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REMOVABILITY OF EXCEPTIONAL SETS ON THE BOUNDARY

FOR SOLUTIONS TO SOME NONLINEAR EQUATIONS�

ISAMU DÔKU

Received February 22, 2000

Abstract. We consider the boundary value problem for nonlinear elliptic equations on

the supposition that the solution assumes boundary values on the boundary given except

on a certain subset. We study the removability of boundary singularities, and give a

suÆcient condition for that. Moreover, the equivalence notion of removable boundary

singularities via probabilistic approach is also discussed.

1. Introduction

Let D be a bounded domain in Rd with C2-boundary @D. K denotes a closed subset of

@D. The uniformly elliptic operator L is de�ned by

L =
1

2

dX
i;j=1

aij(x)
@2

@xi@xj
+

dX
i=1

bi(x)
@

@xi

where the coeÆcients A = (aij), b = (bi) are all bounded continuous functions on D. More

precisely, the H�older continuity with exponent � is assumed, namely, aij ; bi 2 C0;�(D) for

every i; j. We assume, in addition, that aij = aji and

(A:1) aij 2 C2(D); bi 2 C1(D); (A:2)

dX
i;j=1

@2

@xi@xj
aij(x) �

dX
i=1

@

@xi
bi(x):

Our main concern is the problem on the removable singularity for solutions to nonlinear

di�erential equations. We consider the boundary value problem for nonlinear elliptic equa-

tions:

(1) Lu = u� in D (� > 1); with uj@DnK = f:

Here the set K is an exceptional set on the boundary. We would like to know when the

restriction @D nK of the solution u is replaced by the whole boundary @D. Then if that is

possible, K is called the removable boundary singularity (RBS). It is a not only interesting

but also important problem to think about what kind of characterization for removability

of the singularity K is possible. Another interesting problem is on the explosive solution at

the boundary. Consider the following problem:

(2) Lu = u� in D with uj@D =1:

The second expression in the above means that limD3y!x u(y) = 1 for 8x 2 @D. We are

also interested in describing the probabilistic characterization of the solution with explosion

at the boundary. This is another stimulating problem (cf. [LG93]). These two problems

are mutually related, however, we shall treat the former problem only and leave the latter
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one for our next paper. The motivation of our study consists in those investigations on

the uniqueness and exceptional sets on the boundary of the Dirichlet problem, inspired by

Ga�jdenko's remarkable work [G81], and our guiding idea is due to Sheu's results [S94]. For a

function space F , pbF indicates the subspace of F whose elements are all positive bounded

functions.

2. Hausdor� Measure and Removability

The Hausdor� measure of A (� Rd) with parameter s is given as follows. For " > 0, �(")

is a countable open covering (N("), fB(xi; ri)gi) of A such that A �
SN(")
i=1 B(xi,ri) where

B(xi; ri) is an open ball with center xi and radius ri, 0 < ri � ". Then the Hausdor�

measure �s(A) of A is de�ned by

�s(A) = lim
"#0

0
@inf

�

N(")X
i=1

rsi

1
A :

The Hausdor� dimension dimH(A) of A is the supremum of s 2 R+ such that �s(A) > 0.

The interpretation of the problem (1) as classical problem means that the nonnegative

solution u lying in C2(D) satis�es

(3) Lu = u� in D; lim
D3x!y

u(x) = f(y); 8y 2 @D nK;

for f 2 pC(@D). Let dx be the Lebesgue measure on Rd, and n denotes the unit exterior

normal vector to the boundary @D. S(dy) is the surface measure on @D. We set �(dx) =

p(x)dx, where p(x) is the distance function from x to the boundary @D. The �rst assertion

is a result on nonremovable singularity.

Theorem 1. For some positive number (�), � > 1 satisfying that  is monotone decreasing

in � and  % 1 as � & 1, there exists a family of solutions fu � u� � 0; � > 1g of the

boundary value problem (3) such that d > (�) and �s(K) > 0 for some s 2 (d � (�),

d� 1], (� > 1).

We defer for the moment giving the proof of the theorem. Instead, we shall introduce below

several auxiliary results. The next two propositions are well-known, e.g. see [BM92].

Proposition 2. For every f 2 pbC(@D), there exists the unique solution u of (3) with

@D nK replaced by @D.

