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STRONGLY FLUID AND WEAKLY UNSOLID VARIETIES
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Abstract. A variety V is called solid if every identity in V is satis�ed as hyperidentity,

i. e. if for every substitution of terms of V of appropriate arity for the operation

symbols in s � t, the resulting identity holds in V . In the most cases it is very diÆcult

to check whether an identity is satis�ed as hyperidentity. The reason is that there are

too much substitutions of terms for operation symbols. In this paper we will present

methods to reduce the number of substitutions which are to check. This will be done

by using some equivalence relations on the set of all substitutions of terms for operation

symbols.

Particular properties of the corresponding equivalence classes lead to the concepts

of strongly 
uid and weakly unsolid varieties. The results will be applied to varieties

of bands, of overcommutative semigroups and to some varieties of non-commutative

groupoids.

1. Preliminaries. By ffi j i 2 Ig we denote an indexed set of operation symbols of type

� where fi is ni{ary. Let W� (X) be the set of all terms built up by variables from X and

operation symbols from ffi j i 2 Ig.
To precisizes what we understand under substitution of a term for an operation symbol

we introduce the concept of a hypersubstitution of type � as a map which associates to each

fundamental operation symbol fi of type � a term �(fi) of type � of the same arity. Any

such map can be inductively extended to a map �̂ de�ned on the set of all terms of type �
as follows:

(i) �̂[x] := x for every variable x 2 X ,

(ii) �̂[fi(t1; : : : ; tni)] := �(fi)(�̂[t1]; : : : ; �̂[tni ]) for any terms t1; : : : ; tni and any operation

symbol fi.

On the set Hyp(�) of all hypersubstitutions of type � we de�ne a binary associative

operation by �1 Æh �2 := �̂1 Æ �2 where Æ is the usual composition of functions and obtain a

monoid Hyp(�) := (Hyp(�); Æh; �id) with �id(fi) = fi(x1; : : : ; xni).

An identity s � t satis�ed in the variety V of type � is a hyperidentity if �̂[s] � �̂[t] are

identities in V for all � 2 Hyp(�).

A weaker concept is that of an M-hyperidentity where we request this property only

for all hypersubstitutions from a submonoid M � Hyp(�). A variety V is called solid if

every of its identities is a hyperidentity. The weaker concept de�ned by M -hyperidentities

is called M-solidity. The importance of these concepts consists in the fact that all M -solid

varieties of type � form a complete sublattice SM (�) of the lattice of all varieties of type �
with
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M1 �M2 ) SM2
(�) � SM1

(�) ([1]):

Further we will use the following denotations:
Id V � the set of all identities satis�ed in the variety V ;

we write V j= s � t and A j= s � t if s � t is an identity in

the variety V or in the algebra A , repectively;
Mod� � the class of all algebras of type � satisfying all equations from

� as identities;
H Id V � the set of all hyperidentities satis�ed in the variety V , i. e.

H IdV := fs � t j 8� 2 Hyp(�)(�̂[s] � �̂[t] 2 Id V )g;
P (V ) � the set of all hypersubstitutions of Hyp(�) which preserve all

identities of the varietyV; i. e.

P (V ) := f� j 8s � t 2 Id V (�̂[s] � �̂[t] 2 Id V )g:
Hypersubstitutions from P (V ) are called V�proper. The set P (V ) forms a submonoid

of Hyp(�) and V is solid i� P (V ) = Hyp(�). A hypersubstitution � is called V -inner

if �̂(fi(x1; : : : ; xni)) � fi(x1; : : : ; xni) is an identity in V . The set P0(V ) of all V -inner

hypersubstitutions forms a submonoid of P (V ) ([5]).

2. Equivalence relations on sets of hypersubstitutions. To reduce the complexity

of checking J. P lonka introduced the following binary relation on Hyp(�) with respect to a

variety V of type � ([5]).

�1 �V �2 :, �1(fi) � �2(fi) 2 Id V for every i 2 I:

Clearly, �V is an equivalence relation on Hyp(�) and satis�es the following property: if

�̂1[s] � �̂1[t] 2 IdV and �1 �V �2 then �̂2[s] � �̂2[t] 2 IdV . Because of this property it

is enough to consider one representative from each equivalence class with respect to �V

if we want to test whether s � t is a hyperidentity in the variety V . Therefore using a

choice function � we have to select a set N
Hyp(�)

� (V ) � Hyp(�) of representatives for the

quotient set Hyp(�)= �V . Further, because of �id(fi) = fi(x1; : : : ; xni) the set P0(V ) is

the equivalence class of �id and P (V ) is a union of equivalence classes with respect to �V .

