INTUITIONISTIC FUZZY IDEALS OF **F**-RINGS

Kyung Ho Kim, Young Bae Jun and Mehmet Ali Öztürk

Received June 16, 2000

ABSTRACT. We introduce the notion of an intuitionistic fuzzy ideal of a gamma-ring M, and then some related properties are investigated. Characterizations of intuitionistic fuzzy ideals are given. Given an intuitionistic fuzzy ideal $A = (\mu_A, \gamma_A)$ of a Γ -ring and a homomorphism f of Γ -rings, we construct a new intuitionistic fuzzy ideal $A^f = (\mu_A^f, \gamma_A^f)$.

1. Introduction

After the introduction of the concept of fuzzy sets by Zadeh [9], several researchers were conducted on the generalizations of the notion of fuzzy set. The idea of "intuitionistic fuzzy set" was first published by Atanassov [1, 2], as a generalization of the notion of fuzzy set. Jun et al considered the fuzzification of ideals in Γ -rings [4, 5, 6]. In this paper, we introduce the notion of an intuitionistic fuzzy ideal of a gamma-ring M, and then some related properties are investigated. Characterizations of intuitionistic fuzzy ideals are given. Also, for any intuitionistic fuzzy set $A = (\mu_A, \gamma_A)$ and a mapping of Γ -rings, we define a new intuitionistic fuzzy set $A^f = (\mu_A^f, \gamma_A^f)$. Then we show that if $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy ideal of M' then $A^f = (\mu_A^f, \gamma_A^f)$ is an intuitionistic fuzzy ideal of Mfor every homomorphism f from a Γ -ring M to a Γ -ring M'; and if $A^f = (\mu_A^f, \gamma_A^f)$ is an intuitionistic fuzzy ideal of M then $A = \mu_A, \gamma_A$ is an intuitionistic fuzzy ideal of M' where f is a homomorphism from a Γ -ring M onto a Γ -ring M'.

2. Preliminaries

If $M = \{x, y, z, ...\}$ and $\Gamma = \{\alpha, \beta, \gamma, ...\}$ are additive abelian groups, and for all x, y, z in M and all α, β in Γ , the following conditions are satisfied

- (1) $x \alpha y$ is an element of M,
- $(2) (x+y)\alpha z = x\alpha z + y\alpha z, \ x(\alpha+\beta)y = x\alpha y + x\beta y, \ x\alpha(y+z) = x\alpha y + x\alpha z,$
- (3) $(x\alpha y)\beta z = x\alpha(y\beta z),$

then M is called a Γ -ring.

Through this paper M denotes a Γ -ring, and 0_M denotes the zero element of M unless otherwise specified.

A subset A of M is called a *left* (resp. *right*) *ideal* of M if A is an additive subgroup of M and

$$M\Gamma A = \{x\alpha y \mid x \in M, \alpha \in \Gamma, y \in A\} \text{ (resp. } A\Gamma M)$$

²⁰⁰⁰ Mathematics Subject Classification. 16Y99, 03E72.

Key words and phrases. Γ -ring, Intuitionistic fuzzy ideal, homomorphism, μ (resp. γ)-level α -cut. The second author was supported by Korea Research Foundation Grant (KRF-99-005-D00003). This paper is dedicated to the memory of Prof. Dr. Mehmet Sapanci .

is contained in A. If A is both a left and a right ideal, then A is a *two-sided ideal*, or simply an *ideal* of M. By a *fuzzy set* μ in a non-emptyset X we mean a function $\mu : X \to [0, 1]$, and the complement of μ , denoted by $\overline{\mu}$, is the fuzzy set in X given by $\overline{\mu}(x) = 1 - \mu(x)$ for all $x \in X$. A fuzzy set μ in M is called a *fuzzy left* (resp. *right*) ideal of M if

(FI1) $\mu(x-y) \ge \mu(x) \land \mu(y),$

(FI2) $\mu(x\alpha y) \ge \mu(y)$ (resp. $\mu(x\alpha y) \ge \mu(x)$),

for all $x, y \in M$ and all $\alpha \in \Gamma$.

A fuzzy set μ in M is called a *fuzzy ideal* of M if μ is a both a fuzzy left and a right ideal of M. We note that μ is a fuzzy ideal of M if and only if

- (FI1) $\mu(x-y) \ge \mu(x) \land \mu(y),$
- (FI2) $\mu(x\alpha y) \ge \mu(x) \lor \mu(y),$

for all $x, y \in M$ and all $\alpha \in \Gamma$.

Definition 2.1 ([2]). Let R be a non-empty fixed set. An *intuitionistic fuzzy set* (IFS for short) A is an object having the form

$$A = \{ (x, \mu_A(x), \gamma_A(x)) : x \in R \}$$

where the functions $\mu_A : R \to [0, 1]$ and $\gamma_A : R \to [0, 1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of nonmembership (namely $\gamma_A(x)$) of each element $x \in R$ to the set A, respectively, and $0 \le \mu_A(x) + \gamma_A(x) \le 1$ for all $x \in R$.

