set x�2 = (d1
[k]
, d2

[`�1]
, d3

[r]
)T and W = W

S
fx�2g.

(d) If ` < m2, then set x2 = (d1
[k]
, d2

[`+1]
, d3

[r]
)T and W = W

S
fx2g.

Step 4. If W = ;, then go to Step 6, otherwise choose any x� 2 W and set W = W n

fx�g.

Step 5. If [x0, x�] � T , then go to Step 4.

(a) If x� 2 Dr, then set T = T
S

[x0, x� ], and if x� =2 Lr then Lr = Lr

S
fx�g,

and go to Step 4.

(b) If x� =2 Gr, then check that x� 2 E(D) or not by using its summary diagram. If

x� 2 E(D), then set T = T
S

[x0, x�], Dr = Dr

S
fx�g and Lr = Lr

S
fx�g,

otherwise set

Gr =

8>>><
>>>:

Gr

S
f(d1

[p]
; d

2
[`]
; d

3
[r]
)T : p = 1; 2; � � � ; k � 1g if � = �1;

Gr

S
f(d1[p]; d

2
[`]; d

3
[r])

T : p = k + 1; � � � ;m1g if � = 1;

Gr

S
f(d1[k]; d

2
[p]; d

3
[r])

T : p = 1; 2; � � � ; `� 1g if � = �2;

Gr

S
f(d1

[k]
; d

2
[p]
; d

3
[r]
)T : p = `+ 1; � � � ;m2g if � = 2:

Go to Step 4.

Step 6. If r < m3, then set x3 = (d1[k], d
2
[`], d

3
[r+1])

T , otherwise go to Step 1.

(a) If x3 2 Dr+1, then set T = T
S

[x0, x3] and go to Step 1.

(b) Check that x3 2 E(D) or not by using its summary diagram. If x3 2 E(D),

then set T = T
S

[x0, x3] and Dr+1 = Dr+1

S
fx3g, otherwise set Gp = Gp

S
f(d1

[k]
, d2

[`]
, d3

[p]
)T g, p = r + 1, � � � , m3. Go to Step 1.
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In Step 0, for each j 2 J , we can obtain d
j

[1]
, d

j

[2]
, � � � , d

j

[mj ]
by sortingm real numbers d

j
1,

d
j
2, � � � , d

j
m which requires O(m logm) computational time [1]. Then Vi, Di, i = 1, 2, � � � , m3

are determined. Thus, Di, i = 1, 2, � � � , m3 can be determined in O(m logm) computational

time. In rth iteration, the Frame Generating Algorithm checks that intersection points

adjacent to each intersection points in Lr � Vr are eÆcient in (P) or not by using their

summary diagrams. The number of iterations is O(m). The number of intersection points

in Lr is O(m2) and the number of intersection points adjacent to an intersection point,

which should be checked, is at most �ve. Checking that an intersection point is eÆcient in

(P) or not by using its summary diagram requires O(m) computational time. Therefore,

the Frame Generating Algorithm requires O(m4) computational time.

Finally, we consider an example problem for d1 = (3, 0, 4)T , d2 = (4, 2, 0)T , d3 = (2,

1, 3)T , d4 = (0, 4, 5)T and d5 = (1, 5, 2)T . Applying the Frame Generating Algorithm for

the multicriteria location problem (P), we have the frame of E(D) illustrated in Figure 4.

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�

�

�

�
�

�

�

�

�
�

�

�

�

�
�

�

�

�

�
�

�

�

�

�
�

�

�

�

�

�

�

�

�

�
�

�

�

�

�
�

H
H
H
H
H

H
H
H
H
H
H
H
H
HH

H
H
H
H
H
H
H
H
H
H
H
H
H
HH

H
H
H
H
H
H
H
H
HH

HH

H
H
H

H
H
H
HH

H
H

H
H
H

H
HH

y
d1

yd2

t

t

t

t

t

t

t

yd3

t

t

t

t

t

t

t

t

t

t

t

yd5

t

yd4

Figure 4. The frame of E(D). (� : intersection points in E(D))
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5. Conclusions. We dealt with multicriteria and minisum location problems with recti-

linear norm in R3. Our main interest was to �nd E(D). First, as corollaries of Theorem 2

and 3, we obtained characterizations of eÆcient solutions of (P) by using optimal solutions

of (P�). They guarantee that E(D) can be determined by the frame of E(D) and that

the frame of E(D) is connected. Next, we introduced the concept of the summary diagram

to check that an intersection point is eÆcient in (P) or not. We can check that an inter-

section point is eÆcient in (P) or not according to the pattern of its summary diagram.

Finally, based on these results, we proposed the Frame Generating Algorithm to �nd the

frame of E(D). The Frame Generating Algorithm generates the frame of E(D) by tracing

one-dimensional boxes in E(D).

References

[1] A. V. Aho, J. E. Hopcroft and J. D. Ullman, The design and analysis of computer algorithms,

Addison-Wesley, Reading MA (1974).

[2] L. G. Chalmet, R. L. Francis and A. Kolen, Finding eÆcient solutions for rectilinear distance

location problems eÆciently, Eur. J. Oper. Res., 6 (1981), 117-124.

[3] Z. Drezner and G. O. Wesolowsky, The asymmetric distance location problem, Trans. Sci., 23

(1989), 201-207.

[4] M. Fukushima, Introduction to mathematical programming(in Japanese), Asakura Syoten,

Japan (1996).

[5] J. -B. Hiriart-Urruty and C. Lemar�echal, Convex analysis and minimization algorithms I:

Fundamen- tals, Springer-Verlag, Berlin, 1993.

[6] M. Kon, EÆcient solutions for multicriteria location problems under the block norm, Mathe-

matica Japonica, 47 (1998), 295-303.

[7] M. Kon and S. Kushimoto, On eÆcient solutions of multicriteria location problems with the

block norm, Scientiae Mathematicae, 2 (1999), 245-254.

[8] T. J. Lowe, J. -F. Thisse, J. E. Ward and R. E. Wendell, On eÆcient solutions to multiple

objective mathematical programs, Manage. Sci., 30 (1984), 1346-1349.

[9] O. L. Mangasarian, Nonlinear programming, McGraw-Hill, New York, 1969.

[10] T. Matsutomi and H. Ishii, Fuzzy facility location problem with asymmetric rectilinear dis-

tance(in Japanese), Journal of Japan Society for Fuzzy Theory and Systems, 8 (1996), 57-64.

[11] B. Pelegrin and F. R. Fernandez, Determination of eÆcient points in multiple-objective location

prob-lems, Nav. Res. Logist. q., 35 (1988), 697-705.

[12] J. E. Ward and R. E. Wendell, Characterizing eÆcient points in location problems under one-

in�nity norm, in, J. -F. Thisse and H. G. Zoller, Eds., Locational analysis of public facilities,

North Holland, Amsterdam (1983), 413-429.

[13] R. E. Wendell, A. P. Hurter, Jr. and T. J. Lowe, EÆcient points in location problems, AIIE

Trans., 9 (1977), 238-246.

[14] P. L. Yu and M. Zeleny, The set of all nondominated solutions in linear cases and a multicri-

teria simplex method, J. Math. Anal. Appl., 49 (1975), 430-468.

Faculty of Science and Technology, Hirosaki University, 3 Bunkyo, Hi-

rosaki, Aomori, 036-8561, Japan

E-mail: masakon@cc.hirosaki-u.ac.jp


