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ABSTRACT. The purpose of this paper is to correct some results in Pareek [P] and
Kocinac [K] concerning certain generalizations of countably compact spaces and Lin-
delof spaces and also to present several additional results and pose a number of inter-
esting open questions on this topic.

1 Introduction and Definitions

A very interesting and useful characterization of countable compactness in Hausdorff spaces
is the following: A T5 space X is countably compact iff for every open cover G of X there
exists a finite subset F' of X such that

X =st(F,G) = {GegG:GnF #£0}.

The latter covering property has been called starcompactness by Fleischmann [F]. In [F]
Fleischmann proved that every countably compact space is starcompact, and that every
regular starcompact Hausdorff space is countably compact. He also mentioned the result of
R.S. Houston that in fact every Hausdorff starcompact space is countably compact. Another
weaker form of countable compactness is feeble compactness, which has been introduced by
Bagley, Connell and McKnight Jr [BCK] in 1958 under the name of light compactness. A
topological space X is feebly compact [PW2] iff every locally finite family of non-empty open
subsets of X is finite. One checks easily that the result in [PWs], p. 50, is also true without
the assumption of Hausdorffness so that a space X is feebly compact if and only if every
countable open cover of X has a finite subfamily whose union is dense, i.e., X is almost
countably compact. Thus Theorem 2.9 of [P] actually repeats in part this known fact. A
theorem of Mardesic and Mrowka says that pseudocompactness and feeble compactness are
equivalent in Tikhonov spaces. On the other hand, countable compactness and pseudocom-
pactness coincide in weakly normal T5 spaces. A space is called weakly normal if two disjoint
closed subsets, one of them being countable, have disjoint neighbourhoods (see [D]). Several
other generalizations of countably compact and Lindeldf spaces have been presented in the
literature, see e.g. [PW1], [P], [K] and the papers mentioned in the references of [P] and
[K]. Other interesting and related papers are [vDRRT] and [Sa].

The purpose of this paper is to correct some results in [P] and [K] concerning certain
generalizations of countably compact spaces and Lindelof spaces. We will also present
several additional results and pose a number of interesting open questions.

We will now recall the definitions of the concepts we need. A topological space X is
called n-starcompact (resp. w-starcompact) [P] if for every open cover G of X there exists a
finite subset F' of X (resp. there is a finite subset F' and n € wy) such that X = st"(F,G)
holds. Observe that X = st"(F,G) = st(st""(F,G),G) for each n > 1. X is called almost
starcompact (resp. almost n-starcompact) if for each open covering G of X there exists a
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finite subset F' C X such that X = st(F,G) (resp. X = st"(F,G)). Almost Lindeldf,
almost starlindeldf, starlindel6f, n-starlindeléf and w-starlindeldf spaces [P] are defined in
an analoguous way. As is well known, a T} space X is countably compact (resp. wi-
compact) if every countable infinite (resp. every uncountable) subset has a limit point. On
the other hand, a space X is said to be w;-Lindelof (resp. almost wy-Lindelof [P] if every
open cover of cardinality, at most N;, has a countable subcover (resp. has a countable
subfamily whose union is dense). Pseudo wi-compact (resp. pseudo wy-Lindeldf ) spaces
are those spaces in which locally finite (resp. locally countable) families of non-empty
open subsets are countable. A space X is called quasi-regular (see e.g. [EGW]) (resp. No-
collectionwise Hausdorff (briefly No-cwH)) iff every non-empty open set contains the closure
of an appropriate non-empty open set (resp. points of any countable closed-and-discrete
subset have pairwise disjoint neighbourhoods). We will denote the set of all finite (resp.
countably infinite) subsets of a subset A by [A]<“ (resp. [A]*). Also, the first and second
transfinite cardinals will be denoted by wg (or w) and wi, respectively.

No separation axioms are assumed in this paper. Moreover, regular spaces and com-
pletely regular spaces need not be Hausdorff.

Remark 1.1 We consider the Alexandroff deleted point topology on [0, 1] where the basic
open neighbourhoods of z = 0 are of the form G, = [0,¢) — {4,1,...} with 0 < e < 1 and
all other points have their usual (euclidean) neighbourhoods. This is a well known quasi-
regular Hausdorff space but it is not Ro-cwH since the points of the closed-and-discrete set

{0,1,%,...} evidently have no pairwise disjoint neighbourhoods.

Remark 1.2 Consider the compact Hausdorff space X = (w+1) x (w+1). If G,, = {(n,n)}
for each n € w, then {G,, : n € w} is a cellular family having no nondegenerate discrete open
refinement. This is so because every neighbourhood of (w,w) intersects infinitely many sets

Gr.

