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Abstract. A full-information best choice problem is considered. A sequence of N iid

random variables (rv's) with a known continuous distribution function (df ) is observed.

The number of observations N is a positive rv independent of observations. The objec-

tive is to maximize the probability of selecting the best (largest) observation when one

choice can be made. At each stage a solicitation of the present observation as well as of

any previous ones is allowed. If the (k� t)th observation with the value x is solicited at

the kth stage, the probability of successful solicitation may depend on t and x. General

properties of optimal strategies are shown and some natural cases are examined in detail.

Optimal strategies and their probability of success (selecting the best) are derived.

1. Introduction

The following full-information best choice problem was studied by Gilbert and Mosteller

[5]. A known number, N , of iid rv's X1; X2; : : : ; XN from a known continuous df F are

observed sequentially. After Xn is observed it must be either accepted (then the observation

process is terminated) or rejected (then the observation is continued) considering the pos-

sibility of obtaining a better o�er against the risk of losing the current o�er. The objective

is to maximize the probability of selecting the largest observation assuming that one choice

can be made and neither recall nor uncertainty of selection is allowed.

For a �nite number of observations the so-called monotone case was obtained. The

optimal strategy is to accept (if possible) the �rst Xn which is largest one so far and

exceeds xn, where the sequence of optimal decision levels (xn) is non-increasing.

The full-information best choice problem when the number of observations N is random

was considered by Porosi�nski [10]. In this model the observer incurs an additional risk.

Since N is unknown, if he rejects any observation, in case it was the last one he receives

nothing. A class of df 's of N for which the monotone case occurs was characterized and

the solution for this case was given.

Petruccelli [8] studied problems with recall of observations and uncertainty of selection

depending on the observation when N is �xed. Optimal strategies and their probabilities of

success in some important cases were derived. Similar problems were considered by Tamaki

[17] and Ano [2].

The results of this paper extend those obtained by Petruccelli [8]. The full-information

best choice problem with a random number of observations is discussed. In Section 2 we
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state assumptions and provide basic formulae being useful in �nding an optimal strategy.

Section 3 presents several special cases in detail.

2. Model formulation

Let X1; X2; X3; : : : be iid rv's with a continuous df F , de�ned on the probability space

(
;F ; P ). Since F is known and continuous, without loss of generality it can be additionally

assumed that Xn has the uniform df on the interval [0; 1]; n = 1; 2; : : :.

Let Lk = maxfX1; : : : ; Xkg and call Xi a candidate if Lk = Xi, 1 � i � k.

For each k, the state of the process after having observedXk is denoted by (x; k; t), t < k,

if Xk�t = Lk = x and if the (k � t)th observation has not yet been solicited (i.e. t is the

relative position of the candidate). The state (x; k;1) describes the situation when Lk = x

and the largest among the �rst k observations has been unsuccessfully solicited.

Let �(x; t) denote the probability of successful solicitation in the state (x; k; t). It seems

reasonable to assume that �(u;1) = 0, 0 � u � 1 (i.e. only one solicitation is allowed for

each observation) and �(u; t) is non-increasing in u for �xed t and in t for �xed u. The

intuitive reasoning for the last assumption is that the probability of accepting an o�er of

employment by an applicant decreases as time between the interview and o�er increases

and that the more competitive is the applicant the lower are chances of his acceptance an

o�er.

The number of observations N is assumed to be a positive rv with a known df given by

P (N = n) = pn, n = 0; 1; : : :.

In the state (x; k; t) the observer has two options: he may solicit the current best obser-

vation or to wait for (k + 1)th one. We will denote the probability of selecting the largest

(winning) by Æb(x; k; t) if the observer solicits the candidate (and continues in an optimal

manner if the candidate rejects an o�er) and by Æf (x; k; t) if the observer does not choose

the current best and waiting for the next observation (assuming optimal behaviour for the

future). If (x; k; t) was the last o�er the observer is forced to solicit it in state (x; k+1; t+1).

In (x; k; t), an optimal strategy solicits the candidate i� Æb(x; k; t) exceeds Æf (x; k; t).

Let Æ(x; k; t) = maxfÆb(x; k; t); Æf (x; k; t)g and let Æ(x; k;1) stand for the probability of

winning in state (x; k;1) when the observer has to wait for the next candidate.