For the sake of simplicity, we shall use the symbol $A = (\mu_A, \gamma_A)$ for the IFS $A = \{(x, \mu_A(x), \gamma_A(x)) : x \in R\}.$

Definition 2.2 ([1,2]). Let X be a non-empty set and let $A = (\mu_A, \gamma_A)$ and $B = (\mu_B, \gamma_B)$ be IFSs in X. Then

- (i) $A \subseteq B$ iff $\mu_A(x) \le \mu_B(x)$ and $\gamma_A(x) \ge \gamma_B(x)$ for all $x \in X$,
- (ii) A = B iff $A \subseteq B$ and $B \subseteq A$,
- (iii) $\overline{A} = \{ (x, \gamma_A(x), \mu_A(x)) : x \in X \},\$
- (iv) $A \cap B = \{(x, \mu_A(x) \land \mu_B(x), \gamma_A(x) \lor \gamma_B(x)) : x \in X\},\$
- (v) $A \cup B = \{(x, \mu_A(x) \lor \mu_B(x), \gamma_A(x) \land \gamma_B(x)) : x \in X\},\$
- (vi) $\Box A = \{(x, \mu_A(x), 1 \mu_A(x)) : x \in X\},\$
- (vii) $\Diamond A = \{(x, 1 \gamma_A(x), \gamma_A(x)) : x \in X\}.$

Definition 2.3 ([1,2]). Let $\{A_i : i \in \Lambda\}$ be an arbitrary family of IFSs in X. Then

- (i) $\cap A_i = \{(x, \land \mu_{A_i}(x), \lor \gamma_{A_i}(x)) : x \in X\},\$
- (ii) $\cup A_i = \{(x, \lor \mu_{A_i}(x), \land \gamma_{A_i}(x)) : x \in X\}.$

Definition 2.4 ([3]). Let f be a map from a set X to a set Y. If $A = (\mu_A, \gamma_A)$ and $B = (\mu_B, \gamma_B)$ are IFSs in X and Y respectively, then the *preimage* of B under f, denoted by $f^{-1}(B)$, is an IFS in X defined by $f^{-1}(B) = (f^{-1}(\mu_B), f^{-1}(\gamma_B))$.

3. Intuitionistic fuzzy ideals

We start by defining the notion of intuitionistic fuzzy ideals.

Definition 3.1. An IFS $A = (\mu_A, \gamma_A)$ in M is called an *intuitionistic fuzzy ideal* of M if

- $(\text{IF1}) \quad \mu_{\scriptscriptstyle A}(x-y) \geq \mu_{\scriptscriptstyle A}(x) \wedge \mu_{\scriptscriptstyle A}(y) \text{ and } \gamma_{\scriptscriptstyle A}(x-y) \leq \gamma_{\scriptscriptstyle A}(x) \vee \gamma_{\scriptscriptstyle A}(y) \text{ for all } x, y \in M,$
- (IF2) $\mu_{_A}(x\alpha y) \ge \mu_{_A}(x) \lor \mu_{_A}(y)$ and $\gamma_{_A}(x\alpha y) \le \gamma_{_A}(x) \land \gamma_{_A}(y)$ for all $x, y \in M$ and for all $\alpha \in \Gamma$.

Example 3.2. If G and H are additive abelian groups and M = Hom(G, H), $\Gamma = Hom(H, G)$, then M is a Γ -ring with the operations pointwise addition and composition of homomorphisms ([1]). Define a fuzzy set $\mu_A : M \to [0,1]$ by $\mu_A(0_M) = 0.5$, $\mu_A(f) = 0.3$ and $\gamma_A : M \to [0,1]$ by $\gamma_A(0_M) = 0.2$, $\gamma_A(f) = 0.4$ where f is any member of M with $f \neq 0_M$. Then an IFS $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy ideal of Γ -ring M.

Lemma 3.3. If an IFS $A = (\mu_A, \gamma_A)$ in M satisfies the condition (IF1), then

- (i) $\mu_A(0) \ge \mu_A(x)$ and $\gamma_A(0) \le \gamma_A(x)$,
- (ii) $\mu_A(-x) = \mu_A(x) \text{ and } \gamma_A(-x) = \gamma_A(x),$

for all $x \in M$.

Proof. (i) We have that for any $x \in M$,

$$\mu_A(0) = \mu_A(x - x) \ge \mu_A(x) \land \mu_A(x) = \mu_A(x)$$

 and

$$\gamma_A(0) = \gamma_A(x - x) \le \gamma_A(x) \lor \gamma_A(x) = \gamma_A(x)$$

(ii) By using (i) we get

$$\mu_A(-x) = \mu_A(0-x) \ge \mu_A(0) \land \mu_A(x) = \mu_A(x)$$

 and

$$\gamma_A(-x) = \gamma_A(0-x) \le \gamma_A(0) \lor \gamma_A(x) = \gamma_A(x)$$

for all $x \in M$. Since x is arbitrary, we conclude that $\mu_A(-x) = \mu_A(x)$ and $\gamma_A(-x) = \gamma_A(x)$ for all $x \in M$, ending the proof. \Box

Proposition 3.4. If an IFS $A = (\mu_A, \gamma_A)$ in M satisfies the condition (IF1), then

(i) $\mu_A(x-y) = \mu_A(0)$ implies $\mu_A(x) = \mu_A(y)$, (ii) $\gamma_A(x-y) = \gamma_A(0)$ implies $\gamma_A(x) = \gamma_A(y)$,

for all $x, y \in M$.

