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INTUITIONISTIC FUZZY IDEALS OF I'"RINGS
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ABSTRACT. We introduce the notion of an intuitionistic fuzzy ideal of a gamma-ring M, and
then some related properties are investigated. Characterizations of intuitionistic fuzzy ideals
are given. Given an intuitionistic fuzzy ideal A = (u,,7,) of a I'-ring and a homomorphism
f of T-rings, we construct a new intuitionistic fuzzy ideal Af = (uﬁ,yﬁ).

1. Introduction

After the introduction of the concept of fuzzy sets by Zadeh [9], several researchers were
conducted on the generalizations of the notion of fuzzy set. The idea of “intuitionistic
fuzzy set” was first published by Atanassov [1, 2], as a generalization of the notion of fuzzy
set. Jun et al considered the fuzzification of ideals in I-rings [4, 5, 6]. In this paper,
we introduce the notion of an intuitionistic fuzzy ideal of a gamma-ring M, and then some
related properties are investigated. Characterizations of intuitionistic fuzzy ideals are given.
Also, for any intuitionistic fuzzy set A = (u,,7,) and a mapping of I'-rings, we define a
new intuitionistic fuzzy set A7 = (u/,y/). Then we show that if A = (u,,7,) is an
intuitionistic fuzzy ideal of M' then A = (uf‘,yﬁ) is an intuitionistic fuzzy ideal of M
for every homomorphism f from a [-ring M to a [-ring M'; and if A = (ui,yf) is an
intuitionistic fuzzy ideal of M then A = p,,~,) is an intuitionistic fuzzy ideal of M’ where
f is a homomorphism from a I'-ring M onto a [-ring M.

2. Preliminaries

IftM={zy,2 ..} and T = {a, 3,7, -} are additive abelian groups, and for all z,y, z
in M and all o, in ', the following conditions are satisfied

(1) zay is an element of M,
(2) (z+y)az = zaz +yaz, z(a + By = zay + zPy, zaly + z) = zay + zaz,
(3) (zay)Bz = za(ypz),

then M is called a I'-ring.

Through this paper M denotes a I'-ring, and 0;; denotes the zero element of M unless
otherwise specified.
A subset A of M is called a left (resp. right) ideal of M if A is an additive subgroup of
M and
MTA={zay |z e M,ael',y€ A} (resp. ATM)
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is contained in A. If A is both a left and a right ideal, then A is a two-sided ideal, or simply
an ideal of M. By a fuzzy set pu in a non-emptyset X we mean a function u : X — [0, 1],
and the complement of u, denoted by 7, is the fuzzy set in X given by z(z) =1 — p(z) for
all x € X. A fuzzy set pin M is called a fuzzy left (vesp. right) ideal of M if

(FI1) p(z —y) > p(x) A p(y),

(FI2) p(zay) > p(y) (resp. p(zay) > p(z)),
forall z,y € M and all « € T'.

A fuzzy set pin M is called a fuzzy ideal of M if p is a both a fuzzy left and a right ideal
of M. We note that u is a fuzzy ideal of M if and only if

(FI1) p(z —y) > plx) A py),

(FI2) p(zay) > p@) V uly),
for all z,y € M and all « € T".

Definition 2.1 ([2]). Let R be a non-empty fixed set. An intuitionistic fuzzy set (IFS for
short) A is an object having the form

A={(z,pa(z),74(2)) : x € R}

where the functions pa4 : R — [0,1] and 4 : R — [0, 1] denote the degree of membership
(namely pa(z)) and the degree of nonmembership (namely v4(x)) of each element z € R
to the set A, respectively, and 0 < pa(z) + vya(z) <1 for all x € R.

For the sake of simplicity, we shall use the symbol A = (ua,ya) for the IFS A =
{(@, pa(z),74(2)) : = € R}.

