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Abstract. Free convection 
ow near an in�nite vertical plate of an electrically con-

ducting 
uid of Prandtl number unity has been considered when the 
ow takes place

under the combined in
uence of heat 
ux at the boundary and an externally applied

magnetic �eld. For the impulsive and accelerated motions of the boundary, uni�ed

closed form analytical solutions have been obtained for the 
uid velocity and the skin

friction corresponding to the cases of magnetic �eld �xed relative to the 
uid or to the

boundary. As a special case, an approximation of the solution in terms of exponential

functions is also discussed.

1. Introduction. Laminar free convection at a vertical wall is of interest in many ap-

plications such as cooling of nuclear reactors, heat exchangers, solar energy collectors and

crystal growth, among others. As the magnetic �eld is known to be an eÆcient mechanism

through which 
ow and heat transfer in electrically conducting 
uids can be controlled,

the 
ow and heat transfer features of such media also �nd applications in the design of

magnetohydrodynamic (MHD) generators, MHD 
ow meters and MHD pumps. When an

electrically conducting 
uid 
ows under the in
uence of an externally applied magnetic

�eld, the Navier-Stokes equations governing the resulting MHD 
ow are highly coupled and

non-linear. General features of the 
ow are thus describable only in terms of numerical

solutions. However, exact solutions of the Navier-Stokes equations can be obtained for

some special cases when the e�ects of the quadratic convection terms are negligible. In this

paper, we consider one such problem in which the 
uid 
ow is assumed to be generated by

the motion, in its own plane, of an in�nite vertical plate bounding the 
uid as well as heat


ux at the plate.

The boundary layer 
ows of 
uids past 
at plates have been discussed extensively in

literature due largely to their relative simplicity of analyses coupled with their utility as

idealized models for the studies of more complicated 
uid-body interactions. When the


uid 
ow takes place near regular boundaries such as the vertical plate considered here, it

can be shown that the governing equations reduce to linear partial di�erential equations

and can be analyzed exactly, in many cases. The solutions of the resulting equations

are still dependent on the type of initial and boundary conditions to be imposed. For

instance, Gebhart et al. [1] have given a detailed account of the implications of di�erent

types of boundary conditions for convection 
ows. The solutions of hydromagnetic free

convection 
ows near plates of in�nite extent have been discussed by several authors (see,

e.g., [2 { 6]) under di�erent physical conditions. The objective of the present work is to

present a uni�ed closed form solution for the unsteady 
ow of an electrically conducting 
uid
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under the in
uence of an external magnetic �eld when the 
ow takes place near an in�nite

vertical wall which is subject to continuous motion as well as heat 
ux. Since the in
uence

of the magnetic �eld on the 
ow features is known to be not uniform in the sense that

the velocity pro�les may not be similar for the cases of magnetic lines of force being �xed

relative to the 
uid or to the moving boundary, we shall consider these two cases and obtain

the corresponding solutions. The closed form exact solutions have been presented for two

types of plate motion: (i) impulsive and (ii) accelerated. The solutions have been presented

for the special class of 
uids of Prandtl number, Pr, equal to unity. This corresponds to

those 
uids whose velocity and thermal boundary layer thicknesses are of the same order of

magnitude. This simplifying assumption on Pr has enabled us to present the exact solutions

for the boundary layer velocity variable in terms of reasonably simple analytical expressions

involving exponential and complemetary error functions. The solution of the unsteady 
ow

problem has been obtained using Laplace transforms. Furthermore, using an approximation

of the complementary error function [7], it is indicated that the transient solution can be

presented in an exponential form. This solution, though approximate, has been shown to

possess the qualitative features of the original solution.

In Section 2, the governing equations have been presented with the relevant initial and

boundary conditions. These have been solved exactly for the two special types of the

boundary motion mentioned above. The solutions for the boundary layer velocity variables

have been used to calculate the skin frictions. The e�ects of magnetic �eld and buoyancy

force on the boundary layer 
ow and skin friction have been discussed in Section 3. Following

[7], an approximation of the exact solution in terms of exponential functions has also been

discussed.

2. Governing Equations and Solution. The physical situation corresponds to that of

the unsteady two-dimensional 
ow of an electrically conducting 
uid of Prandtl number

equal to unity past an in�nite vertical 
at plate which is assumed to be non-conducting.