Remark 1.3 In both of the proofs of Theorem 2.2 in [P] and Theorem 1.5 in [K] it is un-
fortunately assumed that every Hausdorff space is Ng- collectionwise Hausdorff. Therefore,
these statements and their proofs should be regiven in a correct way. This will be done in
our Propotion 2.1. Also, as we observed in Remark 1.2, a cellular family, i.e., a pairwise
disjoint family of nonempty open sets, does not necessarily have a discrete open refinement
in regular Hausdorff spaces so we shall present a correct version of Theorem 2.5 in [K]. This
will be our Proposition 3.5. In addition, a revised form of Theorem 3.10 in [P] will be given
as our Proposition 3.5.

Remark 1.4 It is quite easy to observe by utilizing the starcompactness property of count-
ably compact spaces that every point-finite (even every point-countable) open cover of such
spaces has a finite subcover. Furthermore the well known Iseki&Kasahara Theorem says
that if every point-finite open cover of a regular Ty space X has a finite subcover then
X is countably compact. C.M. Pareek has falsely asserted on the other hand in Theorem
2.2 of this paper [P] that any T» space in which every point-finite open cover has a finite
subcover is countably compact. Z. Frolik has actually defined a counterexample in 1960 for
emphasizing the essentiality of the regularity condition in above theorem. The following
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which is given by Engelking is a slightly simplified version of Frolik’s example, see page 241
of [E]. Let A, = {(2k—1)27" : k=1,2,...,n} for each positive integer n and let

XOZ[Oal]_UAn , X:X()U{CUl,CCQ,IL':g,...},
n=1

where x,, ¢ [0,1] for each n. Let X be equipped with the usual subspace topology of [0, 1]
and let the basic nbhd’s of z,, in X be the sets of the form {z,} U (U N X,) whereas U is
an open sets of [0,1] containing A,,. This is a non-regular T» space which is not countably
compact since K = {z1, 23, ...} is an infinite closed-discrete set in X. Yet every point-finite
open cover of X has a finite subcover since by the well known Baire theorem it is certainly
impossible to define a point-finite open cover of X having infinitely many members; for the
details reader must consult [E], page 241 —242. One should easily notice in here by utilizing
the reasoning of the proof of this fact that X is actually not Np-collectionwise Hausdorff
and thus not regular since the points of K have not pairwise disjoint open nbhd’s in X (but
X is evidently quasi-regular); see the Proposition 2.1 coming next.

2 Results on certain generalizations of countably compact spaces

Proposition 2.1 Let X be an Ng-collectionwise Hausdorff space. Then the following are
equivalent :

(1) X is countably compact,

(2) Every point finite open over has a finite subcover,

(3) Every countable point finite open cover has a finite subcover.

Proof. (1) = (2): Let G be a point finite open cover of the countably compact space X.
By the well known theorem of Fleischmann [F] there exists a finite subset A C X such that
X = st(A,G). Since each point of A lies only in finitely many members of G it is clear that
G has a finite subcover.

(2) = (3): This is obvious.

(3) = (1): Suppose that X is not countably compact. By Theorem 3.10.3. in [E] there
exists a countably infinite closed-and-discrete subset of X, say A = {z, : n < w}. Since
X is No-cwH, there exists a cellular family {G,, : n < w} with z,, € G, for each n < w. If
G ={X —-A}U{G, : n < w} then G is a countable point finite open cover having evidently
no finite subcover, a contradiction.

Corollary 2.2 Since every reqular Hausdorff space is Ro-cwH, the three conditions in Propo-
sition 2.1 are equivalent in reqular Hausdorff spaces.

Recall that a space X is said to be countably S-closed [DEG] if every countable cover of
X by regular closed subsets has a finite subcover.

Proposition 2.3 A countably S-closed space is almost countably compact, and an almost
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countably compact space is almost 2-starcompact.

Proof. The first assertion is straightforward (see also [DEG]). Now suppose that G is
an open cover of an almost countably compact space X such that X # st?(A4,G) for each
A € [X]<¥. By induction there exists a sequence {x,} of points satisfying z,11 & st?>(4,,9)
where A, = {z1,z2,...,2,}. For each n € choose Gp4+1 € G with 2,41 € Gp41 and let
us define V11 = Gpy1 — st?(A,,G). In addition, choose Vi € G with z; € V;. Now let
r € X and take G € G such that z € G. If GNV,, is nonempty, we have G C st?>(4,,,G) and
so GNV,, is empty for each m > n. This shows that {V;, : n € } is a locally finite family
of nonempty open sets contradicting our assumption that X is almost countably compact.

Proposition 2.4 Every T, weakly normal almost countably compact space is almost star-
compact.