Definition 2.2 ([1,2]). Let X be a non-empty set and let A = (ua,v4) and B = (up,vB)
be IFSs in X. Then

(i) ACBiff pa(z) < pp(z) and ya(x) > yp(z) for all z € X,

(il) A=Biff ACBand BC A,

(i) 7 = {(r,74(@), ua(2)) 2 € X},

() ANB = {(2,1a(x) A (), 74 (2) V 13(2)) 2 € X},

(v) AUB = {(z, pa(2) V o (&), 74 (&) A s () - 7 € X},

(Vi) 0A = {(m7MA(m)7 1- ,UA(:E)) RS X}:
(vii) 04 = {(z,1 — va(@),74(x)) : 2 € X}.

Definition 2.3 ([1,2]). Let {A4; :4 € A} be an arbitrary family of IFSs in X. Then
(1) NA; = {(1’,/\,UAi (m)7\/’yAi (:L’)) SRS X}:
(11) UA; = {(m,\/l//Ai (m)7/\’yAi (1‘)) HEES X}
Definition 2.4 ([3]). Let f be a map from a set X to aset Y. If A = (ua,v4) and

B = (up,vB) are IFSs in X and Y respectively, then the preimage of B under f, denoted
by f~1(B), is an IFS in X defined by f~(B) = (f~(ug), /(7).

3. Intuitionistic fuzzy ideals
We start by defining the notion of intuitionistic fuzzy ideals.

Definition 3.1. An IFS A = (ua,7v4) in M is called an intuitionistic fuzzy ideal of M if

(IF]-) 12 (:L‘ - y) Z Mg (1.) A Ha (y) and Ya (1. - y) S Ya (1.) \4 Ya (y) for all T,y € M:
(IF2) p1, (zay) > 1, (@) V 1, (y) and 7, (zay) < 7,(x) Ay, (y) for all a,y € M and for
al a € T.
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Example 3.2. If G and H are additive abelian groups and M = Hom(G,H), I =
Hom(H,QG), then M is a I'-ring with the operations pointwise addition and composition of
homomorphisms ([1]). Define a fuzzy set pua : M — [0,1] by pa(Oa) = 0.5, pa(f) = 0.3
and v4 : M — [0,1] by y4(0ar) = 0.2,74(f) = 0.4 where f is any member of M with
f #0p. Then an IFS A = (ua,v4) is an intuitionistic fuzzy ideal of ['-ring M.
Lemma 3.3. If an IFS A = (ua,va) in M satisfies the condition (IF1), then

(i) pa(0) = pa(z) and 74(0) < va(z),

(ii) pa(=2) = pa(z) and ya(-z) = ya(2),
for all x € M.

Proof. (i) We have that for any © € M,

1a(0) = pa(z — ) > pa(@) A pa(z) = pa(z)
and
Y4(0) = va(z — x) < ya(x) Vya(r) = valz).

(ii) By using (i) we get

pa(=z) = pa(0 —z) > pa(0) A pa(z) = pa(z)
and
Ya(=2) =740 — 2) <74(0) Vya(z) = ya(2)

for all z € M. Since z is arbitrary, we conclude that pa(—z) = pa(z) and ya(—z) = ya(x)
for all x € M, ending the proof. O

Proposition 3.4. If an IFS A = (ua,v4) in M satisfies the condition (IF1), then
(i) pa(z —y) = pa(0) implies pa(z) = pa(y),
(ii) ya(z —y) = 74(0) implies ya(x) = 7a(y),

for all x,y € M.

Proof. (i) Let x,y € M be such that pa(z —y) = pa(0). Then

= pa(y) [by Lemma 3.3(i)]

Similarly, pa(y) > pa(z) and so pa(z) = pa(y).
(ii) If ya(z — y) = va(0) for all z,y € M, then
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Theorem 3.5. If A = (u,,v,) and B = (up,7yp) are intuitionistic fuzzy ideals of M, then
sois AN B.