The following recursive formulae are easily derived:

Æf (x; k; t) =
�k+1

�k

�Z 1

x

Æ(y; k + 1; 0) dy + x Æ(x; k + 1; t+ 1)

�
(1)

+
pk

�k
�(x; t + 1);

Æb(x; k; t) = �(x; t)

1X
n=k

pn

�k
xn�k + (1� �(x; t)) Æ(x; k;1);(2)

Æ(x; k;1) =
�k+1

�k

�Z 1

x

Æ(y; k + 1; 0) dy + x Æ(x; k + 1;1)

�
;(3)

where �k = P (N � k) =
P

1

n=k pn. They imply

�kÆf (x; k; t) = �kÆ(x; k;1) + x�k+1(Æ(x; k + 1; t+ 1)� Æ(x; k + 1;1))(4)

+ pk �(x; t+ 1);

�kÆ(x; k;1) =

1X
j=0

xj
Z 1

x

�j+k+1Æ(y; j + k + 1; 0)dy;(5)

�kÆb(x; k; t) = x�k+1Æb(x; k + 1; t) + �(x; t) pk(6)

+ (1� �(x; t))

Z 1

x

�k+1Æ(y; k + 1; 0)dy;
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and

�k(Æf (x; k; t)� Æb(x; k; t)) = x�k+1(Æ(x; k + 1; t+ 1)� Æb(x; k + 1; t))(7)

+ �(x; t)

Z 1

x

�k+1Æ(y; k + 1; 0)dy

+ pk(�(x; t + 1)� �(x; t)):

3. Special cases

3.1. Case 1. �(x; t) = �(x).

In this case the probability of a successful solicitation is independent of time t and, intu-

itively, an optimal strategy should induce the observer to observe the next observation since

nothing is lost in doing so.

Theorem 1. For the Case 3.1:

An optimal strategy is to wait until no observation remain and to solicit the best candidate.

The probability of success P (win) using the optimal strategy is

(8) P (win) =

Z 1

0

1X
n=1

pn �(x)nx
n�1dx:

Proof. From (2)

(9) �kÆb(x; k; t) = (1� �(x))�k Æ(x; k;1) + �(x)

1X
j=0

pj+k x
j

and Æb(x; k; t) is independent of t. Thus putting Æb(x; k + 1; t+ 1) instead of Æb(x; k + 1; t)

in the right-hand side of (7), we have that Æf (x; k; t) � Æb(x; k; t) for every k; t.

This and (4) give

�kÆf (x; k; t)� x�k+1Æ(x; k + 1; t+ 1)

= �kÆf (x; k; t) � x�k+1Æf (x; k + 1; t+ 1)

= �kÆ(x; k;1)� x�k+1Æ(x; k + 1;1) + pk �(x)

and, as a consequence,

(10) �kÆf (x; k; t) = �kÆ(x; k;1) + �(x)

1X
i=0

pk+ix
i:

So, Æf (x; k; t) also does not depend on t and satis�es the equation

�kÆ
0

f (x; k; t)� x�k+1Æ
0

f (x; k + 1; t) = pk �
0(x)

(if derivative �0(x) with respect to x exists) which gives

�kÆ
0

f (x; k; t) = �0(x)

1X
i=0

pi+k x
i:

Integrating it by parts, taking into account the initial condition Æf (1; k; t) = �(1), we obtain

(11) �kÆf (x; k; t) = �(x)

1X
i=0

pi+k x
i +

Z 1

x

�(y)

1X
i=1

i pi+k y
i�1dy:
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From (11), (10) and (9) we have the following formulae

�kÆ(x; k;1) =

Z 1

x

�(y)

1X
i=1

i pi+k y
i�1dy;(12)

�kÆb(x; k; t) = �(x)

1X
i=0

pi+k x
i + (1� �(x))

Z 1

x

�(y)

1X
i=1

i pi+k y
i�1dy:(13)

It is easy to check that in this case the probability of success P (win) is given by (8). �

In a special case when N has the geometric distribution with a parameter p (i.e. P (N =

n) = p qn, p; q > 0; p+ q = 1), we have

Æ(x; k;1) =

Z 1

x

�(y) pq=(1� qy)2dy;

Æb(x; k; t) = �(x) p=(1� qx) + (1� �(x)) Æ(x; k;1);