Proof. Let X be Tj, wealy normal and almost countably compact, and let G be an
open cover of X with X # st(4,G) for each A € [X]<“. As in the proof of the previous
result, by induction there exists a sequence {x, } of points satisfying z,4+1 & st(A,,G) where
A, ={z1,29,...,2,}. Foreach n € choose now G,41 € G with z, 11 € Gp41 and let
Vg1 = Guy1 — st(An, G). Moreover, define V; € G with z; € V;. Clearly, {V,, :n € }is
a cellular family. Since X is T, it is easily checked that the set A = {x,, : n € w}is closed
and discrete, and clearly contained in the union set, say W, of {V,, : m € }. Since X is
weakly normal, there exists an open set U such that A C U C U C W. Now it is easily
verified that the cellular family {V,, NU : n € } is a discrete family, hence locally finite,

thus contradicting our assumption that X is almost countably compact.

Pareek has proved that [P] every regular almost starcompact space is almost countably
compact. We have , on the other hand, the following results. In here one should remember
once again that neither metacompact nor X;-collectionwise normal (in particularly normal)
spaces in this paper are T7.

Proposition 2.5 A metacompact almost starcompact space is almost countably compact.

Proof. Let G = {G,}new be an open covering of the metacompact space X. Then we
have

Yl Gyl ) e 0

new k<n n k<n n k<n

Since G is an open covering, the families

e, )
k<n new k<n n€w
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are both locally finite. If infinite number of members of G; are non-empty then we may
suppose without losing the generality that all members of G; are non-empty and thus G;
would be a cellular family. We also have

G, - UGkﬂ<8Gm— U Gk> =0 (n<m)

k<n k<m

Since K is a locally finite closed covering, then, for each n € w there exists an open set U,
satisfying 0G,, — | G C U,, and furthermore the family & = {U, } e, is locally finite (see
[D], Theorem 1.5 of chpt VIII). Thus G; UU is a locally finite open (countable) covering of
X. Then for each x € X, we have an open nbhd W, of x such that

ord(Wy,, Gy UU) = card{G € G UU : W, NG # D}

is finite. Let now W be a precise point finite open refinement of {W, : z € X}. Then we

evidently have X # st(F,V) for any finite F' C X. Thus all but a finite number of members

of Gy are necessarily empty. Therefore there exists an ng € w such that G,, C |J Gy for
k<ng
each n > ng.

Proposition 2.6 A quasi-reqular almost starcompact space X is almost countably compact.

Proof. Let G = {Gp}new be an infinite open covering of X. If infinite number of
members of the cellular and locally finite family {G,, — |J G : n € w} are non-empty then
k<n
one can suppose without losing the generality that each of them is non-empty. Then define
non-empty open set W, for each n € w so that W,, C G = G,, — |J Gk. Since G, sets are
k<n

pairwise disjoint

Won JGUu(X = [ Wa) =0 (new).
k<n new

Then there is no finite subset F' C X satisfying X = st(F,G*) whereas G* is the locally
finite open covering G* = {G%}new U{X — U W, }. Therefore there exists an ng € w such

nEw

that G = 0 for each n > ng, i.e. X = |J G, holds.

n<ng

Corollary 2.7 (Pareek) A regular almost starcompact space is almost countably compact.

Now we want to proove in here the following related result which is a slight generalization of
a fact from [vDRRT, Theorem 2.1.8.]: Open discrete families in any regular w-starcompact
space are necessarily finite. We follow almost the same arguments.

Proposition 2.8 Open discrete families in a quasi-regular w-starcompact space are finite.
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Proof. Suppose G = {G,, : n € w} is an infinite discrete family of non-empty open sets in
a quasi-regular space X. Then quasi regularity of X yields for each n € w, the existence of
a monotonically non-increasing sequence of open sets U, ;, such that

@ ;é Un,O g Un,O g .. g Un,n—l g Un,n—l g Un,n g Un,n g Gn

Let us pick the point z,, € U, o and define the open sets

W=X-JUun,

n€w

Wn,k = Un7k+1 - Un,k—l (k’ = 1, 2, e, = 1)

and finally Wy o = Upn,1, Wpn = Gp — Up -1 for each n € w. It is easy to observe
that 1) z, € Wy if and only if k = 0, ii) Gn, = Up_g Wak, 1il) Wai N Wie = 0 if
n 7& m; ka N Wnﬂ' - Un,k+1 — Un,i—l - Un,k+1 — Un,k+1 =0ifk+2 < ¢ and therefore
Wi "W, i # 0 necessarily implies that |i — k| < 1. Furthermore we have X — Unew Gn C
X —UnewUnn = X = Unew Unjn = Woand thus W = (WU {Wyo @ n€w, k<n}
is an open cover for X after ii). Let us finally prove that X — st™(F,W) # @ holds for
any F' € [X]<“ and any fixed n € w. In fact since members of G are pairwise disjoint and
F finite we evidently have an N > n such that Gy N F = (. Besides st(zy, W) = Wh o
by i) and st™(zn, W) C Upe<,, Wn,e for m < N after iii). All these facts imply that
st"(zn,W) C Gy and F N st"(zy,W) = 0. Thus zy € X — st"(F,W) follows as re-
quired, i.e. any quasi-regular space having an infinite open-discrete family would be non
w-starcompact.