Proof. For any x,y € M, we have that

(ma App)(x —y) = palzr —y) Aus(r —y)
> (pa(z) App(T) A (Laly) A ps(y))
= (ma ApB)(@) A (pa A ps)(y),

(yaVB)(x —y) =valz —y) VyB(T —¥)
< (va(z) Vys()) V (valy) Vv (Y))
= (yaVB)(@) V (va VB)(Y),

and if z,y € M and a € T, then we have that

(a A pp)(zay) = pa(ray) A pp(ray)
> (pa(@) V pa(y)) A (pe(@) V pey))
= (na(@) A pp () V (pa(y) A ps(y))
= (pa A pp)(z) V (pa A ps)(y)

(va Vyp)(zay) = ya(zay) V vp(zay)
< (va(®) Ava(y) v (vB(@) Avs(Y))
= (ya(@) Vye(2) A (valy) vV v8(Y))
= (ya V) () A (ya VvV yB)(Y).
Hence AN B is an intuitionistic fuzzy ideal of M. O

Theorem 3.6. If {A;}ica is a family of intuitionistic fuzzy ideals of M, then NA; is an
intuitionistic fuzzy ideal of M.

Proof. Let x,y € M and a € I'. Then

(N )@ —y) = Ay, (T —y) 2 Apy, (@) Apy, (y)
= (Mg, (@) A (Mg, () = (N ) (@) A (N, ) (),

(U,YAi )(l‘ - y) = \/’YAI- (:L’ - y) < V(’YAi (:L‘) \ Va,; (y))
= (V7a, (@) V (Vs (9) = (Uy,, ) (@) V (Ury,) (),

(m:uAi )(may) = /\uAi (a:ay) > /\(:uAi (:L’) \ Ha, (y))
= (Npa, (@) V (O, (1)),

and

(U,YAI' )(a:ay) = V’YAI' (a:ay) < V(’YAI' (x) A YV a, (y))
= (Ura, () A (U, ()

Hence NA; is an intuitionistic fuzzy ideal of M. O
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Theorem 3.7. If an IFS A = (u,,7,) in M is an intuitionistic fuzzy ideal of M, then so
is OA.

Proof. Tt is sufficient to show that &, satisfies the second condition of (IF1) and the second
condition of (IF2). For any z,y € M and any « € T, we have

oz—y)=1-p,(z—y) <1—p, () Ap,(y)
=1 —p,(@) VA —p,(y) =1, () Vi, (y),

T (way) = 1- p, (zay) < 1— (@) V () = (L= oy (@) A (1= ()
=T, (@) Ay ()
Therefore (A is an intuitionistic fuzzy ideal of M. O
Definition 3.8. Let A = (u,,7,) be an IFS in M and let a € [0,1]. Then the sets

1= o € M pa(a) > a)
and

Vi =1{z €M :ya(e) <a}
are called a p-level a-cut and a vy-level a-cut of A, respectively.

Theorem 3.9. IfanIFS A = (p,,7,) in M is an intuitionistic fuzzy ideal of M , then the u-
level a-cut uia and y-level a-cut 'yia of A are ideals of M for every o € Im(pua)NIm(y4) C
[0,1].

Proof. Let a € Im(pa) NIm(y4) C[0,1] and let z,y € ,uia. Then pa(z) > a and pa(y) >
a. It follows from the first condition of (IF1) that

pa(m—y) > pa(@) Apaly) > asothat z —y € py ,.
Ifz,y € 'yia, then v, (z) < a and v, (y) < @, and so

Yalx—y) <. (@) Vy,(y) < a.

Hence we have x —y € via. Now let x € M, € I and y € uia. Then p, (zay) >
wo(x)yVop,(y) > p,(y) > aand so zay € ,u%’a (resp. yax € pia). Ify € ’yia, then

Ya(@By) <7, (2) A7, (y) <7, (y) < and thus 28y € 73, (resp. 3z € ya,a). Therefore
> < . '
K3 o and vy, areideals of M. O

Theorem 3.10. Let A = (ua,v4) be an IFS in M such that the non-empty sets uia and

7§7a are ideals of M for all a € [0,1]. Then A = (ua,7ya) is an intuitionistic fuzzy ideal of
M.