For a hypersubstitution � 2 Hyp(�) and an algebra A = (A; (fAi )i2I) of type � we de�ne

the derived algebra �[A] by �[A] := (A; (�(fi)
A)i2I ).

Here �(fi)
A is the term operation induced by the term �(fi) on the algebra A.

The following property plays an important role in the theory of hyperidentities:

A j= �̂[s] � �̂[t] , �[A] j= s � t (conjugate property)

Further one has

Proposition 2.1. ([5]) Let V be a variety of type � and let �1; �2 be hypersubstitutions
of type � . Then

�1 �V �2 , �1[A] = �2[A]

for all A 2 V .

As counterpart of solid varieties in [3] the concepts of unsolid and completely unsolid

varieties were de�ned.
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De�nition 2.2. A variety V of type � is unsolid if P (V ) = P0(V ) and completely unsolid

if P (V ) = P0(V ) = f�idg.

In [6] D. Schweigert de�ned 
uid varieties to express the opposite of solidity.

De�nition 2.3. A variety V of type � is called 
uid if for every algebra A 2 V and for

every hypersubstitution � 2 Hyp(�) there holds

�[A] 2 V ) �[A] �= A:

It is easy to prove that every subvariety of a 
uid variety is 
uid and that all subvarieties

of a 
uid variety V of type � form a sublattice of the lattice of all varieties of type � . In [3]

was proved:

Proposition 2.4. Let V be a variety of type � and let Hyp(�) be the set of all hypersub-
stitutions of type � . Then

(i) If V is 
uid then for every hypersubstitution � 2 Hyp(�) there holds:
� 2 P (V ) ) 8A 2 V (�[A] �= A) .

(ii) If V is a minimal variety, (i.e. an atom in the lattice of all varieties of type �) and if
V is unsolid then V is 
uid.

We de�ne a new relation on Hyp(�) generalizing the property of the relation �V of Propo-

sition 2.1.

De�nition 2.5. Let V be a variety of type � and let �1; �2 be hypersubstitutions of type

� . Then we de�ne

�1 �
I
V �2 :, 8A 2 V (�1[A] �= �2[A]):

Clearly, �I
V is also an equivalence relation on Hyp(�) and contains the relation �V . Further

we have:

Proposition 2.6.

(i) The relation �I
V is a right congruence on Hyp(�).

(ii) If V is solid then �I
V is a congruence on Hyp(�).

Proof. (i) Let �1 �
I
V �2 and � 2 Hyp(�). Then �1[A] �= �2[A] for all A 2 V . If two

algebra are isomorphic then the derived algebras are also isomorphic (see [6], Lemma 3.1).

Therefore, �[�1[A]] �= �[�2[A]]. Now we prove that (�1 Æh �)[A] = �[�1[A]]. We use the

fact that if t is a term and if t�[A] is the term operation induced by t on the algebra �[A]

then t�[A] = �̂[t]A. (see [4]). Then f
�[�1[A]]

i = �̂[fi]
�1[A] = �̂1[�(fi)]

A = f
(�1Æh�)[A]

i for all

i 2 I . As a consequence we have (�1 Æh �)[A] = �[�1[A]] �= �[�2[A]] = (�2 Æh �)[A] and

�1 Æh � �
I
V �2 Æh �:

(ii) If V is solid then for every A 2 V and every � 2 Hyp(�), one obtains �[A] 2 V . But

then from �1 �
I
V �2 one has �1[�[A]] �= �2[�[A]], i.e. (� Æh �1)[A] �= (� Æh �2)[A] and

� Æh �1 �
I
V � Æh �2. This shows that �I

V is also a left congruence and thus a congruence.

The following theorem shows that the relation �I
V makes it easier to check hyperiden-

tities:

Theorem 2.7. Let V be a variety of type � . Then the following hold:

(i) For all �1; �2 2 Hyp(�), if �1 �
I
V �2 then �1 is V -proper i� �2 is V -proper.
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(ii) For all s; t 2 W� (X) and all �1; �2 2 Hyp(�), if �1 �
I
V �2 then the equation �̂1[s] �

�̂1[t] is an identity in V i� �̂2[s] � �̂2[t] is an identity in V .

Proof. (i) Let �1 be a V -proper hypersubstitution. Then for all identities s � t in IdV
the equation �̂1[s] � �̂1[t] is an identity in V , i.e. for all A 2 V we have A j= �̂1[s] � �̂1[t].
Using the conjugate property we have �1[A] j= s � t. Then �1 �

I
V �2 gives �1[A] �= �2[A]

for all A 2 V . Since Id�1[A] = Id�2[A] we have �2[A] j= s � t and using again the

conjugate property this gives A j= �̂2[s] � �̂2[t] for all A 2 V and this means �̂2[s] � �̂2[t]
is an identity in V and �2 is also V -proper. The converse direction follows in the same way.