A similar result will be obtained in Proposition 3.2. Now we want to prove that every nor-
mal w-starcompact space is wg-compact. For establishing this we utilize a known lemma,
coming next. We give here, in this context, a direct and short proof of this lemma by slightly
modifying a method which can be found in classical texts (see [D], p.255 or [B], p.369). It
is well known that a space X is called N,,-collectionwise normal iff for every discrete family
{Kqs : a < wy} of closed sets in X there exists an open (discrete) family {Gq : @ < wy}
of open sets of X satisfying K, C G, for each o < w,. As is well known Ny-collectionwise
normal space are precisely normal spaces.

Lemma 2.9 Every point finite countable open covering of mormal space has a countable
open star-finite refinement.

Proof. Let U = {U, : n € } be a countable point finite open covering of a normal space
X. It is well known that there exists a precise closed shrinking-covering £ = {K, :n € }
of U. Define open sets G(k,n) (k,n € ) such that

Ki € G(k,n) C G(k,n) C G(k,n+1) C Uy, (ke ).

Let us now define

Wip=G(1,2) , Win=Gkn+1)- |J Gli,n-1) 2<n,k<n.
1<i<n—1
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Then W = {W},,,: 1<k <mn,n € 1} is the required open refinement of /. Since we have

U &ctncYw (1),
1<i<n
Wien NWim=0ifn+3<m (2)

The statement (1) can be proved easily by induction, since G(1,1) C G(1,2) = W1 1 and if
(1) holds for n €  then for any 1 < k < n + 1 we have following:

G(k,n+1) CG(k,n+2)= | G(k,n+2) — U G(@i,n) |[Ul G(k,n+2)N U G(i,n)

1<i<n 1<i<n

= Wit U | Ghn+2)n | Gl | cUw.

1<i<n

The second assertion holds easily, since n + 3 < m gives

Win CGk,n+1) CGk,n+2) CGk,m—-1)C |J G(i,m-1),

for any k& < n. Thus ord(W,,,W) < R for any n € ,k < n. Since K is covering, (1)
says that WV is an open covering; and the last observation says on the other hand that W
is star-finite.

Proposition 2.10 A normal w-starcompact space X is wg-compact.

Proof. Suppose there exists a countable infinite closed discrete set K = {z,, : n € w} in
a normal space X. Since X is Ng- collectionwise normal there exists a discrete open family
G = {Gn}new so that z, € G, for each n € w. Let W be an open star-finite (and thus
point finite) refinement of G U {X — K'}. Then we evidently have

X # st"(A,W) for any n € w and A € [X]<“.

Pareek has proved in [P] that starlindeldf collectionwise Hausdorff spaces are w;-compact,
i.e. in such spaces closed-discrete subsets are countable. We will prove on the other hand
that w-starlindeldf N;- collectionwise normal spaces are wi-compact. We need first the fol-
lowing result with a long proof which is based on a slightly modified technique of J.C.Smith,
see [Sm]. Actually this technique was used first by E.Micheal in his well known paper [M].

One should remember here before the following proof that i) a family A is discrete in a
topological space iff {4 : A € A} is so, ii) a closed subset K in a normal space is contained
in an open set G iff there exists a cozero set U such that K C U C U C G and iii) the union
set of a locally finite family of cozero sets in any space is again a cozero set.
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o0
Proposition 2.11 In any X;-collectionwise normal space X, an open covering G = |J Gn
n=1

satisfying the following conditions, has a locally finite open refinement:
i) Each Gp, = {Gna : @ < £n, < w1} is open (not necessarily covering) family,

ii) The countable open covering G* = {G%}52, where G:, =JGn = U Ghna, is point
a<kn

finite, i.e. 1 < ord(xz,G*) <wy for eachz € X,

iii) For each x € X there exists an n, €  such that 1 < ord(z,Gn,) < wo.

Proof. The hypothesis guarantees the existence of the positive integers k, and m, for
each z € X such that

ord(xz,G*) = k. and ord(z,Gn,) = m.
Let us introduce the sets
K(k,n,m)={x € X : ord(z,G%) < k,ord(z,G,) <m} ,

Gn(A) = {Gna: €A} | A€ [k

These are respectively closed and open sets evidently. It is easy to observe that X =
U, Uz, Uy K(k,n,m). We construct by induction a collection J,—, U(k,n,m) =
U(n, m) of cozero sets for each positive integer n and m satisfying the following conditions:

1)U(k,n,m) < G for each k,
2)JU(k,n,m) is a cozero set for each k,
3)X = Uz Unzy Uney (UU (R, m)).