Æf (x; k; t) = �(x) p=(1� qx) + Æ(x; k;1);

(all the functions are independent of k and t) and

P (win) =

Z 1

0

�(y) pq=(1� qy)2dy:

3.2. Case 2. �(x; 0) = �(x); �(x; t) = �(x); t � 1; �(x) � �(x); x 2 [0; 1].

In Case 2, from (2), Æb(x; k; t) has the same value for all t � 1. Thus, putting Æb(x; k+1; t+1)

instead of Æb(x; k + 1; t) in (7), we have

(14) Æf (x; k; t) � Æb(x; k; t)

or, equivalently, Æ(x; k; t) = Æf (x; k; t) for t = 1; : : : ; k. This implies

Æb(x; k; 0) = �(x)

1X
n=k

pn

�k
xn�k + (1� �(x)) Æ(x; k;1);(15)

Æf (x; k; 0) = �(x)

1X
n=k

pn

�k
xn�k + Æ(x; k;1);(16)

and Æf (x; k; 0) � Æb(x; k; 0) i�

(17) �k Æ(x; k;1) �

�
1�

�(x)

�(x)

�
1X
n=k

pn x
n�k:

Suppose �(x)=�(x) is non-increasing in x. Then the right-hand side of (17) is non-decreasing

in x and is positive for x = 1. The left-hand side of this formula takes the value 0 in x = 1.

It is decreasing in x because

d

dx
(�k Æ(x; k;1)) =

d

dx

0
@ 1X

j=0

xj
Z 1

x

�j+k+1 Æ(y; j + k + 1; 0) dy

1
A

=

1X
j=0

xj �j+k+1(Æ(x; j + k + 1;1)� Æ(x; j + k + 1; 0))

and from (16)

Æ(x; k;1) � Æ(x; k; 0) � Æ(x; k;1)� Æf (x; k; 0) = ��(x)

1X
n=k

pn

�k
xn�k � 0
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for every k. Thus there is a dk such that (17) holds i� x � dk.

The problem is to �nd values of decision levels dk, k = 1; 2; : : :, and to show the mono-

tonicity of (dk) (in order to get the monotone case). It is hard in a general case (cf.

Petruccelli [8] for �xed N) but relatively easy for an important case of geometric N .

Let the number of observations have the geometric distribution with a parameter p, i.e.

pn = p qn; p; q > 0; p+ q = 1.

Theorem 2. In Case 3.2 for N being geometric with the parameter p:

If �(x)=�(x) is non-increasing in x then there exists an optimal level d, independent of t,

such that an optimal procedure is to solicit the �rst candidate Xk which exceeds the level d. If

this solicitation is unsuccesful then each candidate that appears is solicited until solicitation

is successful or until no observation remain.

The optimal level d is the largest x 2 (0; 1] satisfying the inequality

exp

�
�

Z 1

x

q

1� qs
�(s) ds

�Z 1

x

pq �(t)

(1� qt)2
exp

�
�

Z 1

t

q

1� qs
�(s) ds

�
dt(18)

�
p

1� qx

�
1�

�(x)

�(x)

�

if the inequality (18) has a solution in (0; 1] and d = 0 otherwise.

Proof. Memoryless property of a geometric distribution let us suppose that

(19) Æb(x; k; t); Æf (x; k; t); Æ(x; k;1) do not depend on k

and k will be omitted. The inequality (17) giving an optimal level dk now can be rewrite as

(20) Æ(x;1) �
p

1� qx

�
1�

�(x)

�(x)

�
:

This implies that the optimal level dk = d is constant and

Æ(x;1) =
q

1� qx

Z 1

x

Æ(y; 0)dy;(21)

Æf (x; t) = q

�Z 1

x

Æ(y; 0)dy + x Æ(x; t+ 1)

�
+ p�(x; t+ 1)(22)

= (1� qx) Æ(x;1) + qx Æ(x; t + 1) + p �(x);

Æb(x; t) = �(x; t)
p

1� qx
+ (1� �(x; t)) Æ(x;1)(23)

=

�
Æ(x;1) + �(x) (p=(1� qx)� Æ(x;1)) for t = 0;

Æ(x;1) + �(x) (p=(1� qx)� Æ(x;1)) for t > 0:

From (22) for t � 0 and (14) it follows that

Æf (x; t) � qxÆf (x; t+ 1) = (1� qx)Æ(x;1) + p �(x)

which gives

(24) Æf (x; t) = Æ(x;1) + �(x)
p

1� qx
:

Therefore Æf (x; t) does not depend on t and only Æ(x;1) should be found.