(ii) If �̂1[s] � �̂1[t] is an identity in V then for all A 2 V we get A j= �̂1[s] � �̂1[t] and then

�1[A] j= s � t. Since �1 �
I
V �2 we have �1[A] �= �2[A] for all A 2 V and then �2[A] j= s � t

and thus A j= �̂2[s] � �̂2[t]. The converse follows in the same way.

Theorem 2.7 (i) means that the submonoid P (V ) of Hyp(�) is a union of equivalence

classes with respect to the relation �I
V .

If we restrict our attention to a submonoid M of Hyp(�) and to the restricted relation

�I
V we get:

Lemma 2.8. LetM � Hyp(�) and let V be a variety of type � . Then the monoid P (V )\M
is a union of equivalence classes of the restricted relation �I

V jM .

Proof. Let � be a hypersubstitution in P (V ) \M , and let % 2M satisfy � �I
V jM %. We

want to show that % is also in P (V ). Let s � t be any identity of V , then �̂[s] � �̂[t] 2 IdV ,

i.e. for all A 2 V (A j= �̂[s] � �̂[t]), but then �[A] j= s � t and �[A] �= %[A] shows

%[A] j= s � t; A j= %̂[s] � %̂[t] for all A 2 V and % 2 P (V ) \M .

Let M be a monoid of hypersubstitutions. Consider the quotient set M=�I
V
jM . Let � be

a choice function which chooses from M one hypersubstitution from each equivalence class

of �I
V jM and let INM

� (V ) be the set of hypersubstitutions so chosen. From [�id]�I
V
jM the

function � chooses �id. The set INM
� (V ) is called set of V -normal form hypersubstitutions

with respect to � and �I
V jM .

By �1 ÆNI �2 := �(�1 Æh �2) we de�ne a binary operation on INM
� (V ) and obtain a

groupoid with identity element.

A variety V is called INM
� (V )-solid if every identity of V is preserved by every hyper-

substitution from INM
� (V ). Then we have

Lemma 2.9. Let M be a monoid of hypersubstitutions of type � and let V be a variety of
type � . For any choice function � the variety V is M -solid i� V is INM

� (V )-solid.

Proof. It is clear that if V is M -solid then it is certainly also INM
� (V )-solid. Conversely,

suppose that V is INM
� (V )-solid. This means that all the members of the set INM

� (V ) are

also members of P (V )
T
M . Since by Lemma 2.8 P (V )

T
M is a union of �I

V jM -classes, a

hypersubstitution that is equivalent to an element of INM
� (V ) is also in P (V )

T
M . But by

construction any element of M is equivalent to an element of INM
� (V ). Thus M � P (V ),

and V is M -solid.

In analogy to [4], Theorem 4.4.9 we obtain also:

Theorem 2.10. Let V be a variety of type � , and let M be a monoid of hypersubstitutions
of type � . Let � be a choice function which chooses one hypersubstitution from each class
with respect to �I

V jM . If the set INM
� (V ) is �nite, and if V has a �nite equational basis

�, then the hypermodel class HMMod� is also �nitely based.

Proof. It follows from the general theory of hypersubstitutions (see [4] ) that the set
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�: = f�̂[s] � �̂[t]js � t 2 �; � 2Mg

is a basis for HMMod�. Now let

�: = f�̂[s] � �̂[t]js � t 2 �; � 2 INM
� (V )g.

Using the �ve derivation rules for identities � yields �, so that � is also a basis for

HMMod�. But under the hypotheses that both � and INM
� (V ) are �nite, we see that �

is also �nite.

3. Application to 
uid varieties. Using the de�nition of the relation �I
V De�nition 2.3

can be reformulated to: A variety V of type � is 
uid if for every algebra A 2 V and for

every hypersubstitution � 2 Hyp(�) there holds:

�[A] 2 V ) � �I
V �id:

Inner hypersubstitutions form the equivalence class of �id with respect to the relation �V .

In parallel we de�ne

De�nition 3.1. A hypersubstitution � 2 Hyp(�) is called weakly inner hypersubstitution

with respect to �I
V if � �I

V �id. By Pfl(V ) we denote the set of all weakly inner hypersub-

stitutions with respect to V .

The set Pfl(V ) has the following properties.