We construct first the family ¢/(k, 1,1) for each positive integer k. Let
Ak, 1,1) = {A(k, 1,A,1) : A € [r]'}

where
Ak, 1,A,1) = K(1,k, 1) NGr(A) (VA € [ke]") .

Notice that if x € X — K(1,k,1) then it is easy to define an open nbhd of z disjoint with
all A(k,1,A,1) sets. If x € K(1,k,1) then z belongs exactly one member say Gro of Gi
and this member is disjoint with all A(k,1,A, 1) sets where A = {$} and 8 # a. Thus
the family A(k,1,1) is discrete in X and therefore there exists an open discrete family
Uk, 1,1) = {U(k,1,A,1) : A € [kg]'} for each k such that A(k,1,A,1) C U(k,1,A,1)
and 1) U(k,1,1) < G, 2") JU(k,1,1) is a cozero set for each k and 3') if ord(z,G*) =
1 and ord(z,Gr) = 1 for some k then z € |JU(k,1,1). Let us define now U(1,1) =
Upe, U(k,1,1). Suppose now that all the families ¢/(1,1),...,4(1,m) have been defined
so that if ord(z,G*) = 1 and ord(z,Gr) < i < m for some positive integer k then = €
Ui, (UU(1,4)) holds. Define now for each positive integer k

m

Ak, LA m+1) = | K1 km+1) — | JJuU(, )| nGr(d)

i=1
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for each A € [k;]™"!. Then A(k,1,m+1) = {A(k,1,A,m+1) : A€ [Iik]erl} is a discrete
family in X. In fact take any point z € X; if x € X — K(1,k,m + 1) U U (JuU(1,q)

then z evidently have an open nbhd disjoint with all members of this famlly, 1f x belongs
to the closed set written in bracket in above then z necessarily belong exactly m + 1
number of members of G, and their intersection set intersects at most one member of
A(k,1,m +1). Since X is Nj-cwn there exists an open discrete collection U (k,1,m + 1) =
{Uk,1,A,m+1) : A€ [re]™F!} for each k such that A(k, 1,A,m +1) CU(k,1,A,m+1)
and 1") Uk, 1,m + 1) < G, 2"") UU(k,1,m + 1) is a cozero set for each k and 3") if
ord(z,G*) =1, z ¢ Ui~ (UU(1,i)) and ord(z,Gr) < m + 1 for some positive integer k
then z € JU(k,1,m + 1). Let us define U(1,m + 1) = Upey U(k,1,m + 1). Thus all
U(1,n) families have been defined now by induction on n. At the next step we define the
open families U(n, 1),U(n,2),... for each n > 1 satisfying the conditions 1) and 2) in above
together with the fact if 1 < ord(z,G*) and 0 < ord(z,G) < wp for some positive integer k
then x belongs to some member of one of these families. For this purpose suppose now that
all #(i,m) families for each ¢ < n and for all positive m have already been defined such that
if ord(x,G*) < n —1and 0 < ord(z,Gr) < wp for some k then =z € {J,,, U, —, (UU(i,m))
holds. Define now

n

Alk,n, A1) = | K(n, k1) O Q (UL{(i,m))

for each A € [k¢]' and then let A(k,n,1) be the family of all these sets. This family is
discrete in X . In fact take any x € X. If we have

NGr(A)

n—1 oo

€ (X — K(n,k,1)) UU(Uuzm)

=1 m=1

then x have evidently an open nbhd disjoint with all members of A(k,n,1). Suppose
now that z does not belong this union. Then we necessarily have ord(z,G*) = n. If
z & UGk then 2 € (;_;(UGi;) where each index i; is different from & and this last
intersection set does not intersect any member of A(k,n,1). If finally z € |J G then we
have ord(z,Gr) = 1 since x € K(n,k,1) and so a suitable open nbhd of z intersecting
at most one member of A(k,n,1) can easily be defined. Define now the open-discrete
family U(k,n,1) = {U(k,n,A,1) : A € [Iik] } for each positive integer k such that
A(k,n,A, 1) C U(k,n,A,1) and 1) U(k,n,1) < G, 2"") JU(k,n,1) is a cozero set for

each k and 3"') if ord(z,G*) < n, x ¢ L_J U (UU(i,m)) and ord(z,Gr) = 1 for some

i=1 m=1

k then z € JU(k,n,1). Define now U(n,1) = Up—, U(k,n,1) and suppose that each
U(n,1),...,U(n,m) have already been defined such that if ord(z,G*) < n or

ord(z,G*) = n and ord(z,Gr) < m for some k then z belongs to some member of the
family U, ,,, U(n,7) UU,<, U _,U(i,m). Then one can prove similarly that the family
A(k,n,m + 1) of all the sets

