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ON MS{SEQUENCES
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Abstract. Various properties of ordered topological vector spaces related to the so-called

ms-sequences are investigated. Main results present characterizations of ordered topological

vector spaces such that ms-sequences converge to zero.

We shall consider ordered topological vector spaces (OTVS) E = (E; �) in the sense of [6],

i.e., a vector ordering 6 in a real vector space E is introduced by a non-empty set C � E

satisfying the following two properties: C+ C � C and �C � C for every � 2 [0;1). The set

C is called a cone (or a wedge | see [4]). The vector ordering 6 in E is generated by C as

follows: x 6 y i� y � x 2 C. The vector ordering 6 is re
exive, transitive and compatible

with the algebraic structure of E. Moreover C = fx 2 E : 0 6 xg, i.e., C is the set of

positive elements. A cone C is said to be: proper when C \ (�C) = f0g and generating if

E = C�C. The vector ordering 6 is antisymmetric i� C is proper and E is directed upwards

i� C is generating. In general, the vector ordering and the linear topology � need not have

any connection.

We shall write A # 0 (xn # 0) whenever the set A � E (the sequence (xn) � E) is

directed downwards (decreasing), 0 6 a for every a 2 A (0 6 xn for every n) and y 6 0 for

an arbitrary lower bound y of A (of fxn : n 2 Ng). Every set A � E directed downwards

forms a net, and so the notion A
�

�! 0 is clear.

The topological dual of E (= the space of linear � -continuous functionals) will be denoted

by E�. The phrases `complete', `sequentially complete' will always have their topological

meaning. The terminology concerning OTVS, ordered vector spaces (OVS) and locally solid

Riesz spaces (TRS) not explained in the text is essentially that of [6], [4], and [1].

We shall investigate majorized sums sequences (xn) � E, i.e.,

0 6 xn and x1 + � � �+ xn 6 x for some x 2 E and all n

(this notion was introduced by G.J.O. Jameson). Majorized sums sequences will be shortly

called ms-sequences. We shall concentrate on consequences of the assumption

(�) every ms-sequence in E � -converges to zero.

Below we give some examples of OTVS enjoying the property (�).

Examples. Let (E; �) be a Hausdor� locally convex and locally order-convex OTVS. Ac-

cording to [6] (5.12) Corollary (see also [4] 3.2.2) every x� 2 E� is the di�erence of two

positive continuous linear functionals, and so ms-sequences in E are weakly null. Thus

(E; �(E;E�)) is an OTVS such that ms-sequences tend to zero.
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If we suppose additionally that C is � -closed and (E; �) is weakly sequentially complete,

then (E; �) satis�es (�). Indeed, considering an ms-sequence (xn) � E we obtain that

the sequence (sk) of partial sums, sk =
P

k

n=1 xn, is increasing and weakly convergent.

Therefore (sk) is � convergent by [6] (5.8) Proposition (see also [4] 3.2.10 Corollary). Hence

xn
�

�! 0.

On the other hand there are locally order-convex OTVS containing ms-sequences with

terms far from zero | consider the Banach lattices `1, the space of bounded real sequences,

and c the space of convergent real sequences, equipped with the sup norm.

The theorem below presents simple consequences of assumption (�).

Theorem 1. Let (E; �) be an OTVS such that every ms-sequence is � -null. Then we have

(a) Order intervals are � -bounded.

(b) If � is Hausdor�, then C is proper.

(c) If C is � -closed and � is complete (sequentially complete), then A # 0 implies

A
�

�! 0 (xn # 0 implies xn
�

�! 0), i.e., � is a Lebsgue topology (� is a �-Lebesgue

topology).

(d) If C is � -closed and � is complete and metrizable, then � is locally order-convex.

Proof. (a) Suppose that [a; b] is not � -bounded. Therefore there exists a sequence (xn) �

[a; b] and a sequence of reals (tn) such that tn ! 0 but tnxn
�

9 0. Hence tn(b � xn)
�

9 0.

Without loss of generality we can assume that jtnj(b�xn) =2 V for some � -neighborhood of

zero V and t =
P
1

n=1 jtnj <1. We have

0 6 jtnj(b� xn) and

mX

n=1

jtnj(b� xn) 6 t(b� a) for all m 2 N:

Thus (jtnj(b � xn)) is an ms-sequence. It should be jtnj(b� xn) 2 V for large n, a contra-

diction.

(b) Assume x 2 C \ (�C). Consider a sequence (xn) de�ned as follows: xn = x for odd

n and xn = �x for even n. The sequence (xn) is an ms-sequence, and so xn
�

�! 0. Hence

x = 0 because � is Hausdor�.