Proposition 3.2. Pfl(V ) forms a submonoid of P (V ) which contains P0(V ) as submonoid:

P0(V ) � Pfl(V ) � P (V ):

Proof. Since �V��
I
V and since P0(V ) = [�id]�V

we have

P0(V ) = [�id]�V
� [�id]�I

V
= Pfl(V ):

Assume that � 2 Pfl(V ). Then for all A 2 V we get �[A] �= A. If s � t 2 IdV , i.e. if

A j= s � t for all A 2 V , then using the isomorphism, �[A] j= s � t and by the conjugate

property we get A j= �̂[s] � �̂[t], i.e. � is a V -proper hypersubstitution and then Pfl(V ) �
P (V ). Since the product of two inner hypersubstitutions is an inner hypersubstitution

the set P0(V ) forms a submonoid of Pfl(V ). We have to show that the product of two

hypersubstitutions from Pfl(V ) belongs to Pfl(V ). Assume that �1; �2 2 Pfl(V ). Then

�1[A] �= A and �2[A] �= A for all A 2 V . But then also (�1 Æh �2)[A] = �2[�1[A]] �= �2[A] �=
A since every isomorphism between two algebras is an isomorphism between the derived

algebras (see [6]). But then �1 Æh �2 �
I
V �id and �1 Æh �2 2 Pfl(V ):

Then from Proposition 2.4 we obtain:

Corollary 3.3. If V is a 
uid variety then P (V ) = Pfl(V ).

Proof. In any case there holds Pfl(V ) � P (V ). By Proposition 2.4 for a 
uid variety

we have: if � 2 P (V ) then for all A 2 V (�[A] �= A), but this means, if � 2 P (V ) then

� 2 Pfl(V ) and so P (V ) � Pfl(V ).

The set INM
� (V ) can be used to test whether V is 
uid or not.

Lemma 3.4. The variety V is 
uid i� for all A 2 V , for all � 2 N
Hyp(�)

� (V ) with respect
to some choice function � the following implication is satis�ed:

�[A] 2 V ) �[A] �= A: (�)
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Proof. If V is 
uid then this implication is satis�ed for all � 2 Hyp(�), especially for

all hypersubstitutions coming from IN
Hyp(�)

� (V ). If conversely for all � 2 IN
Hyp(�)

� (V )

the implication �[A] 2 V ) �[A] �= A is satis�ed and if �0 2 Hyp(�) then we can �nd

a hypersubstitution � 2 IN
Hyp(�)

� (V ) with �0 �I
V �. But this means �0[A] �= �[A] and

�0[A] 2 V implies �0[A] �= �[A] �= A and (*) is satis�ed for all hypersubstitutions �0 from

Hyp(�).

4. Generalization of 
uid and unsolid varieties. We can sharpen the de�nition of a


uid variety if we request the equality �[A] = A on the right hand side of the implication

in De�nition 2.3.

De�nition 4.1. A variety V of type � is strongly 
uid if for every algebra A 2 V and for

every hypersubstitution � 2 Hyp(�) there holds

�[A] 2 V ) �[A] = A:

Clearly, every strongly 
uid variety is also 
uid. Further we have:

Proposition 4.2. If a variety V of type � is strongly 
uid then it is unsolid

Proof. If V is strongly 
uid then for all � 2 Hyp(�) we have

� 2 P (V ) ) �[A] = A:

The right hand side of this implication means � 2 P0(V ) and thus P (V ) � P0(V ). Together

with P0(V ) � P (V ) we have P (V ) = P0(V ). This means, V is unsolid.

Proposition 4.2 and Corollary 3.3 mean that for strongly 
uid varieties all three monoids

P0(V ); Pfl(V ), and P (V ) are equal.

Further we de�ne

De�nition 4.3. A variety V of type � is weakly unsolid if P (V ) = Pfl(V ).

Clearly, if V is unsolid, then by Proposition 3.2 it is also weakly unsolid. By 3.3, every


uid variety V is weakly unsolid. In the following case 
uidity implies also unsolidity.

Proposition 4.4. Let V be a 
uid variety of type � . If �I
V��V then V is unsolid.

Proof. We have to show that P (V ) � P0(V ). Assume that � 2 P (V ). Then for any A 2 V
we have �[A] 2 V and thus for all A 2 V; �[A] �= A = �id[A] since V is 
uid. Because of

�I
V��V we have also � �V �id and � belongs to P0(V ).

Example: In [3] the authors showed that the variety COM of all commutative semigroups

is unsolid, but not 
uid. Then COM is also not strongly 
uid. The variety COM is also

weakly unsolid.

5. Applications to varieties of groupoids. At �rst we compare the relations �I
V and

�V for the variety of all bands, i.e. idempotent semigroups, and for the class of all semi-

groups containing the variety of all commutative semigroups (overcommutative semigroups).

Theorem 5.1. Let V be a nontrivial variety of bands. Then �I
V��V .