With respect to an arbitrary origin O on this planar wall, the axis Ox0 is taken along the

wall in the upward direction and the axis Oy0 is taken perpendicular to it into the 
uid. For

times t0 � 0, the plate and the 
uid medium are at rest and at the constant temperature

T 01. At time t0 > 0, the plate is set into motion with a velocity proportional to t0n, and
simultaneously, heat is also supplied to the plate at a constant rate. The 
ow takes place

under the in
uence of an external magnetic �eld of constant strength (0; By; 0) applied in the
y0 direction. We assume that magnetic Reynolds number is very small which corresponds

to negligible induced magnetic �eld compared to externally applied one. Two di�erent 
ow

situations will be considered here with respect to the magnetic force. The �rst corresponds

to the case when the magnetic lines of force are �xed relative to the 
uid, and the other

when these are �xed relative to the boundary. These two cases will, however, be embedded

into a single momentum equation. As is common in 
ow problems past 
at plates of the

type considered here, we further assume that the convective and pressure gradient terms in

the momentum and energy equations are negligible. Moreover, as a result of the boundary

layer approximations on the 
ow variables, the physical variables become functions of the

time variable t0 and the space variable y0 only. Thus, when the magnetic �eld is �xed

relative to the 
uid, the usual momentum and thermal boundary layer equations can be

written in the form

@u0

@t0
= �

@2u0

@y02
+ g�(T 0 � T 01)� �B2

y

�
u0(1)

@T 0

@t0
=

k

�cp

@2T 0

@y02
(2)
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where u0 is the velocity in the x0 direction, T 0 is the temperature of the 
uid, g the accel-

eration due to gravity, � the volumetric coeÆcient of thermal expansion, � the kinematic

viscosity, � the density, k the thermal conductivity and cp is the speci�c heat of the 
uid

at constant pressure.

When the magnetic �eld is �xed relative to the boundary moving with velocity Ut0n,
where U is a constant, the momentum equation (1) takes the form

@u0

@t0
= �

@2u0

@y02
+ g�(T 0 � T 01)� �B2

y

�

�
u0 � Ut0

n
�

(3)

Equations (1) and (3) can be combined into the single equation

@u0

@t0
= �

@2u0

@y02
+ g�(T 0 � T 01)� �B2

y

�

�
u0 � �Ut0

n
�

(4)

where

� =

�
0; if By is �xed relative to the 
uid

1; if By is �xed relative to the plate.
(5)

Equations (2) and (3) are to be supplemented by the initial and boundary conditions

u0 = 0; T 0 = 0; for y0 � 0 and t0 � 0

u0 = Ut0
n
;

@T 0

@y0
= � q

k
at y0 = 0 for t0 > 0

u0 ! 0; T 0 ! T 01 as y0 !1 for t0 > 0(6)

where q is the heat 
ux per unit area at the plate. The 
ow described by equations (2), (4)

and (6) is quite general in that the initial motion of the vertical plate is given by a power

law in the time variable. As our objective is to obtain the solution in terms of certain non-

dimensional parameters characterising the magnetic and buoyancy forces, it is necessary

to non-dimensionalise the governing equations. This would necessitate solving the problem

for speci�c values of n which, in turn, introduces separate non-dimensionalisations of the

variables. Herein, we propose to obtain the explicit solutions for two types of boundary

motion which are commonly discussed in literature, namely, impulsive and accelerated mo-

tions. These correspond to n = 0 and n = 1, respectively. As noted before, the solution

will be presented for the case Pr = 1.

Impulsive Motion. In this case, we introduce the non-dimensional quantities

y = Uy0=�; t = U2t0=�; u = u0=U

T = kU(T 0 � T 01)=(�q); Pr = cp��=k

m0 = ��B2
y
=(�U2); G0 = qg��2=(kU4)(7)

In the above, Pr is the Prandtl number, and m0 and G0 are the magnetic and buoyancy

parameters, respectively. Using equation (7), equations (2) and (4) can be expressed, when

Pr = 1, in the dimensionless forms

@T

@t
=

@2T

@y2
(8)

@u

@t
=

@2u

@y2
�m0(u� �) +G0T(9)
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The initial and boundary conditions become

u = 0; T = 0 for y � 0 and t � 0

u = 1; @T=@y = �1 at y = 0 for t > 0

u! 0; T ! 0 as y !1 for t > 0(10)

In order to solve equation (9) subject to the conditions (10), we have to �rst obtain

the temperature distribution from equation (8). The exact solutions will be obtained using

Laplace transforms. De�ning the transform variables

�u(y; s) =

Z 1

0

u exp(�st) dt; T (y; s) =

Z 1

0

T exp(�st) dt

and taking the Laplace transforms of equations (8) and (9) will result in a set of (ordinary)

di�erential equations for the transformed functions in the independent variable y. On

solving them with the corresponding transformed boundary conditions, we obtain

T (y; s) = s�3=2 exp
�
�y ps

�
(11)