Proposition 3. Let u be the solution stated in Proposition 2. u is the unique solution of

the integral equation of the form

u(x) +

Z
D

gL(x; y)u
�(y)dy =

Z
@D

kL(x; y)f(y)S(dy); for 8x 2 D;

where gL (resp. kL ) is the Green (resp. Poisson ) kernel for the operator L in D.

Lemma 4. Let h be an L-harmonic function in D satisfying h 2 L�(�(dx)). Then there

exists a nonnegative solution in D for the integral equation

(4) u(x) +

Z
D

gL(x; y)u
�(y)dy = h(x); 8x 2 D:

Proof. Let g
(n)
L (x; y) be a sequence of the Green functions for L in the domain Dn, where

Dn denotes a bounded regular domain such that Dn � Dn+1, and Dn % D as n!1. By
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virtue of Proposition 2 and 3, for each n there exists the unique nonnegative solution un in

Dn satisfying

(5) un(x) +

Z
Dn

g
(n)
L (x; y)u�n(y)dy = h(x); 8x 2 Dn:

Note that �uk = u�k in Dn holds for some k as far as k � n. Hence it follows immediately

from the Maximum principle (cf. Theorem 0.5, p.113 in [Dy91]) that the limit u(x) =

limn!1 un(x) exists for all x 2 D. Notice that (5) is, in fact, valid even with Dn replaced

by D for all x 2 D and all n, only if we extend un(x), g
(n)
L (x; y) trivially for x ( or y )

outside Dn. Take " > 0 small enough such that �U"(x) � D for �xed x 2 D and gL(x; y)

� c(x) � p(y) for all y 2 D n U"(x), where U"(x) denotes an "-neighborhood of the point x.

From our major assumption, we haveZ
D

gL(x; y)h
�(y)dy �

Z
U"(x)

gL(x; y)h
�(y)dy +

Z
DnU"(x)

c(x)p(x)h�(y)dy <1:

Since limn!1 g
(n)
L (x; y)u�n(y) = gL(x; y)u

�(y) � gL(x; y)h
�(y) for all y 2 D, the assertion

yields from the Lebesgue convergence theorem applied to (5). q.e.d.

Lemma 5. Let h be the same L-harmonic function as stated in Lemma 4. Then the

maximal solution of Lu = u� in D dominated by h satis�es (4).

Proof. The assertion is easily obtained by virtue of the Maximum principle, hence omitted;

see e.g. [DK96b]. q.e.d.

Proof of Theorem 1. First of all, assume that �s(K) > 0. Take a measure � 2 MF (K) such

that �(B) � rs, for any ball B in Rd with radius r. For the Poisson kernel kL(x; y) for the

elliptic operator L ([DK96a]), the function

K̂(x) :=

Z
K

kL(x; y)�(dy)

is L-harmonic in D and vanishes on @D nK. We show that K̂ 2 L�(�(dx)). By virtue of

Maz'ya-Plamenevsky's argument(1985), it follows from Maz'ya's lemma(1975) that there

exists a constant C > 0 (depending on L and D) such that kL(x; y) < C � p(x) jx � yj�d

holds for all x 2 D, y 2 @D, cf. [Dy94], [DK96a]. By this estimate, it is suÆcient to show

that

(6) l(x) :=

Z
@D

�
p(x)=jx� yjd

�
�(dy) 2 L�(�(dx)):

To show (6) can be attributed to �nding a constant C such that

(7)

Z
D

l(x)g(x)�(dx) � C for any g > 0

satisfying that
R
D
fg(x)g��(dx) = 1 with 1=�+ 1=� = 1. Consider the function

F (z) =

Z
D

Z
K

fg(x)g�(1�z)p(x)

jx� yjs=�+fd�(�)g=�+(d�s+1)z+1
�(dy)�(dx):

It is easy to verify that jF (1+ ib)j <1 (technically, see the estimation method in the proof

of Theorem 6.2, p.100, [C91]). Thus we attain (7). On this account, the conclusion yields

from a routine work with the maximum principle and a discussion of domination of the

maximal solution by some L-harmonic function. Indeed, it goes similarly as the proof of

Theorem 1 (A), p.705, [S94], together with Lemma 4, Lemma 5 and the maximal solution

argument (cf. [DK96b]). q.e.d.
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3. Removable Exceptional Sets on The Boundary

