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ABSTRACT. We deal with some conditions in order that traces would be orthogonal on semi-
prime I'-rings.

1. Introduction

In [8], J. Vukman proved some results related with symmetric bi-derivations on prime
and semiprime rings, and then M. A. Oztiirk et al. [5] applied the Vukman’s idea to prime
and semi-prime I'-rings. In this paper, we consider (orthogonal) traces of symmetric bi-
derivations on semi-prime I'-rings, and we provide some conditions in order that traces
would be orthogonal on semi-prime I'-rings.

2. Preliminaries

Let M and T be two abelian groups. If for all z,y,z € M and all a, 8 € T the conditions

(i) zay € M,

(i) (z+y)az =zaz+yaz, z(a+ B)z = zaz + zfz, za(y + z) = zay + zaz,

(iii) (zay)Bz = za(yp)
are satisfied, then we call M a T'-ring. By a right (resp. left) ideal of a T-ring M we mean
an additive subgroup U of M such that UTM C U (resp. MTU C U). If U is both a right
and a left ideal, then we say that U is an ideal of M. For each a of a ['-ring M the smallest
right ideal containing a is called the principal right ideal generated by a and is denoted by
(a)r. Similarly we define (a); (resp. {(a)), the principal left (resp. two sided) ideal generated
by a. Anideal P of a ['-ring M is said to be prime if for any ideals A and B of M, ATB C P
implies A C P or B C P. An ideal @) of a I'-ring M is said to be semi-prime if for any ideal
U of M, UTU C @ implies U C . A TI'-ring M is said to be prime (resp. semi-prime) if
the zero ideal is prime (resp. semi-prime).

Theorem 2.1 ([3, Theorem 4]). If M is a I'-ring, the following conditions are equivalent:
(i) M is a prime I'-ring.
(ii) Ifa,b € M and al'MTb = (0), then a =0 or b = 0.
(iii) If (a) and (b} are principal ideals in M such that (a)T'(b) = (0), then a = 0 or b = 0.
(iv) If A and B are right ideals in M such that ATB = (0), then A = {0) or B = (0).
(v) If A and B are left ideals in M such that AT'B = (0), then A = (0) or B = (0).

Let M be a I'-ring. If there exists a least positive integer n such that nz = 0 for all
x € M, then M is said to have characteristic n, denoted by charM. A T'-ring M is said to
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be n-torsion free if nx = 0 implies z = 0 for any x € M and a positive integer n. If M is a
prime I'-ring with charM # n, that is, there exists 0 # b € M such that nb # 0, then M is
n-torsion free. Because if na = 0, then by 0 = nal'MT'nb, we have a = 0 which means that
M is n-torsion free.

Lemma 2.2 ([3, Corollary 1]). A I'-ring M is semi-prime if and only if al' MT'a = 0 implies
a=0.

A mapping D(-,-) : M x M — M is said to be symmetric bi-additive if it is additive in
both arguments and D(z,y) = D(y,x) for all z,y € M. By the trace of D(-,-) we mean a
map d : M — M defined by d(z) = D(z,z) for all x € M. A symmetric bi-additive map
is called a symmetric bi-derivation if D(x8z,y) = D(x,y)Bz + xB8D(z,y) for all x,y,z € M
and 8 € T'. Since a map D(-,-) is symmetric bi-additive, the trace of D(:,-) satisfies the
relation d(z + y) = d(x) + d(y) + 2D(z,y) for all z,y € M, and is an even function.

Definition 2.3 ([6, Definition 2.1]). Let M be a semi-prime I'-ring, and let D, (-,-) and
Ds(-,-) be symmetric bi-derivations of M. If the traces d; and d» of Dy (-,-) and Ds(,),
respectively, satisfy dy (z)[MT'dx(y) = 0 = do(y)['MTd; (z) for all z,y € M, then d; and
ds are called orthogonal traces.

