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GENERAL EXPANSION MAPPINGS ON TOPOLOGICAL SPACES
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ABSTRACT. In this paper, first, we shall prove some fixed point theorems on general
expansion mappings in arbitrary topological spaces. Secondly, we formulate a new way
in fixed point theory under Expansion Monotone Principle. Also, we describe a class
of conditions sufficient for the existence of fixed points.

1. Introduction and definitions. In recent years a great number of papers have presented
extensions of the well-known Banach-Picard contraction principle. The purpose of the
present paper is to consider general expansion mappings by introducing ”monotonicity”
conditions on topological spaces. In this sense, we describe a class of conditions sufficient
for the existence of fixed points.

In this paper we formulate some new monotone principles of fixed point and, for former
monotone principles, see Taskovi¢ [2] and [3].

In [5] Wang, Gao, Li and Iseki proved the following statement for a class of expansive
mappings. Naimely, if (X,d) is a complete metric space, if a mapping T : X — X is onto
and if there exists ¢ > 1 such that

(15) d(T(@),T(y)) > qd(z,y)

for each z,y € X, then T has a unique fixed point in the metric space X.

In this paper, we extend Wang, Gao, Li and Iseki’s theorem and we think that our
conditions may be adapted for other classes of mappings to obtain some extensions of new
fixed point results.

Let X be a topological space, T': X — X and A : X x X — R} := [0, +00). We shall
introduce the concept of CS-convergence in a space X; i.e., a topological space X satisfies
the condition of CS-convergence if {z,}nen is a sequence in X and A(z,,Tz,) — 0
(n — o0) implies that {z,},en has a convergent subsequence.

Also, we shall introduce the concept of invariant property for space X; i. e., a topological
space X satisfies the condition of invariant property if there is a nonempty subset A of
X such that T'(4) = A. Obviously, if T : X — X is an onto mapping, then X is with the
invariant property for A = X. Also, if T : X — X continuous on a compact space X, then
X has the invariant property.

2. General expansion mappings. In this section, we begin with the following statement
which is fundamental.
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Lemma 1. Let the mapping ¢ : Ry — Ry := (0, +00) have the following properties

(¢) p(t) >t and liminfe(z) >t

z—t—0

for every t € Ry.. If the sequence {x, }nen of real nonnegative numbers satisfies the inequal-
ity

T > O(Tnt1) for all n €N,

then it converges to zero. The velocity of this convergence is not necessarily geometric.

Proof. Since {z, }nen is a nonincreasing bounded sequence in R, , there is a t > 0 such
that z, — t (n = 00). We claim that ¢ = 0. If ¢ > 0, then

= lim inf z,, > liminf " > liminf ,
P=lninten 2 inifelonn) = Ininfe(z) >
which is a contradiction. Consequently ¢ = 0 and so z, — 0 (n — o00). The proof is
complete.

We are now in a position to formulate the following general statements.

Theorem 1. (General expansion). Let T' be a mapping of a topological space X into itself,
where X with the invariant property and with the condition of CS-convergence. If there is
a mapping ¢ : R} — RS such that the condition (p) holds and

(4) ATz, Ty) > o(Aw,y))

for all x,y € X, where A : X x X = R}, v — A(x,Tx) is lower semicontinuous and
A(z,y) = 0 implies x =y, then T has a unique fized point in X.

As immediate consequences of the preceding statement we obtain results in [5] of Wang,
Gao, Li and Iseki’s and in [1] of Daffer and Kaneko’s.

Corollary 1. (Wang, Gao, Li and Iseki). Let (X,d) be a complete metric space. If T is a
mapping of X onto itself and if there exists ¢ > 1 such that

(15) d(T(@), () > qd(z,y)
for all z,y € X, then T has a unique fixed point in X .

Proof. Since T : X — X is onto, we have that X satisfies the condition of invariant
property T'(A) = A for A = X. Let A(z,y) = d(z,y) and ¢(t) = qt forg > landt € R} It
is easy to see that A and ¢ satisfy all the required hypotheses in Theorem 1. By hypothesis,
X is complete and, therefore, X satisfies the condition of CS-convergence. Hence, it follows
from Theorem 1 that T has a unique fixed point in X.

Corollary 2. (Daffer and Kaneko). Let T be a continuous compact mapping of a metric
space (X, d) into itself satisfying the expansive condition (Is). Then T has a unique fized
point in X.
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Proof. Since T : X — X is a continuous and compact mapping, we have that T'(4) = A
for A := N2, T™(Y) and for some compact subset Y of X. Thus we have that X satisfies the
condition of invariant property. Further, the proof is a totally analogous with the preceding
proof of Corollary 1.