Proof. (i) Let $x, y \in M$ be such that $\mu_A(x-y) = \mu_A(0)$. Then

$$\mu_A(x) = \mu_A(x - y + y)$$

$$\geq \mu_A(x - y) \land \mu_A(y)$$

$$= \mu_A(0) \land \mu_A(y)$$

$$= \mu_A(y) \qquad \text{[by Lemma 3.3(i)]}$$

Similarly, $\mu_A(y) \ge \mu_A(x)$ and so $\mu_A(x) = \mu_A(y)$. (ii) If $\gamma_A(x-y) = \gamma_A(0)$ for all $x, y \in M$, then

$$\begin{aligned} \gamma_A(x) &= \gamma_A(x - y + y) \\ &\leq \gamma_A(x - y) \lor \gamma_A(y) \\ &= \gamma_A(0) \lor \gamma_A(y) \\ &= \gamma_A(y) \qquad \text{[by Lemma 3.3(i)]} \end{aligned}$$

Similarly, we have $\gamma_A(y) \leq \gamma_A(x)$ and so $\gamma_A(x) = \gamma_A(y)$. \Box

Theorem 3.5. If $A = (\mu_A, \gamma_A)$ and $B = (\mu_B, \gamma_B)$ are intuitionistic fuzzy ideals of M, then so is $A \cap B$.

Proof. For any $x, y \in M$, we have that

$$\begin{aligned} (\mu_A \wedge \mu_B)(x-y) &= \mu_A(x-y) \wedge \mu_B(x-y) \\ &\geq (\mu_A(x) \wedge \mu_B(x)) \wedge (\mu_A(y) \wedge \mu_B(y)) \\ &= (\mu_A \wedge \mu_B)(x) \wedge (\mu_A \wedge \mu_B)(y), \end{aligned}$$

$$\begin{aligned} (\gamma_A \lor \gamma_B)(x-y) &= \gamma_A(x-y) \lor \gamma_B(x-y) \\ &\leq (\gamma_A(x) \lor \gamma_B(x)) \lor (\gamma_A(y) \lor \gamma_B(y)) \\ &= (\gamma_A \lor \gamma_B)(x) \lor (\gamma_A \lor \gamma_B)(y), \end{aligned}$$

and if $x, y \in M$ and $\alpha \in \Gamma$, then we have that

$$(\mu_A \land \mu_B)(x \alpha y) = \mu_A(x \alpha y) \land \mu_B(x \alpha y)$$

$$\geq (\mu_A(x) \lor \mu_A(y)) \land (\mu_B(x) \lor \mu_B(y))$$

$$= (\mu_A(x) \land \mu_B(x)) \lor (\mu_A(y) \land \mu_B(y))$$

$$= (\mu_A \land \mu_B)(x) \lor (\mu_A \land \mu_B)(y)$$

$$\begin{aligned} (\gamma_A \lor \gamma_B)(x \alpha y) &= \gamma_A(x \alpha y) \lor \gamma_B(x \alpha y) \\ &\leq (\gamma_A(x) \land \gamma_A(y)) \lor (\gamma_B(x) \land \gamma_B(y)) \\ &= (\gamma_A(x) \lor \gamma_B(x)) \land (\gamma_A(y) \lor \gamma_B(y)) \\ &= (\gamma_A \lor \gamma_B)(x) \land (\gamma_A \lor \gamma_B)(y). \end{aligned}$$

Hence $A \cap B$ is an intuitionistic fuzzy ideal of M. \Box

Theorem 3.6. If $\{A_i\}_{i \in \Lambda}$ is a family of intuitionistic fuzzy ideals of M, then $\cap A_i$ is an intuitionistic fuzzy ideal of M.

Proof. Let $x, y \in M$ and $\alpha \in \Gamma$. Then

$$\begin{split} (\cap \mu_{A_i})(x-y) &= \wedge \mu_{A_i}(x-y) \geq \wedge (\mu_{A_i}(x) \wedge \mu_{A_i}(y)) \\ &= (\wedge \mu_{A_i}(x)) \wedge (\wedge \mu_{A_i}(y)) = (\cap \mu_{A_i})(x) \wedge (\cap \mu_{A_i})(y), \end{split}$$

$$\begin{split} (\cup\gamma_{A_{i}})(x-y) &= \vee\gamma_{A_{i}}(x-y) \leq \vee(\gamma_{A_{i}}(x) \vee \gamma_{A_{i}}(y)) \\ &= (\vee\gamma_{A_{i}}(x)) \vee (\vee\gamma_{A_{i}}(y)) = (\cup\gamma_{A_{i}})(x) \vee (\cup\gamma_{A_{i}})(y), \end{split}$$

$$\begin{split} (\cap \mu_{{}_{A_i}})(x\alpha y) &= \wedge \mu_{{}_{A_i}}(x\alpha y) \geq \wedge (\mu_{{}_{A_i}}(x) \lor \mu_{{}_{A_i}}(y)) \\ &= (\cap \mu_{{}_{A_i}}(x)) \lor (\cap \mu_{{}_{A_i}}(y)), \end{split}$$

 and

$$\begin{split} (\cup\gamma_{A_{i}})(x\alpha y) &= \vee\gamma_{A_{i}}(x\alpha y) \leq \vee(\gamma_{A_{i}}(x) \wedge \gamma_{A_{i}}(y)) \\ &= (\cup\gamma_{A_{i}}(x)) \wedge (\cup\gamma_{A_{i}}(y)). \end{split}$$

Hence $\cap A_i$ is an intuitionistic fuzzy ideal of M. \Box

Theorem 3.7. If an IFS $A = (\mu_A, \gamma_A)$ in M is an intuitionistic fuzzy ideal of M, then so is $\Box A$.