K, km+1) — | | (Uu(n,j)) uy [j (UZ/I(i,m)) N Gr(A),

where A € [ki]™t! is discrete in X and the corresponding open-discrete family
U(k,n,m + 1) can be defined similarly. Thus U(n,m + 1) = Jy—, U(k,n,m + 1) is de-
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fined and the induction process is established. Since

U= U U U U(k,n,m)

k=1 n=1m=1

is an open refinement of G such that |JU(k,n,m) is a cozero set for each triple (k,n,m)
then, G has a locally finite open refinement by the following result.

Proposition 2.12 If U = J.7, Uy, is a o-locally finite open cover of any space X such
that |J U, is cozero set for each n then U has a locally finite open refinement.

Proof. By a well known result of K. Morita, every countable cozero-set cover of any
space has a locally finite open refinement (see Theorem 11.1 in [AS] for instance). Now
let YW be an open and locally finite open refinement of countable cozero-set cover {U,}52,
where U, = UU,. Define n(W) for each W € W as the minimal positive integer n
such that W C U, and write W,, = J{W € W : n(W) = n} for each n. Then
W*=Uo_ {W.NU : U € U,} is the required open refinement of /.

Proposition 2.13 An Xy -collectionwise normal w-starlindeldf space X is wi-compact.

Proof. Let K = {z, : @ < w; } be a closed-discrete subset of X. Let {G, : @ < w; } be an
open discrete family satisfying z, € G, for each a < wy. Express § = {Gq}acw, U{X — K}
as |J Gn asin the above proposition where G,NG,, =0 (n # m) and Go = {X —K}. Then

n=0
G has a sequence of normal refinements {U,}>>, by the above theorem, i.e. ) is a star
refinement of G and for each U € U,,41 there exists an U* € U, such that st(U,U,+1) C U*.
Then X is not w-starlindelof since it is not n-starlindeldf for any positive integer n, because
for any countable subset C' of X we have X # st™(C,U,), for

st™(C,Uy) = | J{st"(x,Un) : 2 € C}

is contained by the union set of a suitable subfamily of G. This proves the assertion.

Lemma 2.14 If there is an infinite locally finite (resp. uncountable locally countable) open
family U, then there is a locally finite (resp. locally countable) cellular family U* such that
Uu* CUU and [U*| = U].

Proof. We only prove the first statement. Let & = {U,}aea be a locally finite infinite
family of open sets. We may even suppose that A is well ordered. Let wy < k = |A|. Define
ap = minA and determine a finite Ag(C A) and a non-empty open subset Wy, C Uy, such
that

Wao N J{Uy v €A = Ao} =0
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Take now a fixed 1 < k and furthermore suppose that for each 3 < p, a finite subset Ag of
A — U A, and a non-empty open subset Wy, of U,, satisfying

v<B
Wao N JUa:ae A=A} =0
v<B
have already been defined. Since |[A— |J Ag| = x and since the family {U, : @« € A— |J Ag}
B<p B<p
is locally finite, there exist a finite subset A, of A — |J Ag and a non-empty open subset
B<p
Wa, € U,, where ay, =min (A - U Ag) such that
B<p
Wa, N JQUa:ae A= AU JAs| p=0
B<p

Notice that the locally finite family {W,,, : v < &} is also a cellular family. In fact whenever
~v # [ and say for instance v < 3 then we have

Wa, NWay, CWa, NUa, CWa, N JUa:aeA=[J A, p =0
n<y

since ag € A — UB Ay CA- L<J A, holds.
< nsy

Now a result which is similar to Proposition 2.6 comes
Proposition 2.15 A quasi-regular almost starlindeldf space is pseudo wi-compact.

Proof. Let U = {Us}a<w, be an uncountable locally finite family of open sets in a
quasi regular space X. Without losing the generality we may suppose by the above Lemma
that U/ is an uncountable celular family. Choose a non-empty open set W, for each a < w;
such that W, C U, and define W = {W, : a < w;}. We evidently have JW C JU
and |W| = wi. One easily observes that st(C, W*) is not dense for any C' € [X]=% where

W*=UU {X -U W} since for any countable subset A of wy, the closed set

KA = Ju.ux -Jw
aEA

does not intersect any member of the subfamily {W, : @ € w; — A} and so
st(K(A),W* )N U{WO‘ ta€w —A}=10

Thus X is not almost starlindelof.

Corollary 2.16 (Pareek) An almost starlindelof normal Ty space is pseudo wy-compact.
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3 Results on certain generalizations of Lindelof spaces

Now we obtain some results on certain generalizations of Lindel6f spaces which were
defined in the first section.