Under the assumptions (A.1) and (A.2), the operator L has an expression of the divergence

form

Lu =

dX
i;j=1

@

@xj

�
aij(x)

@

@xi
u

�
�

dX
i=1

@

@xi
(b̂i(x)u)� c(x)u

with b̂i = �bi +
P

j @jaij , c = �
P

i @ib̂i, @i = @=@xi, (i = 1; 2; � � � ; d). Then notice that

aij ; b̂i 2 C1(D) and c � 0. The adjoint of L is given by

L�u =
X
i;j

@i(aij@ju) +
X
i

b̂i@iu� cu:

Now we shall introduce another interpretation of (1), due to the Gmira-V�eron formulation

[GV91]. That is, the solution is a nonnegative function u 2 C2(D) [ C( �D nK) satisfying

(8)

Z
D

f�u � L�g + u�ggdx+

Z
@D

f
@g

@n
S(dy) = 0

for 8 g 2 C1;1( �D) \W 1;1
0 (D) with the compact support which is contained in �D nK. The

second result asserts the existence of the solution u of (1) with admissible region @D nK

replaced by the whole boundary @D.

Theorem 6. Let u be a solution of (4). If dimH(K) < d� (�) and

u 2 L
1

(�)�1
+1
(dx)

\
L�(�(dx));

then K is the removable boundary singularities (RBS).

Remarks. The above-mentioned result is an extension of Sheu's theorem (1994) (cf. Theo-

rem 2, p.702, [S94] ), where only the simple case of L = � was investigated. It is interesting

that the above theorem suggests that the Hausdor� dimension for removability of excep-

tional sets on the boundary may possibly attain the optimal one in the sense of relative

relation between space dimension and nonlinearity parameter.

Proof. The proof of Theorem 6 is greatly due to Chabrowski's lemma. Put � = d� (�).

K is a closed set in @D such that ��(K) = 0. Consequently, for " > 0 there can be found

a covering fG
["]
n ; n = 1; � � � ; N(")g of K such that (i) G

["]
n is a d-dimensional closed cube

with edge of length an = 2�kn < ", kn 2 Z+, and a1 � a2 � � � � � aN("); (ii) (G
["]
n )Æ \

(G
["]
m )Æ = ; if n 6= m; (iii)

PN(")
n=1 a�n � 1. This fG

["]
n g is called the standard covering of K

corresponding to " if
N(")X
n=1

an
d�(�)

! 0

as "& 0. We need the following lemma.

Lemma 7.(Chabrowski (1991)) Let fG
["]
n g be the standard covering of K corresponding to

some " > 0. Then there exists a family of functions fgngn such that

(a) gn 2 pC10 (Rd); suppgn � 2Gn for 8n (b) 0 �
PN(")

n=1 gn(x) � 1 for 8x 2 Rd

(c)
P

n gn(x) = 1 for 8x 2 [
N(")
n=1 (3=2)G

["]
n

(d) there exists a constsnt c = c(d) > 0 such that for x 2 Rd, n = 1; � � � ; N(")������
@

@xi

nX
j=1

gj(x)

������ �
c

an
;

������
@2

@xi@xk

nX
j=1

gj(x)

������ �
c

a2n
; (i; k = 1; � � � ; d)
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(cf. Lemma 6.1, p.91, [C91]).

For an arbitrary " > 0, choose fgngn as in Lemma 7. Put kp(x) =
Pp

j=1 gj(x), and hp(x)

= 1� kp(x) for any x 2 Rd, (0 � p � N � N(")). Take g 2 C1;1( �D) \ W
1;1
0 (D) with

compact support in �D. Since g � hN 2 C1;1( �D) \ W
1;1
0 (D) with supp(g � hN ) ( which is

contained in �D nK ), by (8) we obtain

(9)

Z
D

f�u � L�(ghN )gdx+

Z
D

u� � ghNdx = �

Z
@D

f �
@(ghN)

@n
S(dy):

Clearly it follows that

(10) lim
"!0

Z
D

u� � ghNdx =

Z
D

u� � gdx; and

(11) lim
"!0

Z
@D

f
@(ghN)

@n
dS =

Z
@D

f
@g

@n
dS:

Since L�(ghN) =
P

i;j @i(aij@j(ghN )) +
P

i b̂i@i(ghN ) �c(ghN) with b̂i = �bi+
P

j @jaij

and c = �
P

i @i b̂i, we have

I1 :=

Z
D

u �
X
i;j

@i (aij � @j [ghN ]) dx

=

Z
D

u
X
i;j

(@iaij)(@j [ghN ])dx +

Z
D

u
X
i;j

aij(@
2
ij [ghN ])dx � I11 + I12:

As to I11 it suÆces to estimate the integral of the summation of those terms like (@iaij)

(@jg)hN , (@iaij)g� (@jhN ). Likewise, as to I12 we need to consider the sum of the terms

@2ijg � hN , @jg � @ihN , @ig � @jhN , and g � @2ijhN . Set

I2 :=

Z
D

u �
X
i

b̂i (@i[ghN ]) dx = �

Z
D

u
X
i

bi � @i[ghN ]dx+

Z
D

u
X
i;j

(@jaij) � @i[ghN ]dx:

As for I2, we have to take care of the terms @ig �hN + g � @ihN multiplied by bi or by @jaij .

Moreover, we put

I3 :=

Z
D

c[ghN ]dx =

Z
D

X
i

@ibi � [ghN ]dx �

Z
D

X
i;j

(@2ijaij) � [ghN ]dx:

Because it is rather longsome to discuss all of the above integral terms, we shall mention

below only two of them. Those calculations essentially explain almost everything involved

with the others. For instance, let us consider the integral I12� =
R
u�
P

i;j aij@ig� @jhN dx.

Since

supp

0
@N(")X

j=1

gj(x)

1
A �

N(")[
j=1

2G
["]
j

from the condition (a) of Lemma 7, we have supp(hN (x)) � [Nj=1 2G
["]
j . By the assumptions

on the coeÆcients A = (aij), we can �nd some constant C > 0 and I12� is able to be

estimated by

(12) C

Z
D\([N

j=12G
["]

j
)

u �

dX
i=1

����@hN@xi

���� dx
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because g 2 C1;1( �D). For simplicity, set D(G�; N; ") := D\ ([Nj=1 2G
["]
j ), and

A :=

Z
D(G

�
;N;")

u
1+ 1

(�)�1 dx; B :=

Z
D(G

�
;N;")

 
dX
i=1

����@hN@xi

����
!(�)

dx:

An application of the H�older inequality to (12) reads Eq:(12) � C� A1�1=(�)� B1=(�). Note

that A ! 0 as " ! 0 since u 2 L1+1=f(�)�1g(dx) and the Lebesgue measure of [i2G
["]
i

vanishes as "! 0. So that, if B is bounded, then we know that I12� becomes null as " goes

to zero. The boundedness of B yields from the following estimate. Put

UN := 2G
["]
N ; and Up := 2G["]

p �

N(")[
i=p+1

2G
["]
i ; (1 � p � N � 1):

Notice that hN = hp on Up (p = 1; 2; � � � ; N). On this account, we can deduce that

B =

Z
D\([N

p=1Up)

 
dX
i=1

����@hN@xi

����
!(�)

dx � C()

N(")X
p=1

dX
i=1

Z
D\Up

����@hN@xi

����
(�)

dx

� C 0(; d)

N(")X
p=1

ad�(�)p � C 0(; d);

by employing (d) of Lemma 7 and the condition (iii) of the covering fG
["]
n g of K. Next

let us consider the integral I12� =
R
u� g

P
i;j aij (@

2
ijhN ) dx. Since g 2 C1;1( �D), we can

estimate similarly

(13) I12� � Ckg=pk1

Z
D

u
X
i;j

@2ijhNp(x)dx � C1kukL�(d�) �

0
B@Z

D

������
X
i;j

@2ijhN

������
�

�(dx)

1
CA
1=�

by making use of H�older's inequality with 1=�+1=� = 1. The same discussion in estmating

(12) is valid, too, for (13).
R
D\([n2Gn)

u� d� vanishes as " tends to zero, because the

covering fG
["]
n g is standard. Thus we obtain that I12� ! 0 as "! 0. The computation goes

almost similarly for the rest of other terms. Consequently we obtain

I1 !

Z
D

u
X
i;j

(@iaij)@jgdx+

Z
D

u
X
i;j

aij@
2
ijgdx; I2 !