Proof. It is sufficient to show that $\overline{\mu_A}$ satisfies the second condition of (IF1) and the second condition of (IF2). For any $x, y \in M$ and any $\alpha \in \Gamma$, we have

$$\begin{aligned} \overline{\mu_{\scriptscriptstyle A}}(x-y) &= 1 - \mu_{\scriptscriptstyle A}\left(x-y\right) \leq 1 - \mu_{\scriptscriptstyle A}\left(x\right) \land \mu_{\scriptscriptstyle A}\left(y\right) \\ &= (1 - \mu_{\scriptscriptstyle A}\left(x\right)) \lor (1 - \mu_{\scriptscriptstyle A}\left(y\right)) = \overline{\mu_{\scriptscriptstyle A}}(x) \lor \overline{\mu_{\scriptscriptstyle A}}(y), \end{aligned}$$

$$\overline{\mu_{\scriptscriptstyle A}}(x\alpha y) = 1 - \mu_{\scriptscriptstyle A}(x\alpha y) \leq 1 - \mu_{\scriptscriptstyle A}(x) \lor \mu_{\scriptscriptstyle A}(y) = (1 - \mu_{\scriptscriptstyle A}(x)) \land (1 - \mu_{\scriptscriptstyle A}(y))$$
$$= \overline{\mu_{\scriptscriptstyle A}}(x) \land \overline{\mu_{\scriptscriptstyle A}}(y)$$

Therefore $\Box A$ is an intuitionistic fuzzy ideal of M. \Box

Definition 3.8. Let $A = (\mu_A, \gamma_A)$ be an IFS in M and let $\alpha \in [0, 1]$. Then the sets

$$\mu_{A,\alpha}^{\geq} := \{ x \in M : \mu_A(x) \ge \alpha \}$$

and

$$\stackrel{\leq}{}_{A,\alpha} := \{ x \in M : \gamma_A(x) \le \alpha \}$$

are called a μ -level α -cut and a γ -level α -cut of A, respectively.

Theorem 3.9. If an IFS $A = (\mu_A, \gamma_A)$ in M is an intuitionistic fuzzy ideal of M, then the μ -level α -cut $\mu_{A,\alpha}^{\leq}$ and γ -level α -cut $\gamma_{A,\alpha}^{\leq}$ of A are ideals of M for every $\alpha \in \text{Im}(\mu_A) \cap \text{Im}(\gamma_A) \subseteq [0, 1]$.

Proof. Let $\alpha \in \text{Im}(\mu_A) \cap \text{Im}(\gamma_A) \subseteq [0, 1]$ and let $x, y \in \mu_{A,\alpha}^{\geq}$. Then $\mu_A(x) \geq \alpha$ and $\mu_A(y) \geq \alpha$. It follows from the first condition of (IF1) that

$$\mu_A(x-y) \ge \mu_A(x) \land \mu_A(y) \ge \alpha$$
 so that $x-y \in \mu_{A,\alpha}^{\ge}$

If $x, y \in \gamma_{A,\alpha}^{\leq}$, then $\gamma_{_{A}}(x) \leq \alpha$ and $\gamma_{_{A}}(y) \leq \alpha$, and so

$$\gamma_{A}(x-y) \leq \gamma_{A}(x) \lor \gamma_{A}(y) \leq \alpha$$

Hence we have $x - y \in \gamma_{A,\alpha}^{\leq}$. Now let $x \in M, \beta \in \Gamma$ and $y \in \mu_{A,\alpha}^{\geq}$. Then $\mu_A(x\alpha y) \geq \mu_A(x) \lor \mu_A(y) \geq \mu_A(y) \geq \alpha$ and so $x\alpha y \in \mu_{A,\alpha}^{\geq}$ (resp. $y\alpha x \in \mu_{A,\alpha}^{\geq}$). If $y \in \gamma_{A,\alpha}^{\leq}$, then $\gamma_A(x\beta y) \leq \gamma_A(x) \land \gamma_A(y) \leq \gamma_A(y) \leq \alpha$ and thus $x\beta y \in \gamma_{A,\alpha}^{\leq}$ (resp. $x\beta x \in \gamma_{A,\alpha}$). Therefore $\mu_{A,\alpha}^{\geq}$ and $\gamma_{A,\alpha}^{\leq}$ are ideals of M. \Box

Theorem 3.10. Let $A = (\mu_A, \gamma_A)$ be an IFS in M such that the non-empty sets $\mu_{A,\alpha}^{\geq}$ and $\gamma_{A,\alpha}^{\leq}$ are ideals of M for all $\alpha \in [0, 1]$. Then $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy ideal of M.

Proof. Let $\alpha \in [0, 1]$ and suppose that $\mu_{\overline{A}, \alpha}^{\geq}(\neq \emptyset)$ and $\gamma_{\overline{A}, \alpha}^{\leq}(\neq \emptyset)$ are ideals of M. We must show that $A = (\mu_A, \gamma_A)$ satisfies the conditions (IF1)-(IF2). If the first condition of (IF1) is false, then there exist $x_0, y_0 \in M$ such that $\mu_A(x_0 - y_0) < \mu_A(x_0) \land \mu_A(y_0)$. Taking