Note that, the trace of a non-zero symmetric bi-derivation in a semi-prime I'-ring isn’t
orthogonal with itself. Let M be a I'-ring. For a subset S of M, I(S) = {a € M | aT'S = 0}
is called the left annihilator of S. A right annihilator r(S) can be defined similarly.

Lemma 2.4 ([5, Lemma 3]). Let M be a 2-torsion free semi-prime I'-ring, U a non-zero
ideal of M and a,b € M. Then the following are equivalent.

(i) acxpb=0forallxz € U and o, € T,

(ii) baxBa =0 for all x € U and a,3 € T,

(iii) aaxBb+ baxBa =0 for all z € U and a, B € T.

If one of the conditions is fulfilled and [(U) = 0, then aab = 0 = baa for all a € T.
Moreover if M is a prime I'-ring, then a =0 or b = 0.

Lemma 2.5 ([5, Lemma 4]). Let M be a 2,3-torsion free semi-prime I'- ring and U a
non-zero ideal of M. Let Dy (-,-) and Ds(-,-) be symmetric bi-derivations of M, and let d;
and ds be the traces of Di(-,-) and D2 (-,-) respectively. Then

(i) Ifd(U)LUTds(U) = 0, then dy(M)TUTdy(M) = 0,

(ii) IfI(U) = 0 and dy(M)TUTdy(M) = 0, then dy(M)I' MTdy(M) = 0.

3. Main results

Theorem 3.1. Let M be a 2,3-torsion free semi-prime I'-ring, U a non-zero ideal of M
and [(U) = 0. Let D;(-,-) and D(-,-) be symmetric bi-derivations of M, and let d; and d
be the traces of Dy (-,-) and Ds(-,-) respectively. Then d; and dy are orthogonal if and only
if di(u)lds (v) + da(u)Tdy (v) = 0 for all u,v € U.

Proof. If dy and d are orthogonal, then dy (z)TMTd2(y) = 0 = da(y)I'MT'd; (z) for all
x,y € M. So we have dy (u)['dz(v) = 0 = d2(v)['d; (u) by Lemma 2.4, and hence

d1 (U)Fd2 (U) + d2 (U)Fdl (U) =0

for all u,v € U. Conversely, assume that d;(u)T'd2(v) + da(u)'dy(v) = 0 for all u,v € U.
Then

(1) di (u)ydz(v) + d2(u)ydi (v) = 0
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for all u,v € U and v € I'. Replacing v by v + w in (1) where w € U and using the fact that
M is 2-torsion free, we get

(2) dy (u)y D2 (v, w) + dy(u)yD1(v,w) = 0
for all u,v,w € U and 7 € I'. Substituting u + v for u in (2) we have
(3) Dy (u,v)yD2 (v, w) + Da(u, v)yD1(v,w) =0

for all u,v,w € U and v € I'. Now replacing w by wfu in (3) where § € I' and using (3),
we obtain

(4) Dy (u, v)ywBD2(v,u) + D2 (u,v)ywBD: (v, u) = 0
for all w,v,w € U and ~, 8 € I'. Substituting v for v in (4), we get
(5) di (u)ywPBdz (u) + da(w)ywPdi (u) = 0

for all u,w € U and v, € T'. It follows from (5) and Lemma 2.4 that d; (u)TUTds(u) = 0
for all w € U. In a similar way, we get d2(u)TUTd; (u) = 0 for all u € U. This shows that
dy is orthogonal with d» by Lemma 2.5. O

Theorem 3.2. Let M be a 2,3-torsion free semi-prime I'-ring, U a non-zero ideal of M
and l[(U) = 0. Let D1(+,-) and Ds(-,-) be symmetric bi-derivations of M such that ds(U) C
U and dy and d» the traces of Di(-,-) and D;(-,-) respectively. Then the following are
equivalent:

(i) dy and dy are orthogonal,

(11) d1d2 - 0,

(iii) There exists a,b € M and v, 3 € T such that (dids)(u) = afu + uyb for all u € U,

(iv) didy = f, where f is the trace of a symmetric bi-additive mapping F(-,-) of M.
Proof. (i) = (ii), (i) = (iii) and (i) = (iv) are given in [6, Theorem 2.7].