�u(y; s) =
G0

m0

h
T (y; s)� s�3=2 exp

�
�y ps+m0

�i

+ �

�
m0

s (s+m0 )
+

exp (�y ps+m0 )

s+m0

�
+ (1� �)s�1 exp

�
�y ps+m0

�
(12)

On inversion of equations (11) and (12), we obtain [8, 9]

T (y; t) = 2

r
t

�
exp

�
�y2

4t

�
� y erfc

�
y

2
p
t

�
(13)

u(y; t) = u
(0)
1 (y; t) + u

(0)
2 (y; t) + u

(0)
3 (y; t) + u

(0)
4 (y; t)(14)

where

u
(0)
1 (y; t) = G0 T (y; t)=m0

u
(0)
2 (y; t) = � G0

2m0

p
�

Z
t

0

'�(y; �) + '+(y; �)p
t� �

d�

u
(0)
3 (y; t) = �

�
1� exp (�m0t) + exp (�m0t) erfc

�
y

2
p
t

��

u
(0)
4 (y; t) =

1� �

2
['�(y; t) + '+(y; t)]

'�(y; t) = exp(�y pm0 ) erfc

�
y

2
p
t
�pm0t

�

and erfc denotes the complementary error function de�ned by

erfc(x) = 1� erf(x); erf(x) =
2p
�

Z
x

0

exp
�
��2

�
d�

In the above, we note that u
(0)
2 (y; t) is given in terms of a convolution integral. It can also

be expressed in the form

u
(0)
2 (y; t) = � G0

m0

p
�

Z p
t

0

[��(y; z; t) + �+(y; z; t)] dz(15)
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where

��(y; z; t) = exp(�y pm0 ) erfc

�
y

2
p
t� z2

�
p
m0(t� z2)

�

Equation (14) gives the velocity distribution in the boundary layer. An associated

quantity of practical interest in the boundary layer 
ow is the skin friction. Denoting it by

�
�
= � @u=@yj

y=0

�
, we can write

� = �
(0)
1 + �

(0)
2 + �

(0)
3 + �

(0)
4(16)

where

�
(0)
1 = G0=m0

�
(0)
2 =

2G0

�m0

Z p
t

0

f1(z; t)� f2(z; t)p
t� z2

dz

�
(0)
3 =

�p
�t

exp (�m0t)

�
(0)
4 = (1� �)

�p
m0

�
1� erfc

�p
m0t

�	
+

exp (�m0t)p
�t

�

f1(z; t) =
p
�m0 (t� z2)

n
erfc

�p
m0 (t� z2)

�
� 1

o
f2(z; t) = exp

�
m0

�
z2 � t

�	

Accelerated Motion. In this case u0 = Ut0 at y0 = 0 for t0 > 0, and the non-dimensional

variables are de�ned by

y = y0(U=�2)1=3; t = t0(U2=�)1=3

u = u0=(�U)1=3; T = kU1=3(T 0 � T 01)=(q�2=3)

m1 = ��1=3B2
y=(�U

2=3); G1 = qg��2=3=(kU4=3)(17)

As before, the dimensionless parametersm1 and G1 represent the e�ects of the magnetic

and buoyancy forces, respectively, under the modi�ed boundary motion. The momentum

equation to be solved is

@u

@t
=

@2u

@y2
�m1(u� �t) +G1T(18)

The solution procedure runs parallel to the case of impulsive motion discussed above, and

is not repeated, for brevity. In view of the boundary condition u = t at y = 0, �u(y; s) in
this case assumes the form

�u(y; s) =
G1

m1

h
T (y; s)� s�3=2 exp

�
�y ps+m1

�i
+

�m1

(s+m1)s2
�
1� exp

�
�y ps+m1

��
+ s�2 exp

�
�y ps+m1

�
(19)

Taking the inverse transform of equation (19), it can be shown that

u(y; t) = u
(1)
1 (y; t) + u

(1)
2 (y; t) + u

(1)
3 (y; t) + u

(1)
4 (y; t)(20)
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where

u
(1)
i
(y; t) = u

(0)
i
(y; t); (i = 1; 2)

u
(1)
3 (y; t) =

�

m1

�
1

2
f'�(y; t) + '+(y; t)g

+ m1t� 1 + exp (�m1t) erf

�
y

2
p
t

��

u
(1)
4 (y; t) =

1� �

2

��
t� y

2
p
m1

�
'�(y; t)

+

�
t+

y

2
p
m1

�
'+(y; t)