Z
D

u �
X
i

b̂i(@ig)dx;

and I3 !
R
D
c � gdx as "! 0. This concludes the assertion (cf. [D99a]).

4. Probabilistic Characterization

Next we shall discuss the equivalence problem to the RBS. Let � = (�t;�x) be the L-

di�usion process. � = infft > 0; �t =2 Dg is the �rst exit time of the process � from the

domain D. A boundary element x 2 @D is called a regular point if �x(� = 0) = 1 holds

for the �rst exit time � . When we say that the domain D is regular, we mean that D has

a regular boundary. MF (R
d) denotes the totality of �nite measures on Rd. h�; fi indicates

the integral of f with respect to the measure d�. Let X = (
;F ; Pm, Xt;Ft) be a �nite

measure valued branching Markov process associated with the equation L = Lu�u� = 0 in

the sense of Dynkin [Dy94]. Alternatively, for each m 2 MF (R
d), there exists a probability

measure Pm on (
;F) such that X0 = m, Pm-a.s., and for ' 2 Dom(L)

Mt(') := hXt; 'i � hX0; 'i �

Z t

0

hXs; L'ids; 8t � 0
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is a continuous (Ft)-martingale under Pm, and its quadratic variation process is given by

hM:(')it =

Z t

0

hXs; '
2
ids; 8t � 0; Pm � a.s.

The support suppXt of a random measure Xt for each t > 0 is the minimal closure of closed

sets G � Rd such that Xt(G
c) = 0 holds. The range of X is de�ned by

R(X) :=
[
">0

0
@[
t�"

suppXt

1
A
closure

:

Note that R(X) is a random set. We say that a set F is R-polar if Px(R(X) \F 6= ;) = 0

holds for 8x =2 F . Similarly we may de�ne the concept of boundary polar set. We say that

a set K is @-polar if Px(R( ~XD) \K 6= ;) = 0 holds for 8x =2 K, where ~XD is a part of X

in the domain D [Dy91](or see [D99b]).

Theorem 8.([D99c]) Let D be a bounded regular domain in Rd. Then K is the RBS if and

only if K is @-polar.

Proof. The assertion yields directly from the result of [DK96a](see also [BP84], [D99b]).

So we suppress the details of the proof. Instead, we shall rather give below only the basic

idea, key point and outline. Let 1 < � � 2 because of the restriction on the corresponding

process in the probability theory which we are relying on. From the argument in Theorem

1, the existence of singularity is allowed if d > (�) for � > 1. It is well known that the sets

A (� Rd) with dimH(A) > d�(�) cannot be S-polar. Corollary in Dynkin(1991) suggests

that @-polar K is the RBS together with Theorem 6, because the S-polarity induces the

R-polarity and then dimH(K) < d � (�). We call � = d � (�) the critical dimension

for R-polarity. We write Cap@Dx for the capacity on the boundary @D associated with the

range R( ~XD) under the measure Px. As a matter of fact, by Choquet's capacity theory, �

is @-polar i� Cap@Dx (�) = 0 for all x 2 D. While, for the Bessel capacity Capr;p, the class

of R-polar sets for any (L; �)-superdi�usion X is identical to the class of null sets of the

capacity Cap2;f �

��1
g. Based upon this result, it can be deduced that the class of @-polar

sets is the same as the class of null sets for the Poisson capacity CapL�=(��1), where

CapLp (F ) := sup

(
�(F );

Z
D

m(dx)

�Z
F

kL(x; y)�(dy)

� p

p�1

� 1

)

for a compact set F with � 2 MF (K) and an admissible measure m(dx) on D (cf. The-

orem 1.2a, [DK96a]). Moreover, the above-mentioned class also coincides with the class

of null sets for the Riesz capacity Cap@2=�;f�=(��1)g. According to the Dynkin-Kuznetsov

general theory for the removability of singularity, we can show that � is a weak RBS if

Cap@2=�;f�=(��1)g(�) = 0: Since every weak RBS is @-polar, the assertion of Theorem 8 is

established via the argument on the explicit representation of solution u(x) = � logPÆx exp

(� h �X� ; fi) to the problem (1), where �X� (B) := X� (R+ � B), 8B 2 B(Rd) with the �rst

exit time � from D (cf. [Dy91], [Dy94], [D99b]).
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