(c) Let A # 0. We shall show that the net A is � -Cauchy. If we suppose that it is not

then we are able to �nd a � -neighborhood of zero U and a decreasing sequence (an) � A

satisfying the condition xn = an � an+1 =2 U . The sequence (xn) is an ms-sequence, and so

xn 2 U for large n, a contradiction.

Finally, the completeness of � and the closedness of C imply that A is convergent to zero

(see [6] (2.1) Proposition or [4] 3.1.14).

(d) According to [4] 3.2.5 it is enough to show that 0 6 yn 6 xn in E and xn
�

�! 0

imply yn
�

�! 0. Let j � j� be an F-norm inducing � . If we suppose that (yn) is not � -null,

then there exist a number " > 0, a subsequence (nk) satisfying jynk j� > " and jxnk j� < 2�k.

Since � is complete and C is � -closed , the series
P
1

k=1 xnk is convergent to an element

x 2 C. But then
P

m

k=1 ynk 6 x for every m, i.e., (ynk) is an ms-sequence separated from

zero, a contradiction.

Combining [6] (2.1) Proposition and Theorem 1 (b) we obtain the following corollary.

Corollary 2. Let (E; �) be an OTVS such that � is Hausdor� and every ms-sequence is

� -null. If C is � -closed, then the vector ordering 6 generated by C is Archimedean and

almost Archimedean.
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Remarks. 1. The assumption of completeness in the part (c) of Theorem 1 is essential. The

weak topology in `1 is not �-Lebesgue while ms-sequences in `1 converge weakly to zero.

But `1 is not weakly sequentially complete.

2. Part (d) of Theorem 1 is also a consequence of [4] 3.5.9 Theorem and Theorem 1(b)

(the proof of part (d) presented above is similar to the proof of [4] 3.5.9 Theorem).

Further results contain several characterizations of OTVS satisfying assumption (�).

Theorem 3. For an OTVS (E; �) the following statements are equivalent:

(a) Every ms-sequence is � -null.

(b) Every increasing order bounded sequence (xn) � C is � -Cauchy.

Proof. (a) ) (b) Consider a sequence (xn) satisfying 0 6 xn "6 x and suppose it is not

� -Cauchy. Then there exists a subsequence (nk) such that the elements yk = xnk+1 � xnk
form an ms-sequence which is not � -null.

(b) ) (a) If (xn) is an ms-sequence, then the sequence of partial sums sk =
P

k

n=1 xn

increases and it is order bounded. Therefore (sk) is � -Cauchy and so xn = sn� sn�1
�

�! 0.

Remark. The property described in the second statement of Theorem 3 is well-known in the

theory of locally solid Riesz spaces. It is called `pre-Lebesgue property' (see [1]). Moreover,

if (E; �) is a TRS where E is Archimedean, then the Lebesgue property for � implies the

pre-Lebesgue property and these two properties are equivalent whenever � is Hausdor� and

complete | see [1] Theorems 10.2 and 10.3. The proof of Theorem 10.2 shows that the

implication Lebesgue property ) pre-Lebesgue property remains valid in the case when

(E; �) is an OTVS with E being an Archimedean vector lattice, � Hausdor�, and C � -closed.

We do not know if the assumption that E is a vector lattice can be removed.

If (E; �) is an OTVS such that C is generating and N0 is a � -neighborhood - base at zero

consisting of circeled sets, then the family f(U \C)� (U \C) : U 2 N0g determines a linear

topology �D called the topology with the open decomposition property associated with � (for

more informations concerning �D see [6] Chapter 3).

Corollary 4. For an OTVS (E; �) the following statements are equivalent:

(a) Every ms-sequence in E is � -null.

(b) Every ms-sequence in E is �D-null.

Proof. (a) ) (b) Let 0 6 xn "6 x and let U be a � -neighborhood of zero. By Theorem

3 (xn) is � -Cauchy, and so there exists n0 with xn � xn0 2 U for every n > n0. Thus

xn � xn0 2 U \ C � (U \ C)� (U \ C) for n > n0, i.e., (xn) is �D-Cauchy. Using Theorem

3 again we conclude the assertion.

(b) ) (a) obvious because �D is �ner than � .

Theorem 5. Let (E; �) be a Hausdor� sequentially complete OTVS such that C is � -closed

and order intervals are � -bounded. The following statements are equivalent:

(a) Every ms-sequence is � -null.

(b) There does not exist a positive linear homeomorphism T from c into E, where c is

the space of convergent real sequences equpped with the sup-norm.

Proof. (a) ) (b) Clearly, if there is such a homeomorphism T , then for the unit vectors en,

and e = (1; 1; 1; : : : ) for which we have 0 6 e1 + � � � + en 6 e, there would follow that the

sequence (T (en)) is an ms-sequence which is not � -null.