�

and it is understood that u
(1)

i
(y; t); (i = 1 to 4) will have G1 and m1 in place of G0 and

m0, respectively. The skin friction � is given by

� = �
(1)
1 + �

(1)
2 + �

(1)
3 + �

(1)
4(21)

where, as in the case of velocity, �
(1)
i

= �
(0)
i

; (i = 1; 2), and

�
(1)
3 =

�p
m1

�
1� erfc

�p
m1t

��
�
(1)
4 = (1� �)

��
1 + 2m1t

2
p
m1

��
1� erfc

�p
m1t

�	

+

r
t

�
exp(�m1t)

#

3. Numerical Results. In this section, we have presented the computed values of the

exact solutions obtained in the previous section for speci�c values of the magnetic and buoy-

ancy parameters. For simplicity and uniformity of presentation, the parameters have been

given common values for both impulsive and accelerated motions of the plate, although their

de�nitions in equations (7) and (17), respectively, di�er due to the non-dimensionalisation

processes. We shall thus use them without the suÆxes in this section. The computed results

are shown in Figs. 1 and 2, and Tables 1 and 2. The computation of the velocity variables

given by equations (14) and (20), and the skin frictions given by equations (16) and (21)

requires the evaluation of the convolution integrals for the components u2(y; t) and �2(t) as
well as complementary error functions. The integrals were evaluated using Simpson's rule.

The arguments of the complementary error functions are real for the present problem. The

complementary error function is de�ned in terms of an integral [see after equation (14)]

which, in turn, can be expressed in terms of the in�nite series

erfc(x) = 1� 2p
�

1X
n=0

(�1)nx2n+1
n!(2n+ 1)

(22)

A FORTRAN program was written to compute the boundary layer velocity and skin

friction, and the velocity pro�les in Figs. 1 and 2 are the Excel plots of these computed

values. Figure 1 shows the temporal and spatial variations of the boundary layer velocity

for the impulsive motion of the boundary while Fig. 2 shows the corresponding results for
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Figure 1: Velocity u due to impulsive start of the plate. (G = 1:0, m = 0:5)
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Figure 2: Velocity u due to accelerated start of the plate. (G = 1:0, m = 0:5)
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the case of accelerated motion. The curves also show the e�ects of the magnetic �eld when

it is �xed relative to the 
uid (� = 0) or �xed relative to the boundary (� = 1). It is seen

that the magnitude of the boundary layer velocity is always less in the former case than

in the latter. The transient motion of the 
uid is such that the velocity decreases from its

initial value at the boundary to its free-stream stationary value through layers of di�erent

depths, and the boundary layer thicknesses depend on the initial conditions as well as the

parameter values. As far as the temporal variations are concerned, the velocity increases

gradually in the boundary layer until it attains its steady state pro�le.

The e�ect of the magnetic �eld on the 
uid 
ow is shown in Table 1 for both types

of motion. It is seen that when the magnetic �eld is �xed relative to the 
uid, it has a

diminishing e�ect on the 
uid velocity, and the reverse occurs when it is �xed relative to

the plate. Although not shown in the table, for brevity, this feature was seen to be valid

for di�erent values of G. The change in the velocity pro�les is a consequence of the force

exerted by the magnetic �eld on the 
uid.

Table 1: Velocity u when G = 1:0, t = 0:1

u [Impulsive] u [Accelerated]

y � = 0 � = 1 � = 0 � = 1

m m m m

0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5

0.0 1.000 1.000 1.000 1.000 0.100 0.100 0.100 0.100

0.2 0.656 0.650 0.662 0.676 0.050 0.050 0.050 0.052

0.4 0.373 0.366 0.381 0.406 0.023 0.022 0.023 0.025

0.6 0.181 0.176 0.190 0.222 0.009 0.009 0.009 0.011

0.8 0.074 0.072 0.084 0.120 0.003 0.003 0.003 0.005

1.0 0.025 0.025 0.035 0.073 0.001 0.001 0.001 0.003

The in
uence of the magnetic �eld and the bouyancy force on the shear rate at the

boundary is shown in Table 2. It may be noted here that the analytical expressions for the

skin friction given by equation (16) cannot be used for accurate computation because the

integral in �2 is unde�ned when z =
p
t. However, on integrating by parts, the sum of the

�rst and second terms of � in equation (16) can be written in the form

�
(0)
1 + �

(0)
2 =

2Gp
�m0

Z p
t

0

n
erfc

�p
m0 (t� z2)

�
� 1

o
dz

+
4G

�

Z p
t

0

zf2(z; t) arcsin
�
z=
p
t
�
dz(23)

In Table 2, we have presented two values for each � . The values in the parentheses

correspond to an exponential approximation of the complementary error function, which is

explained later in this section. From Table 2, we note the opposite e�ects of the magnetic

�eld on the skin friction depending on its mode of application as in the case of velocity.