Proof. There are exactly the following six binary terms over the variety B of all bands:

x; y; xy; yx; xyx; yxy. That means, the quotient set Hyp(�)= �V where V is a variety of

bands is a subset of the set f[�x]�V
; [�y]�V

; [�xy]�V
; [�yx]�V

; [�xyx]�V
; [�yxy]�V

g: We check
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all possible pairs of representatives. Assume that �x �
I
V �y. Let F2(V ) be the two-generated

free algebra of V . Then there exists an isomorphism

' : �x[F2(V )] ! �y[F2(V )]

and we have

'([x]IdV ) = '(�x(f)F2(V )([x]IdV ; [y]IdV ))

= �y(f)F2(V )('([x]IdV ); '([y]IdV ))

= '([y]IdV ):

Here f denotes the binary operation symbol. Since ' is one-to-one we get [x]IdV = [y]IdV ,

a contradiction.

Assume that xy � x 62 IdV and that �xy �
I
V �x. Then there exists an isomorphism

' : �xy[F2(V )] ! �x[F2(V )]

and we have

'([x]IdV ) = �x(f)F2(V )('([x]IdV ); '([x]IdV ))

= �x(f)F2(V )('([x]IdV ); '([y]IdV ))

= '(�xy(f)F2(V )([x]IdV ; [y]IdV ))

= '([xy]IdV ):

Since ' is one-to-one we have [x]IdV = [xy]IdV . This is a contradiction to our assumption

that x � xy 62 IdV .

In the same manner one can show that for each u 2 fxy; yx; xyx; yxyg both, �x �
I
V �u

and �y �
I
V �u are impossible if x � u 62 IdV and y � u 62 IdV , respectively.

Assume that xy � xyx 62 IdV and that �xy �
I
V �xyx. Then there is an isomorphism

' : �xy[F2(V )] ! �xyx[F2(V )]

and we have

'([xy]IdV ) = '(�xy(f)F2(V )([x]IdV ; [y]IdV ))

= �xyx(f)F2(V )('([x]IdV ); '([y]IdV ))

= '([x]IdV )'([y]IdV )'([x]IdV ):

Because of '([yx]IdV ) = '([y]IdV )'([x]IdV )'([y]IdV ) and using the idempotent law one can

easily verify that

'([y]IdV )'([x]IdV )'([y]IdV ) = '([y]IdV )'([x]IdV )'([y]IdV )'([y]IdV )'([x]IdV )

= '([x]IdV )'([yx]IdV )'([x]IdV )

and thus

'([xy]IdV ) = '([x]IdV )'([yx]IdV )'([x]IdV )

= �xyx(f)F2(V )('([x]IdV ); '([yx]IdV ))

= '(�yx(f)F2(V )([x]IdV ; [yx]IdV ))

= '([xyx]IdV ):



512 SR. ARWORN, K. DENECKE, J. KOPPITZ

This gives [x]IdV = [xyx]IdV , a contradiction.

In a similar way one proves that if xy � yxy 62 IdV and yx � xyx 62 IdV and yx �
yxy 62 IdV , then �xy �

I
V �yxy in the �rst, �yx �

I
V �xyx in the second, and �yx �

I
V �yxy in

the third case, respectively, are impossible.

Now we show that �xy �
I
V �yx is impossible if xy � yx 62 IdV . We consider the two

cases xy � yxy 2 IdV or xy � yxy 62 IdV . In the �rst case we have yx � yxy 62 IdV and

by the previous fact �yx �
I
V �yxy is impossible. But then �yx �

I
V �xy is impossible since

otherwise from �xy �
I
V �yxy and �xy �

I
V �yx it would follow �yx �

I
V �yxy.

Assume that xy � yxy 62 IdV and that �xy �
I
V �yx. Let S be the semigroup de�ned by

the following �nite presentation:

< fx; y; zgjfa = bja; b 2W (fx; y; zg); a � b 2 IdV g [ fxy = x; xz = xg > :

Clearly, fx; y; zg � S and S 2 V . Therefore, there is an isomorphism

' : �xy[S] ! �yx[S]

and we have

'(�xy(f)S(x; x)) = '(�xy(f)S(x; u)) = �yx(f)S('(x); '(u)) for all u 2 S: (�)

Since xy � yxy 62 IdV for each u 2 S there is an element wu 2 fx; y; zg such that both,

'(u) and '(u)'(x) start with wu. Since fx; y; zg � f'(u)ju 2 Sg we have jf'(u)'(x)ju 2
Sgj � 3. This contradicts (*).

The last case is that xyx � yxy 62 IdV , but �xyx �
I
V �yxy. If in this case xyx � xy 2

IdV then yxy � xy 62 IdV and from one of the previous cases we get that �xy �
I
V �yxy is

impossible. If �xyx �
I
V �yxy then from �xyx �

I
V �xy we would get a contradiction. Thus

�xyx �
I
V �yxy is impossible.