(b) ) (a) Suppose there are elements xn; x 2 C, n 2 N such that x1 + � � � + xn 6 x

for all n but xn =2 U for some � -neighborhood of zero U . Note �rst that
P
1

n=1 cnxn is

� -convergent whenever (cn) 2 c0.
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Indeed, �x a � -neighborhood V of zero in E and (cn) 2 c0. By the hypothesis we can

also �x a t > 0 such that t[�x; x] � V . Choose k0 2 N satisfying sup
n>k0 jcnj < t. Thus for

j > m > k0 we have

jX

n=m

cnxn = t

jX

n=m

t�1cnxn 2 t[�

jX

n=m

xn;

jX

n=m

xn] � t[�x; x] � V;

i.e., the sequence (
P

j

n=1 cnxn)
1

j=1 is � -Cauchy. Since E is sequentially complete, we have

the � -convergence of
P
1

n=1 cnxn.

De�ne a linear operator T0 : c0 ! E by T0((cn)) =
P
1

n=1 cnxn. The map T0 is contin-

uous. Indeed, let V be a � -neighborhood of zero in E and t > 0 such that t[�x; x] � V .

Then, for (cn) 2 c0 satisfying k(cn)k = sup
n
jcnj < t we have,

T0((cn)) = t lim
k!1

kX

n=1

t�1cnxn 2 t[�x; x] � V ;

the relation 2 holds since E+ is � -closed. Hence T0 is continuous.

Moreover T0(en) = xn =2 U for every n 2 N. Hence, by Drewnowski's theorem (see [2]

Theorem 1) we are able to �nd an in�nite subset M � N such that T0 restricted to c0(M) is

a homeomorphism. Without loss of generality we can assume M = N. We can also assume

x =2 T0(c0). Indeed, suppose x =
P
1

n=1 cnxn for some (cn) 2 c0. Let s > 0 be such that

c1 + s 6= 0. we have x+ sx1 >
P

n

k=1 xk for all n and x+ sx1 = T0(c1 + s; c2; c3; : : : ). Thus

x+ sx1 =2 T0(c0(f2; 3; : : : g)) because in the contrary case x+ sx1 = T (0; b1; b2; : : : ), and so

the injectivity of T0 implies c1+s = 0, a contradiction. Take S : c0 ! c0 given by S((cn)) =

(0; c1; c2; : : : ), i.e., S((cn)) =
P
1

n=1 cnen+1. The operator S is a positive linear isometry

into. Hence for xn
0 = xn+1; x

0 = x + sx1 we have xn
0 > 0,

P
n

k=1 xk
0 6 x0. Moreover,

T0ÆS((cn)) =
P
1

n=1 cnxn
0, T0ÆS is a positive linear homeomorphism and x0 =2 T0ÆS(c0).

Consider a map T : c! E de�ned by the equality

T ((an)) = a1x+

1X

n=1

(an � a1)xn;

where a1 = limn!1 an. The operator T is positive: if an > 0 for all n, then a1 > 0 and

for an arbitrary k 2 N there holds

a1x+

kX

n=1

(an � a1)xn = a1(x�

kX

n=1

xn) +

kX

n=1

anxn > 0:

Since C is � -closed we have T ((an)) > 0. Since T maps linearly and homeomorphically each

summand in c = Re � c0, hence T is a linear homeomorphic embedding, contrary to (b).

Remark. The above proof applies and generalizes ideas due to L. Drewnowski who showed

in [3] a particular case of Theorem 5 concerning locally solid Riesz spaces.

The following fact holds true (see [5] Proposition 1.2; C(K) is the space of real-valued

continuous functions on the compact space K).

Theorem 6. Let Y be a Hausdor� complete locally convex topological vector space. For

a continuous linear operator T : C(K)! Y the following statements are equivalent:

(i) T is weakly compact.

(ii) T (fn)! 0 for every bounded sequence (fn) of pairwise disjoint functions.

Now we are able to deduce the following result.
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Corollary 7. Suppose that (E; �) is a Hausdor� complete locally convex OTVS space and

that every ms-sequence is � -null. Then for an arbitrary compact space K every positive

linear operator T : C(K)! E is weakly compact.

Proof. If T : C(K) ! E is positive and linear, then T is continuous by [4] 3.5.5 Theorem

and Theorem 1(a). Consider a sequence (fn) � C(K) with terms satisfying the condition

jfij ^ jfj j = 0 for i 6= j, and � = sup
i
kfik <1. The sequences (f+

i
); (f�

i
) are bounded by

the constant function taking the value � and they form ms-sequences. Since T is positive,

the sequences (T (f+
i
)); (T (f�

i
)) are ms-sequences and by hypothesis T (fn)

�

�! 0, i.e., T is

weakly compact.