Proposition 3.1 Perfectly normal pseudo wi-Lindeldf spaces are almost starlindeldf.

Proof. If a perfectly normal, pseudo w;-Lindel6f space X is not almost starlindel6f then
there exists an open cover G and an uncountable closed-discrete subset A = {z, : @ € w1}
such that st(xzq,G) N A = {z,}. Furthermore each z, would have an open neighborhood
W, satisfying

W, C st(za,G) — st(Aa, ) (a < wy)

where A, = {z3 : 8 < a}. Notice that (| W) is non empty, since otherwise the cellular
family W = {Wy }a<w, would be uncountable and discrete. Now for any open subset U of
X satisfying

awycrcrcx

the family {W, — U : a < w;} is locally countable (even discrete) and cellular since X =
UUUWU (X — W) holds. Thus there exists an § = B(U) < w; for this open U such
that W, — U = 0 for each 8 < a < w;. Now write

o(UW)= (Y Un= [ Tn » Unt1 CUn=intUn(n < wo)

n<wo n<wo

Then we easily get

and thus W, = 0 for each a > By = supB, where each 3, = 8(U,,) is defined as before.
This contradictory result proves the assertion.

Proposition 3.2 Open discrete families in a quasi-reqular w-starlindeldf space are count-
able.

Proof. Suppose that there exists an uncountable discrete family G of open sets in a
quasi-regular space X. We may suppose without loosing the generality that G = {G}g<w, -
Let lim(wy ) be the set of all limit ordinals in [0,w;) and let us write A = lim(w;) U{0}. It is
well known that for each 3 < w; there exists a unique ordinal number o € A and a unique
n € wp such that 3 = a +n. We will write G+, instead of Gg whenever 8 = a 4+ n. Since
X is quasi-regular, there exists a monotonically non-increasing finite sequence of open sets
Uq+n,k such that

w # Uoc+n,0 g Uoc+n,0 g e g UaJrn,n g Uoc+n,n g GaJrn .
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Define first the point 24, € Ugtn,o for each o € A and n € wy. Let also now write

w=xX-J U Ussnn
aEA nEwp
Wasgnk = Usgnpt1 = Uagnip—1 (E=1,2,...,n—1),
Woz+n,n = Ga—‘,—n - Uoz—i—n,n—la WOH-n,O = Ua—‘,—n,l .

Then we have, just as in the proof of Proposition 2.8 Wa ., e "Watm,i # 0 for a # 8, a, B €
A and Wopn s NWain,; # 0 necessarily gives |k—i| < 1. Furthermore W = {W }U{Watn i :
a €A, n €wy, k< n}isan open cover for X since X = WU J{Gaqn:a €A, n €wp}
and Gatn = Up<,, Wastn,k. We furthermore have st™(zq,n, W) C Up<,, Watnk = Gatn-
For any countable subset C' of X and for any n € wy we evidently have a limit ordinal
a such that C N Gayn = 0 since members of G are pairwise disjoint. Thus we easily get,
Ta,n € X —st™(C, W) just like in the proof of Proposition 2.8. Thus the proposition follows.

Proposition 3.3 An Nj-collectionwise normal Ty space is w-starlindeldf iff it is almost
starlindeldf.

Proof. Every almost starlindel6f space is evidently w-starlindel6f. Since there exists an
uncountable open discrete family in any N;-collectionwise normal non almost starlindel6f
T, space as will be shown in Proposition 3.5, the necessity follows easily from the preceding
result.

Proposition 3.4 Almost Lindeléf spaces are pseudo wi- Lindelof and pseudo wi-Lindeldf
spaces are almost wi- Lindeldf.

Proof. Define the openset G(J) = X— |J G, foreach J € [A]=¥ where G = {G4}aen
aEAN—J
is any uncountable locally countable family of open sets in almost Lindeltf space X. One

can easily notice that G(.J) C G(J') whenever J C J'. Since {G(J) : J € [A]=“} is an open

covering, by the aid of countable number of .J,,” s, one can write X = G( |J J,) and thus
n<wo
we obtain

Go =10 VaeA— ] Jn)
n<wo
which establishes the first assertion. Now suppose secontly that, i = {U,}a<w, is an open

covering of the pseudo wi-Lindel6f space X. Since the family W = {W, =U, — |J Uz :
B<a
a < wy} is locally countable, all but a countable number of members of it are necessarily

empty. This proves the second assertion.