Taking into account (14) and (20) and an assumption on �(x; t) for this case the form of

Æ(x;1) can be calculated in two steps.
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Let x > d. Then

Æ(x;1) =
q

1� qx

Z 1

x

Æb(y; 0)dy;

and using (23) for t = 0 we obtain a derivative

Æ0(x;1) =
q2

(1� qx)2

Z 1

x

Æb(y; 0)dy �
q

1� qx
Æb(x; 0)

=
q

1� qx
�(x) Æ(x;1) �

pq �(x)

(1� qx)2
:

This linear di�erential equation with an initial condition Æ(1;1) = 0 has a solution of the

form

Æ(x;1) = exp

�
�

Z 1

x

q

1� qs
�(s) ds

�Z 1

x

pq �(t)

(1� qt)2
exp

�
�

Z 1

t

q

1� qs
�(s) ds

�
dt:

Consider now x � d. Then

Æ(x;1) =
q

1� qx

 Z d

x

Æf (y; 0)dy +

Z 1

d

Æb(y; 0)dy

!
;

and using (24) we obtain a derivative

Æ0(x;1) = �
pq �(x)

(1� qx)2
:

For an initial condition Æ(d;1) = Æ(d+;1) a solution has the form

Æ(x;1) = Æ(d+;1)�

Z d

x

pq �(t)

(1� qt)2
dt:

It is easy to check that obtained Æ(x;1), Æf (x; t), Æb(x; t) ful�l (1) { (3) which con�rmes

the supposition (19). �

If �(x) is assumed to be constant �(x) = � then a solution has an especially nice form.

Since for x � d

Æ(x;1) =

8>><
>>:

�

1� �

��
p

1� qx

��
�

p

1� qx

�
for � < 1;

�
p

1� qx
ln

�
p

1� qx

�
for � = 1;

the optimal level d is the largest x 2 (0; 1] for which the inequality

�

1� �

 �
p

1� qx

���1
� 1

!
� 1�

�(x)

�

for � < 1 or

� ln

�
p

1� qx

�
� 1� �(x)

for � = 1 is satis�ed, if this inequality has a solution in (0; 1], and d = 0 otherwise.

The probability P (win) of choosing the largest observation using the optimal strategy

can be calculated in the following way.

Consider the case of constant �. Let �(n; k; x) be the number ofXk+1; : : : ; Xn, givenN = n,

which exceed x. �(n; k; x) has a binomial distribution with parameters n � k and 1 � x.

Let g(n; �; x) for � � 1 be the probability, given N = n, � and Xk = Lk = x, of choosing
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the largest observation using the strategy of immediately soliciting each candidate among

Xk+1; : : : ; Xn that appears. Petruccelli [8] has shown that

g(n; �; x) = �

�Y
j=2

�
1�

�

j

�
:

Let � denote the optimal strategy with a constant level d. That is � = k i� the optimal

strategy chooses Xk. Since

P (win jN = n; � = k) = P ((fXk = Lng \ fLk�1 � d < Xkg)

= dk�1
Z 1

d

�xn�kdx

+ dk�1
n�kX
�=1

�
n� k

�

�Z 1

d

(1� �)(1� x)�xn�k�� g(n; �; x) dx;

P (win) =

1X
n=1

p qn
nX

k=1

P (win jN = n; � = k) =

1X
k=1

1X
n=k

p qn P (win jN = n; � = k)

=

1X
k=1

1X
m=0

p qk dk�1
�
�

Z 1

d

(qx)mdx

+

mX
�=1

qm
�
m

�

�
(1� �)

Z 1

d

(1� x)�xm�vdx �

�Y
j=2

�
1�

�

j

�9=
;

=
�p q

1� qd

1X
�=1

�Y
j=1

�
1�

�

j

�
1X
s=0

�
� + s

�

�Z 1

d

(1� x)�q�(qx)s dx

�
�p

1� qd
ln

p

1� qd

= �
p

1� qd

8<
:q

1X
�=1

Z 1

d

(q � qx)�

(1� qx)�+1
dx

�Y
j=1

�
1�

�

j

�
� ln

�
p

1� qd

�9=
; :