Consider now the case that xyx � xy 62 IdV . Then we have

'([xyx]IdV ) = '(�xyx(f)F2(V )([x]IdV ; [y]IdV ))

= �yxy(f)F2(V )('([x]IdV ); '([y]IdV ))

= '([y]IdV )'([x]IdV )'([y]IdV )

and

'([xy]IdV ) = '(�xyx(f)F2(V )([xy]IdV ; [y]IdV ))

= �yxy(f)F2(V )('([xy]IdV ); '([y]IdV ))

= '([y]IdV )'([xy]IdV )'([y]IdV )

= '([y]IdV )'([x]IdV )'([y]IdV ):

Altogether we have '([xyx]IdV ) = '([xy]IdV ) and then xyx � xy 2 IdV , a contradiction.

This shows that also in this case �xyx �
I
V �yxy is impossible.

Let now u; v 2 W (fx; yg) with u � v 62 IdV . Then there are u0; v0 2 fx; y; xy; yx; xyx;
yxyg such that u � u0; v � v0 2 IdV and u0 � v0 62 IdV . In the previous part of the proof we

showed that �u0 �I
V �v0 is impossible. For all A 2 V we have �u0 [A] = �u[A] (sigmav0 [A] =

�v [A]). Therefore �u �
I
v �V is impossible and we have �I

V��V .

For varieties of overcommutative semigroups the relations �I
V and �V are also equal,

i.e.
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Theorem 5.2. Let V be a variety of semigroups which contains the variety of commutative
semigroups. Then �I

V��V .

Proof. Assume that �u �I
V �v for two binary terms u and v. Let `(u) be the num-

ber of variables occurring in u. We can assume that `(u) � `(v). Put n := `(v). The

variety W := ModfIdV [ fx1 : : : xn+1 � y1 : : : yn+1g is a subvariety of V . We con-

sider the free algebra with respect to W generated by fx; y; zg : F3(W ). By u(x; z)

we denote the term obtained from the term u replacing x by z. In the same way the

terms u(y; z); u(y; x); u(z; y); u(y; z); v(y; x); v(z; x); v(z; y) and v(x; z) are de�ned. With-

out loss of generality we assume that v contains the variable y. Consider S := F3(W ) n
f[v]IdW ; [v(x; z)]IdW g. On the set S we de�ne an operation fS by fS([a]IdV ; [b]IdV ) =

[ab]IdW if [ab]IdW 62 f[v]IdW ; [v(x; z)]IdW g and fS([a]IdV ; [b]IdV ) = [x]n+1
IdW if [ab]IdW 2

f[v]IdW ; [v(x; z)]IdW g. Then it is easy to see that S 2 W � V . Because of �u �
I
V �v there

is an isomorphism ' : �u[S] ! �v [S]. Assume that '([x]n+1
IdW ) 2 f[x]IdW ; [y]IdW ; [z]IdW g:

Then we have '([x]n+1
IdW ) = '(�u(f)S([x]n+1

IdW ; [x]n+1
IdW )) = �v(f)S('([x]n+1

IdW ); '([x]nIdW )) =

('([x]n+1
IdW ))n, i.e. [w]IdW = [w]nIdW for some w 2 fx; y; zg. But then w � wn 2 IdW , a

contradiction. Therefore, '([x]n+1
IdW ) 62 f[x]IdW ; [y]IdW ; [z]IdWg and we have '([x]n+1

IdW ) =

'(�u(f)S([x]n+1
IdW ; [x]n+1

IdW )) = �v(f)S('([x]n+1
IdW ); '([x]n+1

IdW )) = [x]n+1
IdW , i.e. '([x]n+1

IdW ) =

[x]n+1
IdW :
For the elements '([x]IdW ); '([y]IdW ), and '([z]IdW ) we have to consider the following

seven cases:
(i) '([x]IdW ) = [x]IdW ; '([y]IdW ) = [y]IdW ; '([z]IdW ) = [z]IdW ;
(ii) '([x]IdW ) = [x]IdW ; '([y]IdW ) = [z]IdW ; '([z]IdW ) = [y]IdW ;
(iii) '([x]IdW ) = [y]IdW ; '([y]IdW ) = [x]IdW ; '([z]IdW ) = [z]IdW ;
(iv) '([x]IdW ) = [y]IdW ; '([y]IdW ) = [z]IdW ; '([z]IdW ) = [x]IdW ;
(v) '([x]IdW ) = [z]IdW ; '([y]IdW ) = [y]IdW ; '([z]IdW ) = [x]IdW ;
(vi) '([x]IdW ) = [z]IdW ; '([y]IdW ) = [x]IdW ; '([z]IdW ) = [y]IdW ;
(vii) f'([x]IdW ); '([y]IdW ); '([z]IdW )g 6� f[x]IdW ; [y]IdW ; [z]IdWg.