Now, combining Theorems 5 and Corollary 7 we get

Theorem 8. Let (E; �) be a Hausdor� complete locally convex OTVS such that C is � -closed

and order intervals are � -bounded. The following statements are equivalent:

(a) Every ms-sequence is � -null.

(b) For an arbitrary compact space K all positive linear operators T : C(K) ! E are

weakly compact.

(c) Every positive linear operator T : c! E is weakly compact.

Let E be an OVS and let (F; t) be a topological vector space. A linear operator T : E ! F

is said to be ms-null if T (xn)
t

�! 0 for every ms-sequence (xn) � E. The ms-null operators

can be characterized as follows.

Theorem 9. For a linear operator T mapping an OVS E into a Hausdor� sequentially

complete topological vector space (F; t) the following statements are equivalent:

(a) T is an ms-null operator.

(b) The series
P
1

n=1 Txn is unconditionally convergent for every ms-sequence (xn) � E

(i.e.,
P
1

n=1 Tx�(n) converges for every permutation �).

(c) The series
P
1

n=1 Txn converges for every ms-sequence (xn) � E.

(d) If (xn) � C � E decreases, then (Txn) is t-convergent.

Moreover, every ms-null operator maps order bounded sets into t-bounded sets.

Proof. (a) ) (b) Assume that
P
1

n=1 Txn is not unconditionally convergent for an ms-

sequence (xn) � E. Then there exists a t-neighborhood of zero U and a sequence (�k)

of pairwise disjoint �nite subsets of N satisfying
P

n2�k
Txn =2 U for every k. Thus

(
P

n2�k
xn)

1

k=1 is an ms-sequence whose T -image is not t-null, a contradiction.

(b) ) (c) obvious

(c)) (d) If (xn) � C is decreasing, then (Txn) is t-Cauchy because for every subsequence

(nk) the sequence of di�erences (xnk�xnk+1) forms an ms-sequence. Hence T (xn) converges.

(d) ) (a) Let xn 2 C and x1 + � � � + xn 6 x for every n. Since the sequence uk =

x�
P

k

n=1 xn is decreasing, then (Tuk) is convergent, and so Txn = Tun�1 � Tun
t

�! 0.

Finally, suppose that T is an ms-null operator but T [a; b] is not t-bounded. Therefore

there exists a sequence (xn) � [a; b] and a sequence of reals (tn), tn ! 0 such that tn(Tb�

Txn)
t

9 0. Repeating arguments used in the proof of Theorem 1(a) we shall construct an

ms-sequence whose T -image is not t-null.

Remark. The last part of the proof shows that ms-null operators always map order bounded

sets into topologically bounded sets | the assumption `t is sequentially complete' is super-


uous.

Applying the theorem above to the identity operator we obtain the next characterization

of OTVS satisfying (�).
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Corollary 10. For a Hausdor� sequentially complete OTVS (E; �) the following statements

are equivalent:

(a) Every ms-sequence is � -null.

(b) The series
P
1

n=1 xn is unconditionally convergent for every ms-sequence (xn) � E.

(c) The series
P
1

n=1 xn is convergent for every ms-sequence (xn) � E.

(d) If (xn) � C decreases, then (xn) is � -convergent.

An immediate consequence of Theorem 9 and [4] 3.5.5 Theorem is the following result

concerning continuity of ms-null operators.

Theorem 11. Let (E; �) be a complete metrizable OTVS such that the cone C is closed

and generatring. Then every ms-null operator mapping E into a topological vector space is

continuous.

It is clear that the identity operator on c maps order bounded sets into topologically

bounded sets but it is not ms-null. Such operators do not exists in the class of functionals.

Theorem 12. Let E be an OVTS. A functional f : E ! R is ms-null i� f maps order

bounded sets into bounded sets.

Proof. Assume that f maps order bounded sets into bounded sets but jf(xn)j > " > 0 for

some ms-sequence (xn) � E with
P

n

k=1 xk 6 x for every n. Consider two cases.

I. f(xn) > 0 for in�nitely many n's. Let n1 < n2 < : : : be such that f(xnk ) > 0 for all

k. Putting yi =
P

i

k=1 xnk we obtain 0 6 yi 6 x and f(yi) > i". Thus sup
y2[0;x] jf(y)j =1,

a contradiction.

II. f(xn) > 0 for at most �nitely many n's. Therefore f(xn) < �" for almost all n's.

Let n0 be so large that f(xn) < �" for n > n0. Put yi =
P

n0+i
k=n0

xk. We have 0 6 yi 6 x

and f(yi) < �i". Thus sup
y2[0;x] jf(y)j =1, a contradiction again.
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