The skin friction when � equals to zero is always larger than when it is equal to unity. This

is true for both impulsive and accelerated motions. The e�ect of the magnetic �eld is to

increase the skin friction when it is �xed relative to the 
uid and the reverse occurs when

it is �xed relative to the boundary. For the 
uids of the type considered here (Pr = 1:0),
the skin friction decreases with G. Also, it decreases with time for impulsive motion and

increases for accelerated motion of the boundary.
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Table 2: Skin friction �

G t m � [Impulsive] � [Accelerated]

� = 0 � = 1 � = 0 � = 1

0.5 0.1 0.1 1.7771 1.7416 0.3332 0.3308

(1.7777) (1.7434) (0.3288) (0.3205)

0.3 1.8126 1.7067 0.3356 0.3285

(1.8115) (1.7080) (0.3326) (0.3215)

0.5 1.8479 1.6724 0.3381 0.3263

(1.8459) (1.6735) (0.3357) (0.3211)

0.2 0.1 1.2370 1.1868 0.4582 0.4515

(1.2387) (1.1899) (0.4540) (0.4406)

0.3 1.2870 1.1386 0.4651 0.4452

(1.2867) (1.1415) (0.4628) (0.4395)

0.5 1.3364 1.0922 0.4720 0.4390

(1.3355) (1.0936) (0.4707) (0.4359)

1.0 0.1 0.1 1.7523 1.7168 0.3084 0.3060

(1.7548) (1.7204) (0.3059) (0.2975)

0.3 1.7879 1.6819 0.3109 0.3038

(1.7881) (1.6846) (0.3092) (0.2981)

0.5 1.8232 1.6477 0.3134 0.3016

(1.8223) (1.6499) (0.3121) (0.2975)

0.2 0.1 1.1872 1.1371 0.4085 0.4018

(1.1920) (1.1433) (0.4074) (0.3940)

0.3 1.2375 1.0891 0.4156 0.3957

(1.2391) (1.0930) (0.4152) (0.3919)

0.5 1.2871 1.0430 0.4227 0.3898

(1.2876) (1.0456) (0.4228) (0.3880)

We close this section with a comment on a possible approximation of the solutions

obtained in Section 2 in terms of elementary functions. We note that equations (14) and (20)

for the velocity, and equations (16) and (21) for the skin friction involve both exponential

and complementary error functions. As mentioned before, the latter is de�ned in terms of an

integral which can be approximated at best by the in�nite series in equation (22). However,

if one is interested in reasonable accuracy of the results not sacri�cing their qualitative

features, it may be remarked that the velocity and skin friction can be expressed in terms

of solely exponential functions, following an approximation for the complementary error

function suggested by Heinz [7] in the form

erfc(x) = exp
�
ax+ bx2

�
+ "(x); x � 0(24)

where a = �1:0692; b = �0:8067; "(x) � (4:5)10�3

As the above approximation is valid for positive arguments of erfc(x), this would restrict

the direct application of the approximation to the values of velocity in the boundary layer

subject to (y=t) > 2
p
mi; (i = 0; 1). The approximation of u in the complement of

this region may be obtained using erfc(x) = 2 � erfc(�x); (x < 0). However, the region

restriction does not apply to the approximation of skin friction. For comparison of the results

using the approximation, we have shown in Table 2, within parentheses, the approximate

values of the skin friction � . It is seen that the approximation yields qualitatively acceptable
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results.

It is worth noting in this respect that there are several classical approximations of error

functions developed for using in digital computers [8]. For instance, one of the widely used

classical approximations of erfc(x) can be expressed for x � 0 in the form [8]

erfc(x) =
�
a1z + a2z

2 + a3z
3 + a4z

4 + a5z
5
�
exp

�
�x2

�
+ "(x)(25)

where

z = (1 + cx)�1; c = 0:3275911

a1 = 0:254829592; a2 = �0:284496736; a3 = 1:421413741

a4 = �1:453152027; a5 = 1:061405429; j"(x)j � (1:5)
�
10�7

�
Although the approximation given by equation (25) is of better accuracy than equation

(24), the analytical expression of erfc(x) in equation (25) is much more complicated than

in equation (24), and is therefore inconvenient to use in the solutions of the type occurring

in equations (14) and (20). On the other hand, using equation (24), one can express

the solutions exclusively in terms of exponential functions, which are more convenient for

analyzing the qualitative features of the 
uid motion.
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