Proof of Theorem 1. Since X is with invariant property, there exists a nonempty
subset A of X such that T(A) = A. Then the set A, := T-'({z}) C A is a nonempty
subset of A for every z € A. If g|A is a function of choice, then there is a sequence {a, }nen
in X defined by an+1 = g(A,,) for n € N, where a; € A is an arbitrary point. Thus we
obtain that is a, = T'(an+1) for all n € N, in X. From (A) we have

Alan, any1) = A(T(an+1),T(an+2) > @(A(anﬂa an+2)

foralln € N. Applying Lemma 1 to the sequence {A(ayn, @nt1) }nen, we obtain A(a,, any1) —
0 (n — o00). This implies (from CS-convergence) that the sequence {a,}nen contains a
convergent subsequence {a, i) }ren with limit £ € X. Since z — A(z, T) is lower semicon-
tinuous at &, we obtain

A(E,T€) <liminf A(an(k), @n(r)y—1) = liminf A(an,a, 1) =0,

ie., T¢ = £ We complete the proof by showing that T can have at most one fixed point.
In fact, if £ # n were two fixed points, then A(&,n) = A(TE, Tn) > (A&, n)) > A, 1),
which is a contradiction. The proof is complete.

3. Some localizations. Let X be a topological space, let T : X — X and let B : X — RY.
be a lower semicontinuous function on X.

In this section, we shall introduce the concept of LCS-convergence in a space X; i.e., a
topological space X satisfies the condition of LCS-convergence if {z,},cn is a sequence
in X and B(z,) — 0 (n — oo) implies that {z, }nen has a convergent subsequence.

Theorem 2. (Localization of general expansion). Let T be a mapping of a topological space
X into itself, where X with invariant property and with the condition of LCS-convergence.
If there is a mapping ¢ : RS — RS such that the conditon (p) holds and

(LA) B(Tz) > ¢(Bxz) for every z € X,

where B : X — RS is lower semicontinuous and B(x) = 0 implies Tx = x, then T has a
fized point in X.

Proof. Totally analoguous as in the proof of Theorem 1, we obtain that there exists a
sequence {a, }nen in X defined by a,, = T'(an4+1) for n € N. Thus, from (LA), we have

B(a,) = B(T(an+1) > <P(B(an+1))

for all n € N. Applying Lemma 1 to the sequence {B(a,)}nen, we obtain B(a,) —
— 0(n — o0). This implies (from LCS-convergence) that the sequence {a,}nen contains
a convergent subsequence {an(r)}ren With limit £ € X. Since B : X — R7 is lower
semicontinuous, we have

B(§) < liminf B(an(r)) = liminf B(a,) =0,

which implies that B(§) = 0, i.e., T¢ = £. The proof is complete.
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Corollary 3. (Wang, Gao, Li and Iseki [5]). Let (X,d) be a complete metric space. If T
is a continuous mapping of X onto itself and if there is a real number a > 1 such that

d(T(a:), T2(a:)) > ad(z, Tz)
for each x € X, then T has a fized point in X.

Proof. Let B(z) = d(z,T(x)) and ¢(t) = at (a > 1,t € R} ). Then B(x) is a lower
semicontinuous function (7' is a continuous mapping). Since X satisfies the condition of
invariant property (T' : X — X is onto) and the condition of LCS-convergence (X is a
complete metric space), applying Theorem 2 gives T¢ = ¢ for some £ € X.

Corollary 4. (Wang, Gao, Li and Iseki [5]). Let (X,d) be a complete metric space. If T
is a continuous mapping of X onto itself and if there is a real number a > 1 such that

(W) 4(T(@), 7)) > amin {d(z,y), d(z, T(x)), dy, () }
for all z,y € X, then T has a fixed point in X.

Proof. Let z be an arbitrary point in X. Then, for y = Tz, from the preceding
inequality (W), we have

d(T(m),TQ(a:)) > amin {d(m,T(x)), d(T(x),T2(:n))} - ad(a:,T:v)),

which means that (LA) holds. Hence, for B(z) = d(z,T(z)), ¢(t) = at (a > 1,t € R})
and, since X satisfies the condition of LCS-convergence (X is complete) and the condition
of invariant property (T : X — X is onto), applying Theorem 2, we obtain T¢ = £ for some
e X.

4. Further expansion mappings. In this section, we extend the preceding results and
we describe a class of conditions sufficient for the existence of fixed and other points.

In connection with this, we shall introduce the concept of upper BCS-convergence in a
space X for a bounded above function B : X — R; i.e., a topological space X satisfies the
condition of upper BCS-convergence if {a,(z)}nen is a sequence in X with arbitrary
z € X and B(an(z)) — b (n — oo) implies that {a,(z)}nen has a convergent subsequence
{@n () () }ren which converges to £ € X, where

(Us) B(§) > sup limsup B(an ) (z)).

z€eX k—oo

We are now in a position to formulate our main statement (Expansion Monotone Prin-
ciple) in the following form.