(ii) = (i): Assume that dydy = 0. Then

(6) (didy)(u) =0 forall wel.
Since M is 2-torsion free, by linearizing (6) we obtain
D1 (dx(u),d2(v)) +2D1 (D2 (u, ), d2(v))

@ + 2D (Ds(u,v),d>(u)) + 4D1 (D2 (u,v), Da(u,v)) =0

for all u,v € U. Substituting —u for w in (7), we have

® D1 (d2(u),d2(v)) = 2D1 (D2 (u, v), d2(v))
- 2D1(D2(u,v),d2(u)) + 4D1(D2(U)U))D2(uav)) =0

for all u,v € U. Adding (7) and (8) and using the fact that M is 2-torsion free, we obtain
(9) Dy (d2(u), d2(v)) + 2D1 (D2 (u,v), Dy(u,v)) = 0

for all u,v € U. Substituting u + w for u in (9) where w € U and using the fact that M is
2-torsion free, we have

(10) Dl(D2(u7w)7d2(U)) + 2D1(D2(u,v),D2(w,v)) =0
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for all u,v,w € U. Replacing u by uvk in (10) where k € U and 7 € I and using (10) again,
we have

Dy (u,w)yD1(k,d2(v)) + D1 (u, ds(v))yDs(k, w)
(11) + 2D1 (u, D2 (w,v)yD2(k,v))
+ 2D5(u,v)yD1(k, D2(w,v)) =0

for all u,v,w,k € U and v € T. Since M is 3-torsion free, by substituting v for w in (11)
we get

(12) Dy (u,v)yD1(k,d2(v)) + D1 (u,ds(v))yD2(k,v) =0

for all w,v,k € U and v € T'. Using kBu for k in (12) where 3 € T, we get

(13) Ds(u,v)vkBD1(u,d2(v)) + D1 (u,ds(v))vkBD2(u,v) =0

for all u,v,k € U and v, € I. It follows from Lemma 2.4 that

(14) Dy (u,v)vkBD1(u,d2(v)) =0

for all u,v,k € U and ~, 8 € T'. Writing v + w for v in (14) and by using (14), we get

Ds(u,v)vkBD1(u, dz(w)) + D2 (u, w)vkBD1(u, d2(v))
(15) + 2D5(u,v)vkBD1 (u, D2 (v, w))
+ 2Ds(u, w)ykBD1 (u, D2 (v, w)) = 0
for all w,v,k,w € U and ~, 8 € T'. Replacing w by —w in (15), we have

=D (u,v)vkBD1(u, d2(w)) — Da(u,w)ykBD1(u,d2(v))
(16) - 2D2(u,v)7kﬁD1(u,D2(v,w))
+ 2D (u,w)vkBD1(u, Dy(v,w)) =0

for all u,v,k,w € U and v,8 € T. Adding up (15) and (16) and using the fact that M is
2-torsion free, we obtain

(17) D5 (u,v)vkBD1(u,dz(w)) + 2D2(u, w)ykBD1 (u, Do (v,w)) =0

for all u,v,k,w € U and v, € I'. Replacing k by k8D (d2(w),u)B" m~'Da(u,v)vk in (17)
where m € M and +', 8" € I and using (15) and the fact that M is a semi-prime I'-ring, we
get

(18) Ds(u, v)ykBD:(d2(w),u) =0

for all u,v,k,w € U and ~, 8 € I'. Substituting w + p for w in (18) where p € U and using
the fact that M is 2-torsion free, we have

(19) Dy (u, v)ykBD1(Ds(w,p),u) =0

for all u,v,k,w,p € U and v, 8 € I'. Writing kv't for k in (19) where t € U and +' € T', we
get

(20) Dy (u,v)yky'tBD1 (D2 (w,p),u) =0
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for all u,v,k,w,p,t € U and v, 3,v" € T'. In the similar manner, writing ¢vy'w for w in (20)
and using (20), we have