$$lpha_0 := rac{1}{2}(\mu_{_A}(x_0-y_0)+\mu_{_A}(x_0)\wedge\mu_{_A}(y_0)),$$

we have $\mu_A(x_0 - y_0) < \alpha_0 < \mu_A(x_0) \land \mu_A(y_0)$. It follows that $x_0, y_0 \in \mu_{A,\alpha_0}^{\geq}$ and $x_0 - y_0 \notin \mu_{A,\alpha_0}^{\geq}$, which is a contradiction. Assume that the second condition of (IF1) does not hold. Then $\gamma_A(x_0 - y_0) > \gamma_A(x_0) \lor \gamma_A(y_0)$ for some $x_0, y_0 \in M$. Let $\beta_0 := \frac{1}{2}(\gamma_A(x_0 - y_0) + \gamma_A(x_0) \lor \gamma_A(y_0))$. Then $\gamma_A(x_0 - y_0) > \beta_0 > \gamma_A(x_0) \lor \gamma_A(y_0)$ and so $x_0, y_0 \in \gamma_{A,\beta_0}^{\leq}$ but $x_0 - y_0 \notin \gamma_{A,\beta_0}^{\leq}$. This is a contradiction. Now if the first condition of (IF2) is not true then there exist $x_0, y_0 \in M$ and $\zeta \in \Gamma$, such that $\mu_A(x_0\zeta y_0) < \mu_A(x_0) \land \mu_A(y_0)$. Putting $\gamma_0 := \frac{1}{2}(\mu_A(x_0\zeta y_0) + \mu_A(x_0) \land \mu_A(y_0))$, then $\mu_A(x_0\zeta y_0) < \gamma_0 < \mu_A(x_0) \land \mu_A(y_0)$. It follows that $x_0, y_0 \in \mu_{A,\gamma_0}^{\geq}$ and $x_0\zeta y_0 \notin \mu_{A,\gamma_0}^{\geq}$, a contradiction. Finally suppose that the second condition of (IF2) does not hold. Then $\gamma_A(x_0\zeta y_0) > \gamma_A(x_0) \lor \gamma_A(y_0)$ for some $x_0, y_0 \in M$ and $\zeta \in \Gamma$. Selecting $\delta_0 := \frac{1}{2}(\gamma_A(x_0\zeta y_0) + \gamma_A(x_0) \lor \gamma_A(y_0))$, we get $\gamma_A(x_0\zeta y_0) > \delta_0 > \gamma(x_0) \lor \gamma(y_0)$ and so $x_0, y_0 \in \gamma_{A,\delta_0}^{\leq}$, but $x_0\zeta y_0 \notin \gamma_{A,\delta_0}^{\leq}$. This is impossible and we are done. \Box

Theorem 3.11. Let H be an ideal of M and let $A = (\mu_A, \gamma_A)$ be an IFS in M defined by

$$\mu_A(x) := \begin{cases} \alpha_0 & \text{if } x \in H, \\ \alpha_1 & \text{otherwise,} \end{cases} \quad \gamma_A(x) := \begin{cases} \beta_0 & \text{if } x \in H, \\ \beta_1 & \text{otherwise} \end{cases}$$

for all $x \in M$ and $\alpha_i, \beta_i \in [0, 1]$ such that $\alpha_0 > \alpha_1, \beta_0 < \beta_1$ and $\alpha_i + \beta_i \leq 1$ for i = 0, 1. Then $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy ideal of M and $\mu_{A,\alpha_0}^{\geq} = H = \gamma_{A,\beta_0}^{\leq}$.

Proof. Let $x, y \in M$. If any one of x and y does not belong to H, then

$$\mu_{_{A}}(x-y) \ge \alpha_1 = \mu_{_{A}}(x) \land \mu_{_{A}}(y)$$

and

$$\gamma_{_{A}}(x-y) \leq \beta_{1} = \gamma_{_{A}}(x) \lor \gamma_{_{A}}(y).$$

Also, let $x, y \in M$ and $\alpha \in \Gamma$. If $y \notin H$, then $\mu_A(x\alpha y) \ge \alpha_1 = \mu_A(x) \land \mu_A(y)$ and $\gamma_A(x\alpha y) \le \beta_1 = \gamma_A(x) \lor \gamma_A(y)$. Assume that $y \in H$. Since H is an ideal of M, it follows that $x\alpha y \in H$. Hence $\mu_A(x\alpha y) = \alpha_0 = \mu_A(x) \land \mu_A(y)$ and $\gamma_A(x\alpha y) = \beta_0 = \gamma_A(x) \lor \gamma_A(y)$. Therefore $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy ideal of M. Obviously $\mu_{A,\alpha_0}^{\ge} = H = \gamma_{A,\alpha_0}^{\le}$. \Box

Corollary 3.12. Let χ_H be the characteristic function of an ideal H of M. Then the IFS $\tilde{H} = (\chi_H, \chi_H)$ is an intuitionistic fuzzy ideal of M.

Theorem 3.13. If an IFS $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy ideal of M, then

$$\mu_{\scriptscriptstyle A}\left(x\right) := \sup\{\alpha \in [0,1] \mid x \in \mu_{A,\alpha}^{\geq}\} \text{ and } \gamma_{\scriptscriptstyle A}\left(x\right) := \inf\{\alpha \in [0,1] \mid x \in \gamma_{A,\alpha}^{\leq}\}$$

for all $x \in M$.