Theorem 3. Let T be a mapping of a topological space X into itself, where X satisfies the
condition of upper BCS-convergence. If

(B) B(Tz) > B(x) for every =z € X,
then there ezists a point € € X such that
(M) B(T¢) = B(€) = a:= sup lim B(b,(z))

rEX Moo

for some sequence {b,(z)}nen in X which converges to {. If B(Tx) = B(x) = « implies
Tx =z, then T has a fized point in X.
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Proof. Let z be an arbitrary point in X. Then, from (B), we have the following
inequalities

(1) - > B(T""'e) > B(T"x) > --- > B(Tx) > B(x)

for every n € NU{0} and for every € X. Thus, since B is bounded above, for the sequence
{B(T™z)}nen, we obtain B(T™x) — b (n — oo) with arbitrary € X. This implies (from
upper BCS-convergence) that its sequence {T™z},cn contains a convergent subsequence
{T"(k)x}keN with limit ¢ € X. Since X satisfies the condition of upper BCS-convergence,
from (1), we have

a:=sup lim B(T"z) > lim B(T"¢) > ---> B(T"¢) >

zEX N0 n—oo
.-+ > B(T€) > B(€) > sup limsup B(I" M) = o,
z€X k—oo

ie., B(T¢) = B(§) = a. This means that (M) holds, where the existing sequence {b,(z)}nen,
is the preceding subsequence of iterates {T" Mz} ren. If B(T€) = B(€) = a implies that
T¢ =&, then € € X is a fixed point of T'. The proof is complete.

We now show that the following our statement is a special case of the above Theorem 3.

Corollary 5. (Taskovi¢ [4]). Let T be a self-map on a complete metric space (X,d).
Suppose that there exists an upper semicontinuous bounded above function G : X — R such
that

(T) d(a:, T(m)) < G(Tz) - G(z)
for every x € X. Then T has a fized point in X .

Proof. Let B(z) = G(z), which is a bounded above and an upper semicontinuous
function on X, and thus with the property (Us). Thus B(Tz) > B(z) for every z € X;
i.e., (B) in Theorem 3. Since X satisfies the condition of upper BCS-convergence (X is a
complete metric space and, for z,, := T"(z), from (T), we have

> d(zi,wis1) < G(ngr) — Gl2),

i=0

where G is a bounded above functional and an upper semicontinuous functional; i.e.,
B(T"z) — b (n — oo) implies that {T"x},en converges to some & € X and the prop-
erty (Us) holds), applying Theorem 3 we obtain B(T¢) = B(§) = a. Thus, from (T), we
obtain

a(&,7(9)) < BTE) = BE) =a - a;

i.e., & =T¢ for some £ € X. The proof is complete.

In connection with the preceding, from the proof of Theorem 3, we obtain, as a directly
extension of Theorem 3, the following general result.

Theorem 4. Let T be a mapping of a topological space X into itself, where X satisfies the
condition of upper BCS-convergence. If

(B) B(Tz) > B(z) for every z € X,
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then there exists a point £ € X such that

(Mk) B(T*¢) =-.- = B(T¢) = B(¢) = a := sup lim B(b,(z))

zeX n— oo

for arbitrary fized positive integer k > 1 and for some sequence {b,(x)}nen in X which
converges to £. If (Mk) implies £ = T, then T has a fized point in X.

As an immediate consequence of this result we obtain our the following statement which
is an extension of Corollary 5.

Theorem 5. (Taskovié [4]). Let T be a self-map on a complete metric space (X,d). Sup-
pose that there exist an upper semicontinuous bounded above function G : X — R and an
arbitrary fized integer k > 0 such that

(Tk) d(z,Tz) < G(Tz) - G(x) + -+ G(T2k+1x) - G(T%m)

and G(T*z) < G(T**'z) fori=0,1,...,k and for every x € X. Then T has a fized point
mn X.

Proof. Since B(z) = G(z) is upper semicontinuous, thus is B with the property (Us).
Let x be an arbitrary point in X. We can show then that the sequence of iterates {T"x},en
is a Cauchy sequence. Let n and m (n < m) be any positive integers. From the property
(Tk), we have

Zd Tz, T 2z) <G(T"z) - G(2),
(e r0s) 26
and thus, since G is a bounded above functional, we obtain the following fact:
m—1 ) )
d(T"m,Tma:) < Z d(T’x,T’Hx) =0 (n,m — o).

Hence {T"z},en is a Cauchy sequence in X and, by completeness, there is £ € X such
that 7™z — £ (n — 00). Therefore, X satisfies the condition of upper BCS-convergence for
B(x) = G(x), where the property (Us) holds.

Also, from the property (Tk), we have B(Tx) > B(z) for every x € X, i.e., (B) in
Theorem 4. Applying Theorem 4, we obtain a form of (Mk), i.e, B(T?**1¢) = B(T?k¢) =
-+ = B(T¢) = B(§) = a, for some ¢ € X. Thus, from the property (Tk), we have

d(6T(©) <GTE) = Ge) + -+ + G(T™¢) - G(T¢) = 2k + D(a - ) =0,

i.e., & =T¢ for some € € X. The proof is complete.
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