If d 2 (0; 1], the probability P (win) attains its local maximum at optimal d (the derivative

of P (win) with respect to p is 0 at d) which gives

(25) P (win) = �
p

1� qd

0
@1 + 1X

�=1

�
q � qd

1� qd

�� �Y
j=1

�
1�

�

j

�1A :

3.3. Case 3. �(x; t) = �(x) (�(x))t ; t � 0; 0 < �(x); �(x) � 1.

In order to get an evident form of an optimal solution consider the problem with a number of

observations N having the geometric distribution with a parameter p, i.e. pn = p qn; p; q >

0; p+ q = 1.

Theorem 3. In Case 3.3 for geometric N :

There exists an optimal level d, independent of t, being the largest x 2 (0; 1] satisfying the
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inequality

exp

�
�

Z 1

x

q

1� qs
�(s) ds

�Z 1

x

pq �(t)

(1� qt)2
exp

�
�

Z 1

t

q

1� qs
�(s) ds

�
dt(26)

�
p

1� qx
�

p �(x)

1� qx �(x)

if this inequality has a solution in (0; 1] and d = 0 otherwise.

An optimal procedure is to solicit the �rst candidate Xk which exceeds the level d. If this

solicitation is unsuccesful then each candidate that appears is solicited until solicitation is

obtained or until no observation remain.

Proof. Geometric df for N let us assume, as in Case 3.2, that

(27) Æb(x; k; t); Æf (x; k; t); Æ(x; k;1) do not depend on k

and k will be omitted. This implies that (1) { (3) are equivalent to

Æ(x;1) =
q

1� qx

Z 1

x

Æ(y; 0)dy;(28)

Æb(x; t) = Æ(x;1) + �(x) (�(x))t
�

p

1� qx
� Æ(x;1)

�
;(29)

Æf (x; t) = (1� qx) Æ(x;1) + qx Æ(x; t+ 1) + p�(x) (�(x))t+1 :(30)

Now we will show that

(31) Æb(x; t+ 1) � Æf (x; t+ 1) =) Æb(x; t) � Æf (x; t)

for every t � 0.

Taking into account reccurence relations

Æb(x; t+ 1)� Æ(x;1) = �(x) (Æb(x; t)� Æ(x;1));

Æf (x; t) � Æ(x;1) = qx (Æ(x; t + 1)� Æ(x;1)) + �(x) (�(x))t+1 ;

and an assumption in (31) the proposition can be proved as follows

�(x) (Æb(x; t) � Æf (x; t))

= �(x) ((Æb(x; t) � Æ(x;1))� (Æf (x; t)� Æ(x;1)))

= (Æb(x; t+ 1)� Æ(x;1)) � qx � ((Æ(x; t+ 1)� Æ(x;1))� p�(x) (�(x))t+2

= Æb(x; t+ 1)� Æ(x;1)� qx ((Æb(x; t+ 2)� Æ(x;1)) � p�(x) (�(x))t+2

� Æb(x; t+ 1)� Æ(x;1)�
�
qx ((Æ(x; t + 2)� Æ(x;1)) + p�(x) (�(x))t+2

�
= Æb(x; t+ 1)� Æ(x;1)� (Æf (x; t+ 1)� Æ(x;1))

= Æb(x; t+ 1)� Æf (x; t+ 1) � 0:

So, for every t, if (Æb(x; t) � Æf (x; t)) then (Æb(x; 0) � Æf (x; 0)) and the observer should

solicit a current candidate at the state (x; k; 0) only.

Now we will �nd a set of x such that Æf (x; 0) > Æb(x; 0). Proposition (31) gives (30) for

such x as

(32) Æf (x; t) = (1� qx) Æ(x;1) + qx Æf (x; t+ 1) + p�(x) (�(x))t+1

and, as a consequence, a formula

Æf (x; t) = Æ(x;1) + (�(x))t
p�(x)�(x)

1� qx �(x)
:
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This and (29) for t = 0 implies that Æf (x; 0) � Æb(x; 0) i�

(33) Æ(x;1) �
p

1� qx
�

p �(x)

1� qx �(x)
:

The function Æ(x;1) is decreasing in x and Æ(1;1) = 0 (cf. Case 3.2). Let R(x) state for

the right-hand side of (33) as a function of x. Since R(1) = (1��(1))=(1� q �(1)) � 0 and

the derivative R0(x) = p
�
q (1� �(x))2 � �0(x) (1� qx)2

�
=(1� qx �(x))2 is non-negative if

�(x) is assumed to be a non-increasing function, there is a d such that the condition (33)

holds i� x � d, where the optimal level d is independent of t (and k).