Proof. Let a € [0,1] and suppose that pia(;é #) and fy;a(;é () are ideals of M. We must
show that A = (u,,7,) satisfies the conditions (IF1)-(IF2). If the first condition of (IF1)
is false, then there exist xg,yo € M such that u, (xo — yo) < p,(x0) A 11, (yo). Taking

1

Qg 1= 5(/& (zo — yo) + w4 (o) A iy (¥0)),
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we have p, (2o — yo) < ag < p, (z0) A, (yo). It follows that zg,yo € ,uiao and g — yo ¢
,uiao, which is a contradiction. Assume that the second condition of (IF1) does not hold.
Then v, (xo — yo) > v, (xo) V v, (yo) for some zg,y0 € M. Let [y := %(’yA(mg —yo) +
¥4(Z0) V 7, (%0)). Then v,(zo — yo) > Bo > 74(70) V 7, (yo) and so o, y0 € 75 5, but
To — Yo ¢ 'V%,ﬁo' This is a contradiction. Now if the first condition of (IF2) is not true
then there exist zg,yo € M and ¢ € T, such that p, (x0Cyo) < p,(zo) A 11, (yo). Putting
Yo := 5 (1, (£0Cyo) + 1, (x0) A, (Y0)), then g, (z0Cyo) < Yo < p, (20) A 1, (y0)- Tt follows
that zg,yo € “iw and zoCyo ¢ ,ui%, a contradiction. Finally suppose that the second
condition of (IF2) does not hold. Then y4(zoCyo) > va(zo)Vya(yo) for some xg,yo € M and
¢ € T. Selecting 0y := 5 (va(xoCyo)+va(20)Vya(Y0)), we get ya(zoCyo) > do > ¥(Zo)VY(Yo)
and so zg,yo € 'yi 500 DUt 0CYo ¢ fyi s,- This is impossible and we are done. U

Theorem 3.11. Let H be an ideal of M and let A = (ua,7v4) be an IFS in M defined by

() {CKO ifiL’GH, () {ﬂg ifa:EH,
xT) = €T) =
pa a1 otherwise, A (1 otherwise,

for all x € M and a;,3; € [0,1] such that g > a1, B0 < B1 and a; + 3; < 1 fori =0,1.
Then A = (pa,y4) is an intuitionistic fuzzy ideal of M and ,uf o = H = 7§ Bo-
Proof. Let x,y € M. If any one of x and y does not belong to H, then

pa(z—y)>ar=p, () Ap,(y)
and
Yalr —y) <Br=7,(x) V. (y)

Also,let x,y € M anda € T. Ify ¢ H, then p, (zay) > oy = p, () Ap, (y) and v, (zay) <
B1=7,(x)Vy,(y). Assume that y € H. Since H is an ideal of M, it follows that zay € H.

Hence ji, (zay) = ao = f1,(2) A i, (y) and 7, (vay) = By = 7, () V 7, (y). Therefore
A=(u,,v,) is an intuitionistic fuzzy ideal of M. Obviously “;l,ao =H= 7?1,[30' O

Corollary 3.12. Let xu be the characteristic function of an ideal H of M. Then the IFS
H = (xu,Xxn) Is an intuitionistic fuzzy ideal of M.

Theorem 3.13. If an IFS A = (u,,v,) is an intuitionistic fuzzy ideal of M, then
pa(z) :=sup{a€0,1] |z € ,uia} and v, (z) :==inf{a €[0,1] |z € ’yia}

for all x € M.

Proof. Let § :=sup{a € [0,1] | z € uia} and let € > 0 be given. Then § — e < a for some
a € [0,1] such that = € uia. It follows that § —e < p,(z) so that § < p, (z) since € is
arbitrary. We now show that p, () < 6. Let p, (z) = 8. Then z € '“%ﬁ and so

Bef{ac01]|z€pnz,}-
Hence p,(z) = B <sup{a €[0,1] |z € ,uia} = 6. Therefore

w,(x) =0 =sup{a€l0,1]|z€ N%,a}‘
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Now let n = inf{a € [0,1] | z € 'yia}. Then
inf{a € 0,1] |z € 7§,a} <n+e forany e <0,

and so a < n + ¢ for some «a € [0,1] with = € yia. Since v, (z) < a and ¢ is arbitrary,
it follows that v, (z) < n. To prove v, (z) > 7, let v,(x) = (. Then z € %%,( and thus
Ce{ac0,1]|z€ 'yia}. Hence

inf{a € [0,1] |z € 75 .} < ¢, ie, n< ¢ =7, ().