Case (i): We have

'(�u(f)S([x]IdV ; [y]IdV )) = �v(f)S('([x]IdV ); '([y]IdV ))

= �v(f)S([x]IdV ; [y]IdV )

= [x]n+1
IdW :

Because of '([x]n+1
IdW ) = [x]n+1

IdW we have

'(�u(f)S([x]IdW ; [y]IdW )) = '([x]n+1
IdW );

i.e.

�u(f)S([x]IdW ; [y]IdW ) = [x]n+1
IdW :

This implies u � xn+1 2 IdW or u � v 2 IdW or u � v(x; z) 2 IdW . Clearly, u � xn+1 2
IdW as well as u � v(x; z) 2 IdW are impossible. Consequently, u � v 2 IdW .

Case (ii): In the same way as in the �rst case we obtain u � v 2 IdW .

Case (iii): We have

'(�u(f)S([x]IdW ; [z]IdW )) = �v(f)S('([y]IdW ); '([z]IdW ))

= �v(f)S([x]IdW ; [z]IdW ) = [x]n+1
IdW :

Because of '([x]n+1
IdW ) = [x]n+1

IdW we have then '(�u(f)S([y]IdW ; [z]IdW )) = '([x]n+1
IdW ). This

implies u(y; z) � xn+1 2 IdW or u(y; z) � v 2 IdW or u(y; z) � v(x; z) 2 IdW . Clearly,
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u(y; z) � xn+1 62 IdW . The case u(y; z) � v 2 IdW is only possible if both terms u
and v have the same length and are costructed only by the variable y. But u(y; z) is a

term in the variable y if u is a term in the variable x, i.e. [u]IdW = [x]nIdW and [v]IdW =

[y]nIdW . So we have the following situation: '([x]n+1
IdW ) = '(�u(f)S([x]n+1

IdW ; [y]IdW )) =

�v(f)S('([x]n+1
IdW ); '([y]IdW )) = ('([y]IdW ))n = [x]nIdW : But there holds [x]nIdW 6= [x]n+1

IdW

(because of yn � xn 62 IdW and zn � xn 62 IdW ), which contradicts '([x]n+1
IdW ) = [x]n+1

IdW .

Consequently, u(y; z) � v 2 IdW is impossible. From u(y; z) � v(x; z) 2 IdW one obtains

u � v 2 IdW if one substitutes y by x and z by y.

In the cases (iv), (v)and (vi) we get u � v 2 IdW in a similar way as in case (iii).

Case (vii): There is an element w 2 fx; y; zg such that '([w]IdW ) 62 f[x]IdW ; [y]IdW ; [z]IdWg.
a) If w 2 fx; yg then there holds

'(�u(f)s([x]IdW ; [y]IdW )) = �v(f)S('([x]IdW ); '([y]IdW ))

= �v(f)S([x]IdW ; [y]IdW )

= [x]n+1
IdW

and we get u � v 2 IdW in the same way as in case (i).

b) If w = z then we have

'(�u(f)S([x]IdW ; [z]IdW )) = �v(f)S('([x]IdW ); '([z]IdW ))

= �v(f)S([x]IdW ; [z]IdW )

= [x]n+1
IdW

and we get u � v 2 IdW in the same manner as in case (i). Consequently u � v 2 IdW .

Altogether this shows that u � v 2 IdW . Since both terms, u and v have a length less

than n+ 1, the identity u � v is also valid in V , i.e. u � v 2 IdV . This means �u �V �v :

Now we consider all varieties V of groupoids where the two-generated free algebra F2(V )

consists of at most three elements.

We will use the following denotations for varieties of groupoids:

I { trivial variety,

LZ = Modfxy � xg,
RZ = Modfxy � yg,
SL = Modfx(yz) � (xy)z; x2 � x; xy � yxg

(I; LZ;RZ, and SL are varieties of semigroups),

V1;2 = Modfxy � yx; x2 � x; (xy)y � xyg - the variety of near semilattices,

V2 = Modfxy � yx; x � x; (xy)y � xg - the variety of Steiner quasigroups,

V3 = Modfxy � yx; (xy)y � xy; x2 � xyg .

By Hyp we denote the monoid of hypersubstitutions of typ (2) and by N
Hyp

� (V ) the

groupoid of normal form hypersubstitutions with respect to the relation �V .

In [2] we showed

Theorem 5.3.

(i) If V is a variety of groupoids and if � is an arbitrary choice function � : Hyp=�V !