Proof. Let $\delta := \sup\{\alpha \in [0,1] \mid x \in \mu_{A,\alpha}^{\geq}\}$ and let $\varepsilon > 0$ be given. Then $\delta - \varepsilon < \alpha$ for some $\alpha \in [0,1]$ such that $x \in \mu_{A,\alpha}^{\geq}$. It follows that $\delta - \varepsilon < \mu_A(x)$ so that $\delta \le \mu_A(x)$ since ε is arbitrary. We now show that $\mu_A(x) \le \delta$. Let $\mu_A(x) = \beta$. Then $x \in \mu_{A,\beta}^{\geq}$ and so

$$\beta \in \{\alpha \in [0,1] \mid x \in \mu_{A,\alpha}^{\geq}\}.$$

Hence $\mu_A(x) = \beta \leq \sup\{\alpha \in [0,1] \mid x \in \mu_{A,\alpha}^{\geq}\} = \delta$. Therefore

$$\mu_{\scriptscriptstyle A}(x) = \delta = \sup\{\alpha \in [0,1] \mid x \in \mu^{\geq}_{A,\alpha}\}.$$

Now let $\eta = \inf \{ \alpha \in [0, 1] \mid x \in \gamma_{A, \alpha}^{\leq} \}$. Then

$$\inf \left\{ \alpha \in [0,1] \mid x \in \gamma_{A,\alpha}^{\leq} \right\} < \eta + \varepsilon \text{ for any } \varepsilon < 0$$

and so $\alpha < \eta + \varepsilon$ for some $\alpha \in [0,1]$ with $x \in \gamma_{A,\alpha}^{\leq}$. Since $\gamma_{A}(x) \leq \alpha$ and ε is arbitrary, it follows that $\gamma_{A}(x) \leq \eta$. To prove $\gamma_{A}(x) \geq \eta$, let $\gamma_{A}(x) = \zeta$. Then $x \in \gamma_{A,\zeta}^{\leq}$ and thus $\zeta \in \{\alpha \in [0,1] \mid x \in \gamma_{A,\alpha}^{\leq}\}$. Hence

$$\inf \{ \alpha \in [0,1] \mid x \in \gamma_{A,\alpha}^{\leq} \} \leq \zeta, \text{ i.e., } \eta \leq \zeta = \gamma_{A}(x).$$

Consequently

$$\gamma_{\scriptscriptstyle A}(x) = \eta = \inf \{ \alpha \in [0,1] \mid x \in \gamma_{A,\alpha}^{\leq} \}.$$

This completes the proof. \Box

Theorem 3.14. An IFS $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy ideal of M if and only if the fuzzy sets μ_A and $\overline{\gamma_A}$ are fuzzy ideals of M.

Proof. Let $A = (\mu_A, \gamma_A)$ be an intuitionistic fuzzy ideal of M. Then clearly μ_A is a fuzzy ideal of M. Let $x, y \in M$ and $\alpha \in \Gamma$. Then

$$\begin{split} \overline{\gamma_{\scriptscriptstyle A}}(x-y) &= 1 - \gamma_{\scriptscriptstyle A}(x-y) \\ &\geq 1 - \gamma_{\scriptscriptstyle A}(x) \lor \gamma_{\scriptscriptstyle A}(y) \\ &= (1 - \gamma_{\scriptscriptstyle A}(x)) \land (1 - \gamma_{\scriptscriptstyle A}(y)) \\ &= \overline{\gamma_{\scriptscriptstyle A}}(x) \land \overline{\gamma_{\scriptscriptstyle A}}(y), \text{ and} \end{split}$$

$$\begin{split} \overline{\gamma_{A}}(x\alpha y) &= 1 - \gamma_{A}\left(x\alpha y\right) \\ &\geq 1 - \gamma_{A}\left(x\right) \wedge \gamma_{A}\left(y\right) \\ &= \left(1 - \gamma_{A}\left(x\right)\right) \vee \left(1 - \gamma_{A}\left(y\right)\right) \\ &= \overline{\gamma_{A}}(y) \vee \overline{\gamma_{A}}(y). \end{split}$$

Hence $\overline{\gamma_A}$ is a fuzzy ideal of M.

Conversely suppose that μ_A and $\overline{\gamma_A}$ are fuzzy ideals of M. Let $x, y \in M$ and $\alpha \in \Gamma$. Then

$$\begin{split} 1 - \gamma_{\scriptscriptstyle A} \left(x - y \right) &= \overline{\gamma_{\scriptscriptstyle A}} (x - y) \geq \overline{\gamma_{\scriptscriptstyle A}} (x) \wedge \overline{\gamma_{\scriptscriptstyle A}} (y) \\ &= \left(1 - \gamma_{\scriptscriptstyle A} (x) \right) \wedge \left(1 - \gamma_{\scriptscriptstyle A} (y) \right) \\ &= 1 - \gamma_{\scriptscriptstyle A} (x) \vee \gamma_{\scriptscriptstyle A} (y), \text{ and} \end{split}$$

$$\begin{split} 1 - \gamma_{\scriptscriptstyle A} \left(x \alpha y \right) &= \overline{\gamma_{\scriptscriptstyle A}} \left(x \alpha y \right) \geq \overline{\gamma_{\scriptscriptstyle A}} \left(x \right) \vee \overline{\gamma_{\scriptscriptstyle A}} \left(y \right) \\ &= \left(1 - \gamma_{\scriptscriptstyle A} \left(x \right) \right) \vee \left(1 - \gamma_{\scriptscriptstyle A} \left(y \right) \right) \\ &= 1 - \gamma_{\scriptscriptstyle A} \left(x \right) \wedge \gamma_{\scriptscriptstyle A} \left(y \right), \end{split}$$

which imply that $\gamma_{_{A}}(x-y) \leq \gamma_{_{A}}(x) \vee \gamma_{_{A}}(y)$ and $\gamma_{_{A}}(x\alpha y) \leq \gamma_{_{A}}(x) \wedge \gamma_{_{A}}(y)$. This completes the proof. \Box

Corollary 3.15. An IFS $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy ideal of M if and only if $\Box A = (\mu_A, \overline{\mu_A})$ and $\Diamond A = (\overline{\gamma_A}, \gamma_A)$ are intuitionistic fuzzy ideals of M.