Consequently
. <
Yale) =n=inf{a €[0,1] |z € vz ,}.
This completes the proof. O

Theorem 3.14. An IFS A = (p,,7,) is an intuitionistic fuzzy ideal of M if and only if
the fuzzy sets p, and 7, are fuzzy ideals of M.

Proof. Let A = (u,,7v,) be an intuitionistic fuzzy ideal of M. Then clearly p, is a fuzzy
ideal of M. Let x,y € M and a € ['. Then

Talz—y)=1-7,(z—y)
>1—7,(@) V7, (@)
=1 =7, @)A1 =7,(y)
=7,(2) A7, (y), and

Va(way) =1 -7, (zay)
2 1=7,(2) A7, (y)
=1 =) VQA-70)
=74 () VL)
Hence 7 is a fuzzy ideal of M.

Conversely suppose that p, and 7, are fuzzy ideals of M. Let z,y € M and a € T.
Then

L—v,(x—y) =7, (v —y) > 7, (z) A7, (y)
=1 =7, @)A1 =7,(0)

=1- ’YA(‘T) V’YA (y)a and

L=, (zay) =7, (zay) > 7, (z) V7, (y)
=1 =7,(2) V(1L -7,1)
=1—7,@) A7,(y),

which imply that v, (z —y) < v, (x) Vv, (y) and v, (zay) < v, (x) Ay, (y). This completes
the proof. O
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Corollary 3.15. An IFS A = (u,,7,) is an intuitionistic fuzzy ideal of M if and only if
0OA = (u,,m,) and OA = (7,,7v,) are intuitionistic fuzzy ideals of M.
Proof. Tt is straightforward by Theorem 3.14. O

A mapping f from a [-ring M to a [-ring M’ is called a homomorphism if f(z +y) =
f(@) + f(y) and f(zay) = f(z)af(y) for all z,y € M and a € T.

Theorem 3.16. Let f : M — M’ be a homomorphism of T'-rings. If B = (up,vyB) Is
an intuitionistic fuzzy ideal of M', then the preimage f~'(B) = (f~'(ug), f~'(y8)) of B
under f is an intuitionistic fuzzy ideal of M.

Proof. Assume that B = (up,vyp) is an intuitionistic fuzzy ideal of M’ and let x,y € M.
Then

FHws) (@ —y) = up(f(z —y))
ne(f(z) — f(y))
> pup(f(z)) Aus(f(y))

f (s (@) A f~ (1B(y)), and

Therefore f=1(B) = (f~'(uB), f~*(yB)) is an intuitionistic fuzzy ideal of M. O

Let f : M — M' be a homomorphism of I'-rings. For any IFS A = (u,,7v,) in M', we
define a new IFS A7 = (u/,~47) in M by

pd (2) = (f(2)) and ] (z) == 7, (f(2))

for all z € M.
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Theorem 3.17. Let f : M — M' be a homomorphism of I'-rings. Ifan IFSA = (u,,7v,) in
M' is an intuitionistic fuzzy ideal of M', then an IFS AT = (,u£ , yj:) in M is an intuitionistic
fuzzy ideal of M.

Proof. Let x,y € M. Then

ph(x—y) = p,(flz—y))
= pa(f(z) = fy))
> p, (f(@) Ay (f(y))
= pf (z) A pd (),

and

and

Hence A7 = (u/,~7) is an intuitionistic fuzzy ideal of M. O

If we strengthen the condition of f, then we can construct the converse of Theorem 3.17
as follows.

Theorem 3.18. Let f : M — M' be an epimorphism of I'-rings and let A = (u,,v,) be
an IFS in M'. If AT = (uf ,yT) is an intuitionistic fuzzy ideal of M, then A = (p,,v,) is
an intuitionistic fuzzy ideal of M'.

Proof. Let x,y € M'. Then f(a) =z and f(b) = y for some a,b € M. It follows that
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and

Also, let « € T'. Then

and

This completes the proof. O
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