The following is a revised form of Theorem 3.10 of [P]:

Proposition 3.5 An Ny -collectionwise normal almost wy-Lindeldf Ty space is almost star-
lindeldf.
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Proof. Suppose that an open cover i of an almost w;-Lindel6f, Ry -collectionwise normal
T, space X satisfies X # st(C,U) for each countable subset C' of X. Then by transfinite
induction we can easily define the subsets A, = {zg : B < a} and points z, € X such
that zo € X — st(Aq,U) for each a < wy. Then the open sets UZ = st(zq,U) — st(Aq,U)
are pairwise disjoint since Uy N U3 C st(za,U) — st(Ag,U) whenever o < f and besides
Zo € UZ holds for a < wy. Furthermore the supposition z,,z3 € U € U for a < 3 easily
yields the contradiction zg € st(zq,U) — st(Ag,U) = 0. Thus A = {z, : @ < wi} is
closed-discrete and since X is an Nj-collectionwise normal, one can define an open discrete
family W = {W, : a < w} such that z, € W, C W, C U for each a < w;. Then the
open cover {X —UW}U{U? : a < w} of X would have no countable subcollection whose
union set is dense in X . Thus the statement is established.

Various strong chain conditions have been defined and examined in [EGW]. One of
these is CPRCC i.e. the closure preserving refinement chain condition. A topological
space X satisfies CPRCC (or briefly X is called as a CPRCC space) iff any cellular family
G ={Gs : a € A} (not necessarily covering) has a non-degenerate closure preserving open
refinement Y = {U, : « € A} in which non degenerate means U, # () whenever G, is
non-empty and U, C G, for each a € A. It is proved in [EGW] among several results that i)
there exists a Tikhonov CPRCC space which is not discrete, ii) there also exists a CPRCC T5
space X possessing a cellular family having no non-degenerate locally finite open refinement.
We give now a characterization of being almost w;-Lindel6f in quasi-regular CPRCC spaces:

Proposition 3.6 A quasi-reqular CPRCC space X is almost starlindeldf iff X is almost
w1 -Lindelof.

Proof. Tf an open covering U = {Uy}ta<w, of X have no countable subfamily with a
dense union set then we may suppose without loosing the generality that open set G, =
Us — U{Us : B < a} is non-empty for each & < wy. Then G = {G4}a<cw, would be a
cellular family and since X is quasi-regular CPRCC space there exists a non-degenerate
closure preserving open family W = {W, : «a < w;} such that W. C G, for each
a < w and thus J{Wa. : a<wi} = U{W. : a <w} CUG. Then the open cover
G* = GU{X —UW} would evidently be a point finite open covering satisfying

W ([ Gaux —{Jw) =0

aEA

for any countable A C w; and for any 8 > supA. Thus st(C,G*) is not dense for any
countable C C X and therefore necessity follows easily. Suppose now conversely that X
is an almost w;-Lindel6f quasi-regular CPRCC space and suppose additionally that there
exists an open cover Y of X such that X # st(C,U) for any countable subset C' of X. Then
as in above proof, there exists an open family V = {V,, : a < w;} such that

Vo CUL = st(xa,U) — st(An,U) (a <wi)

and furthermore U{Va : a € A} CU{U; : a € A} for each subset A of wi. Thus the
open cover {X —JV}U{U? : a <w;} would have no countable subcollection whose union
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set is dense in X. Thus sufficiency follows.

We close this section with the following characterizations:

Proposition 3.7 1) A space is compact iff it is metacompact and starcompact iff it is strongly
paracompact and w-starcompact. ii) A space is Lindelof iff it is strongly paralindeléf and w-
starlindeldf.

Proof. i)The first assertion is actually known (see Thm 2.4.5. of [vDRRT]). We give here
another proof. Let G be any open covering of the metacompact and starcompact space
X. Then a pointwise Worell refinement ¢ of G exists (see [B], Thm 3.5.) i.e., for each
x € X a finite subfamily G, of G exists for which st(x,) C |JG. holds. By the starcom-
pactness a finite subset A of X satisfiying X = st(A,U) = U (JG.) exists, meaning that
T€EA
G*={G : 3z € A,G € G,} is the required finite subcovering of G. The second charac-
terization is an easy consequence of the definitions since any open covering G of a strongly
paracompact space may be taken as satisfying the condition ord(G,G) < X¢ for any G € G.
ii) Left to the reader.

4 Some related questions

We finally close the paper by posing some non straightforward related questions.

Question 4.1: Does there exist a non countably compact Hausdorff space satisfying “ev-
ery point finite countable open covering has a finite subcovering” condition and having an
infinite point-finite open cover?

Question 4.2: Does there exist a regular almost countably compact Hausdorff space which
is not almost starcompact?

Question 4.3: Does there exist a non quasi-regular, almost starcompact Hausdorff space
which is not almost countably compact?

Question 4.4: Almost starlindeldf is equivalent to almost w;-Lindeldf in collectionwise nor-
mal Hausdorff spaces. What about if “collectionwise” removed?

The authors would like to thank to referee for his valuable criticism.
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