Proof. It is straightforward by Theorem 3.14. \Box

A mapping f from a Γ -ring M to a Γ -ring M' is called a homomorphism if f(x+y) = f(x) + f(y) and $f(x\alpha y) = f(x)\alpha f(y)$ for all $x, y \in M$ and $\alpha \in \Gamma$.

Theorem 3.16. Let $f : M \to M'$ be a homomorphism of Γ -rings. If $B = (\mu_B, \gamma_B)$ is an intuitionistic fuzzy ideal of M', then the preimage $f^{-1}(B) = (f^{-1}(\mu_B), f^{-1}(\gamma_B))$ of Bunder f is an intuitionistic fuzzy ideal of M.

Proof. Assume that $B = (\mu_B, \gamma_B)$ is an intuitionistic fuzzy ideal of M' and let $x, y \in M$. Then

$$f^{-1}(\mu_B)(x-y) = \mu_B(f(x-y))$$

= $\mu_B(f(x) - f(y))$
 $\ge \mu_B(f(x)) \land \mu_B(f(y))$
= $f^{-1}(\mu_B(x)) \land f^{-1}(\mu_B(y))$, and

$$f^{-1}(\gamma_B)(x-y) = \gamma_B(f(x-y))$$

= $\gamma_B(f(x) - f(y))$
 $\leq \gamma_B(f(x)) \lor \gamma_B(f(y))$
= $f^{-1}(\gamma_B(x)) \lor f^{-1}(\gamma_B(y)).$

Also, for any $x, y \in M$ and $\alpha \in \Gamma$ we have

$$f^{-1}(\mu_B)(x\alpha y) = \mu_B(f(x\alpha y))$$

= $\mu_B(f(x)\alpha f(y))$
 $\geq \mu_B(f(x)) \lor \mu_B(f(y))$
= $f^{-1}(\mu_B(x)) \lor f^{-1}(\mu_B(y))$, and

$$f^{-1}(\gamma_B)(x\alpha y) = \gamma_B(f(x\alpha y))$$

= $\gamma_B(f(x)\alpha f(y))$
 $\leq \gamma_B(f(x)) \wedge \gamma_B(f(y))$
= $f^{-1}(\gamma_B(x)) \wedge f^{-1}(\gamma_B(y)).$

Therefore $f^{-1}(B) = (f^{-1}(\mu_B), f^{-1}(\gamma_B))$ is an intuitionistic fuzzy ideal of M. \Box

Let $f: M \to M'$ be a homomorphism of Γ -rings. For any IFS $A = (\mu_A, \gamma_A)$ in M', we define a new IFS $A^f = (\mu_A^f, \gamma_A^f)$ in M by

$$\mu_{_{A}}^{f}(x) := \mu_{_{A}}(f(x)) \text{ and } \gamma_{_{A}}^{f}(x) := \gamma_{_{A}}(f(x))$$

for all $x \in M$.

Theorem 3.17. Let $f: M \to M'$ be a homomorphism of Γ -rings. If an IFS $A = (\mu_A, \gamma_A)$ in M' is an intuitionistic fuzzy ideal of M', then an IFS $A^f = (\mu_A^f, \gamma_A^f)$ in M is an intuitionistic fuzzy ideal of M.

Proof. Let $x, y \in M$. Then

$$egin{aligned} \mu^f_{_A}(x-y) &= \mu_{_A}\left(f(x-y)
ight) \ &= \mu_{_A}\left(f(x) - f(y)
ight) \ &\geq \mu_{_A}\left(f(x)
ight) \wedge \mu_{_A}\left(f(y)
ight) \ &= \mu^f_{_A}(x) \wedge \mu^f_{_A}(y), \end{aligned}$$

 and

$$egin{aligned} &\gamma^f_{_A}\left(x-y
ight) = \gamma_{_A}\left(f(x-y)
ight) \ &= \gamma_{_A}\left(f(x)-f(y)
ight) \ &\leq \gamma_{_A}\left(f(x)ee\gamma_{_A}\left(f(y)
ight) \ &= \gamma^f_{_A}(x)ee\gamma^f_{_A}(y). \end{aligned}$$

Also, let $x, y \in M$ and $\alpha \in \Gamma$. Then

$$\begin{split} \mu_{\scriptscriptstyle A}^f(x\alpha y) &= \mu_{\scriptscriptstyle A}\left(f(x\alpha y)\right) \\ &= \mu_{\scriptscriptstyle A}\left(f(x)\alpha f(y)\right) \\ &\geq \mu_{\scriptscriptstyle A}\left(f(x)\right) \lor \mu_{\scriptscriptstyle A}\left(f(y)\right) \\ &= \mu_{\scriptscriptstyle A}^f(x) \lor \mu_{\scriptscriptstyle A}^f\left(y\right), \end{split}$$

and

$$egin{aligned} &\gamma^f_{_A}(xlpha y) = \gamma_{_A}\left(f(xlpha y)
ight) \ &= \gamma_{_A}\left(f(x)lpha f(y)
ight) \ &\leq \gamma_{_A}\left(f(x)
ight) \wedge \gamma_{_A}\left(f(y)
ight) \ &= \gamma^f_{_A}(x) \wedge \gamma^f_{_A}(y). \end{aligned}$$

Hence $A^f = (\mu^f_A, \gamma^f_A)$ is an intuitionistic fuzzy ideal of M. \Box

If we strengthen the condition of f, then we can construct the converse of Theorem 3.17 as follows.