Hyp then jNHyp

� (V )j � 3 i� V 2 fI; LZ;RZ; SL; V1;2; V2; V3g.
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(ii)

NHyp

� (LZ) = f�xy; �ug with �u �LZ �y;

NHyp

� (RZ) = f�xy; �vg with �v �RZ �x ;

NHyp

� (SL) = f�xy; �u; �vg with �u �SL �x ; �v �SL �y ;

NHyp

� (V1;2) = f�xy; �u; �vg with �u �V1;2 �x ; �v �V1;2 �y ;

N
Hyp

� (V2) = f�xy; �u; �vg with �u �V2 �x; �v �V2 �y ;

NHyp

� (V3) = f�xy; �u; �vg with �u �V3 �x; �v �V3 �y :

(iii) The following equalities are satis�ed for proper and inner hypersubstitutions:

P (LZ) = P0(LZ); P (RZ) = P0(RZ); P (SL) = P0(SL); P (V1;2) = P0(V1;2) ; P (V2) =

P0(V2); P (V3) = P0(V3).

It follows:

Corollary 5.4. The varieties LZ;RZ; SL; V1;2; V2; V3 are unsolid.

For LZ;RZ; SL in [3] was already proved that these varieties are 
uid.

Theorem 5.5. Each of the varieties I; LZ;RZ; SL; V1;2; V2; V3 is 
uid.

Proof. We have only to consider the varieties V1;2; V2, and V3. By the previous theorem

the hypersubstitutions �x; �y; �xy have to be checked. If A 2 V 2 fV1;2; V2; V3g then A

is commutative, but �x[A] = (A; e
2;A
1 ); �y[A] = (A; e

2;A
2 ) where e

2;A
1 ; e

2;A
2 are the binary

projections on A on the �rst component and on the second component, respectively, are

not commutative. Thus �x[A]; �y [A] 62 V . Moreover, �xy[A] = A 2 V for all A 2 V and

�xy[A] �= A.

By Proposition 4.4 the unsolidity of all these varieties would also follow from Theorem

5.5 if we could prove that �I
V��V .

Theorem 5.6. If V is a nontrivial variety of groupoids such that the two-generated free
algebra F2(V ) consists of at most three elements then �I

V��V .

Proof. jF2(V )j � 3 holds i� jNHyp

� (V )j � 3 for any choice function �. By Theorem 5.3 we

have F2(V ) = f[xy]IdV ; [x]IdV g if V 2 fLZ;RZg and F2(V ) = f[xy]IdV ; [x]IdV ; [y]IdV g if

V 2 fSL; V1;2; V2; V3g. Clearly, if V is nontrivial then �x �
I
V �y is impossible since otherwise

for every algebra A 2 V which is not trivial there existed an isomorphism ' : �x[A] ! �y[A]

with '([x]IdV ) = '(�x(f)A([x]IdV ; [y]IdV )) = �y(f)A('([x]IdV ); '([y]IdV )) = '([y]IdV ) and

from '([x]IdV ) = '([y]IdV ) it follows [x]IdV = [y]IdV , i.e. x � y 2 IdV .

The varieties LZ;RZ; SL are varieties of bands. Therefore, by 5.1 we have to consider

V1;2; V2, and V3. Assume that �xy �
I
V �y for V 2 fV1;2; V2; V3g. Then we have for V1;2:

'([xy]IdV1;2) = '(�xy(f)
F2(V1;2)([xy]IdV1;2 ; [y]IdV1;2))

= �y(f)
F2(V1;2('([xy]IdV1;2 ); '([y]IdV1;2))

= '([y]IdV1;2)
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and thus [xy]IdV1;2 = [y]IdV1;2 and xy � y 2 IdV1;2 which is a contradiction, for V2:

'([xy]IdV2) = '(�xy(f)F2(V2)([x]IdV2 ; [y]IdV2))

= �y(f)F2(V2)('([x]IdV2 ); '([y]IdV2))

= '([y]IdV2)

and then [xy]IdV2 = [y]IdV2 and xy � y 2 IdV2, a contradiction, for V3:

'([xy]IdV3) = '(�xy(f)F2(V3)([x]IdV3 ; [x]IdV3)

= �x(f)F2(V3)('([x]IdV3); '([x]IdV3 ))

= '([x]IdV3)

and then [xy]IdV3 = [x]IdV3 and xy � x 2 IdV3, a contradiction.

All three varieties are commutative, i.e. �xy �V �yx and then �xy �I
V �yx; V 2

fV1;2; V2; V3g. Assume that �xy �I
V �x, then by �xy �I

V �yx and transitivity we have

also �yx �
I
V �x, but this contradicts the fact that �xy �

I
V �y is impossible as we showed

before.
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