Now we are to �nd the decision level d.

Let x > d. Then Æb(x; 0) > Æf (x; 0),

Æ(x;1) =
q

1� qx

Z 1

x

Æb(y; 0)dy;

and using (29) for t = 0 we obtain a derivative

Æ0(x;1) =
q

1� qx
�(x) Æ(x;1) �

pq �(x)

(1� qx)2
:

This linear di�erential equation with an initial condition Æ(1;1) = 0 has a solution of the

form

Æ(x;1) = exp

�
�

Z 1

x

q

1� qs
�(s) ds

�Z 1

x

pq �(t)

(1� qt)2
exp

�
�

Z 1

t

q

1� qs
�(s) ds

�
dt:

This gives (26).

Consider now x � d. Then Æb(x; 0) > Æf (x; 0) for x > d, Æb(x; t) � Æf (x; t) for x � d and

Æ(x;1) =
q

1� qx

 Z d

x

Æf (y; 0)dy +

Z 1

d

Æb(y; 0)dy

!
;

and using (32) we obtain a derivative

Æ0(x;1) = �
pq �(x)�(x)

(1� qx)(1� qx �(x)
:

For an initial condition Æ(d;1) = Æ(d+;1) a solution has the form

Æ(x;1) = Æ(d+;1)�

Z d

x

pq �(t)�(t)

(1� qt)(1� qt �(t)
dt:

It is easy to check that obtained Æ(x;1), Æf (x; t), Æb(x; t) ful�l (1) { (3) which con�rmes

the supposition (27). �

If �(x) is assumed to be constant �(x) = � then the solution has an especially nice form.

Since for x � d

Æ(x;1) =

8>><
>>:

�

1� �

��
p

1� qx

��
�

p

1� qx

�
for � < 1;

�
p

1� qx
ln

�
p

1� qx

�
for � = 1;

where the optimal level d is the largest x in (0; 1] satisfying the inequality

�

1� �

 �
p

1� qx

���1
� 1

!
�

1� �(x)

1� qx �(x)
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for � < 1 or

� ln

�
p

1� qx

�
�

1� �(x)

1� qx �(x)

for � = 1 if this inequality has a solution in (0; 1], and d = 0 otherwise.

The probability P (win) of choosing the largest observation using the optimal strategy

with the level d for constant � can be calculated in the same way as in Case 3.2 and has

the value given by (25) if d > 0.

4. Remarks

1. The condition that �(x)=�(x) is non-increasing in Theorem 2 seems to be natural.

Petruccelli [8] writes: "the relative loss in the probability of succesful solicitation by not

soliciting immediately is greater the larger the observation is. Thus, for example, the better

applicant for the job, the less is the relative probability of his acceptance of an o�er later

compared to his probability of accepting an immediate o�er. This is reasonable if one

believes that better applicants are chosen faster by the market than lesser applicants".

2. For Cases 3.2 and 3.3 when N is geometric the optimal strategy occurs to be of barrier

type. It is, of course, also optimal in class of single level strategies. This is a natural class

in full-information best choice problems with imperfect observations. It means that exact

values of observations are not known { the observer is informed only whether a current

observation exceeds or not a decision level he speci�ed. Such problems were considered by

Enns [4], Sakaguchi [13], Porosi�nski [12].

3. As far as the author knows, the full{information best choice problems with discrete

time have been solved (besides problems mentioned in Introduction) only for choosing the

largest with two choices allowed when N is �xed (Tamaki [16]) and for choosing one of two

bests for geometric number of observations (Porosi�nski and Szajowski [11]).

4. Problems with backward solicitation and uncertain selection were �rst posed for no-

information best choice problem (secretary problem). See for instance papers by Yang [18],

Smith [14], Karni and Schwartz [6], Petruccelli [7] and [9], Szajowski [15], Ano [1] and Ano,

Tamaki and Hu [3] and the references given there.
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