Theorem 3.18. Let $f: M \to M'$ be an epimorphism of Γ -rings and let $A = (\mu_A, \gamma_A)$ be an IFS in M'. If $A^f = (\mu_A^f, \gamma_A^f)$ is an intuitionistic fuzzy ideal of M, then $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy ideal of M'.

Proof. Let $x, y \in M'$. Then f(a) = x and f(b) = y for some $a, b \in M$. It follows that

$$\begin{split} \mu_{\scriptscriptstyle A}\left(x-y\right) = & \mu_{\scriptscriptstyle A}\left(f(a)-f(b)\right) \\ \mu_{\scriptscriptstyle A}\left(f(a-b)\right) = & \mu_{\scriptscriptstyle A}^f\left(a-b\right) \\ \geq & \mu_{\scriptscriptstyle A}^f\left(a\right) \wedge \mu_{\scriptscriptstyle A}^f\left(b\right) \\ = & \mu_{\scriptscriptstyle A}\left(f(a)\right) \wedge \mu_{\scriptscriptstyle A}\left(f(b)\right) \\ = & \mu_{\scriptscriptstyle A}\left(x\right) \wedge \mu_{\scriptscriptstyle A}\left(y\right) \end{split}$$

and

440

$$egin{aligned} &\gamma_{\scriptscriptstyle A}\left(x-y
ight) = \gamma_{\scriptscriptstyle A}\left(f(a)-f(b)
ight) \ &= \gamma_{\scriptscriptstyle A}\left(f(a-b)
ight) = \gamma^{f}_{\scriptscriptstyle A}\left(a-b
ight) \ &\leq \gamma^{f}_{\scriptscriptstyle A}(a) \wedge \gamma^{f}_{\scriptscriptstyle A}(b) \ &= \gamma_{\scriptscriptstyle A}\left(f(a)
ight) \wedge \gamma_{\scriptscriptstyle A}\left(f(b)
ight) \ &= \gamma_{\scriptscriptstyle A}\left(x
ight) \wedge \gamma_{\scriptscriptstyle A}\left(y
ight). \end{aligned}$$

Also, let $\alpha \in \Gamma$. Then

$$\begin{split} \mu_{\scriptscriptstyle A}(x\alpha y) &= \mu_{\scriptscriptstyle A}\left(f(a)\alpha f(b)\right) \\ &= \mu_{\scriptscriptstyle A}\left(f(a\alpha b)\right) = \mu_{\scriptscriptstyle A}^f\left(a\alpha b\right) \\ &\geq \mu_{\scriptscriptstyle A}^f\left(a\right) \lor \mu_{\scriptscriptstyle A}^f\left(b\right) \\ &= \mu_{\scriptscriptstyle A}\left(f(a)\right) \lor \mu_{\scriptscriptstyle A}\left(f(b)\right) \\ &= \mu_{\scriptscriptstyle A}\left(x\right) \lor \mu_{\scriptscriptstyle A}\left(y\right), \end{split}$$

and

$$\begin{split} \gamma_{\scriptscriptstyle A} \left(x \alpha y \right) &= \gamma_{\scriptscriptstyle A} \left(f(a) \alpha f(b) \right) \\ &= \gamma_{\scriptscriptstyle A} \left(f(a \alpha b) \right) = \gamma^f_{\scriptscriptstyle A} \left(a \alpha b \right) \\ &\leq \gamma^f_{\scriptscriptstyle A} \left(a \right) \wedge \gamma^f_{\scriptscriptstyle A} \left(b \right) \\ &= \gamma_{\scriptscriptstyle A} \left(f(a) \right) \wedge \gamma_{\scriptscriptstyle A} \left(f(b) \right) \\ &= \gamma_{\scriptscriptstyle A} \left(x \right) \wedge \gamma_{\scriptscriptstyle A} \left(y \right). \end{split}$$

This completes the proof. \Box

References

- [1] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy sets and Systems 20 (1986), 87-96.
- [2] K. T. Atanassov, New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems 61 (1994), 137-142.
- [3] D. Çoker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1997), 81-89.
- [4] S. M. Hong and Y. B. Jun, A note on fuzzy ideals in Γ-rings, Bull. Honam Math. Soc. 12 (1995), 39-48.
- [5] Y. B. Jun, M. Sapanci and M. A. Ozturk, Fuzzy ideals in gamma near-rings, Tr. J. of Mathematics 22 (1998), 449-459.
- [6] Y. B. Jun and C. Y. Lee, Fuzzy Γ-rings, Pusan Kyongnam Math. J. (presently, East Asian Math. J.) 8(2) (1992), 163-170.
- [7] Y. B. Jun and K. H. Kim, Intuitionistic fuzzy ideals of near-rings, Jour. of Inst. of Math & Comp. Sci.(Math. Ser.) 12(3) (1999), 221-228.
- [8] Y. H. Yon and K. H. Kim, Intuitionistic fuzzy filters and ideals of lattices, Far East J. Math. Sci. (FJMS) 1(3) (1999), 429-442.
- [9] L. A. Zadeh, Fuzzy sets, Inform. Control 8 (1965), 338 353.

Kyung Ho Kim, Department of Mathematics, Chungju National University, Chungju 380-702, Korea. E-mail: ghkim@gukwon.chungju.ac.kr

Young Bae Jun, Department of Mathematics Education, Gyeongsang National University, Chinju 660-701, Korea. E-mail: ybjun@nongae.gsnu.ac.kr

M. Ali Oztürk, Department of Mathematics, Faculty of Arts and Sciences, Cumhuriyet University, 58140 Sivas, Turkey.