(21) Dy (u, v)ykBD,(t,p)y' D1 (w,u) + Da(u, v)ykBD1(t,u)y' Da(w,p) = 0

for all u, v, k, w, p, t € U and v, 3, v' € I'. Writing da(t) for ¢ in (21), it follows from (18)
that

(22) Ds(u, v)vkBDs(d2(t), p)y' D1(w,u) =0

for all u,v,k,w,p,t € U and v, 3,v" € I'. Writing ¢t + ¢ for ¢ in (22) where ¢ € U and using
the fact that M is 2-torsion free, we get

(23) Dy (u,v)ykBDy(Ds(t,q),p)y D1 (w,u) = 0

for all u,v,k,w,p,t,q € U and v,3,7" € I'. It follows by sustituting kg'r for k in (23),
where r € U and ' € T, that

(24) Ds(u,v)vkB'rBD2(D2(t, q), p)y' Di(w,u) = 0
for all u,v, k,w,p,t,q,r € U and v, 8,v', 8" € ['. Again, writing r'w for w in (23), we have
(25) Dy (u,v)vkB'rBD2(Ds(t, q), p)y'rB Di(w,u) =0

for all u,v,k,w,p,t,q,r € U and ~v,8,7',8" € T. Substituting 3t for ¢ in (23) and using
(24)and (25), we have

Dy (u,v)ykBDy(r,p)B D (t, q)y' Dy (w, u)

(26) - Da(u, 0)ykBDs(r, )5 Da(t, p)y' D (w, ) = 0

for all u, v, k, w, p, t, q, r € U and v, 3, 7', ' € T. Since M is 2-torsion free, it follows by
replacing ¢ by p in (26) that
(27) Dy (u,v)vkBDs(r, p)3' Da(t,p)y' D1 (w,u) =0

for all w,v,k,w,p,t € U and ~,5,7',5" € . Replacing k by D2 (t,p)y' D1 (w,u)aka’m in
(27) where m € M and «, o' € T', we have

Dy (u,v)yDa(t, p)y' D1 (w, u)aka'mBDy (r, p)8' Dy (t,p)y' D1 (w,u) = 0.

Taking 3’ for v and u,v for r,p respectively in the previous equation and using I[(U) = 0,
we have

(28) Dy (u,v)yD2(t,v)BD1 (w,u) =0
for all w,v,w,t € U and ~,8 € I'. Replacing w by kvy'w in (28), we get
(29) Ds(u,v)yDs(t,v)Bky' D1 (w,u) =0

for all u,v,k,w,t € U and +,3,7" € I'. Again, replacing ¢ by ¢y'k in (28) and using (29),
we get

(30) Dz (u,v)yty'Ds(k,v)BD1 (w,u) =0
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for all u, v, k,w,t € U and v, 8,7" € I'. Replacing t by Dy (w,u)atS'm in (30) where m € M,
we have

(31) Dy (u,v)yDy (w,u)atB8 my' Ds(k,v)B3D1 (w,u) =0

for all u,v,w,k,t € U and 7,3, € T and m € M. Writing 3 for v and writing u for k in
(31), it follows from [(U) = 0 that

(32) Dy (u,v)BDy(w,u) =0
for all u,v,w € U and 3 € T'. Now, writing wyv for w in (32), we get
D, (’U,, ’U)ﬁw’yDl (U’a ’U) =0

for all w,v,w € U and v, € I, and so by taking u for v in the previous equation, we get
d2(z)I'MTdy(y) =0 for all z,y € M by Lemma 2.5. Similarly, we get dy (y)['MT'dy(z) =0
for all z,y € M.

(iii) = (i): Assume that there exists a,b € M and ~,8 € T such that (dids)(u) =
afu + uvb for all w € U. Then by linearizing and using the fact that M is a 2-torsion free,
we get

Dy (d2 (U), ds (’U)) + 2D, (DQ (U,, ’U), ds (U))

(33) + 2D (D3 (u,v),d2(v)) + 2D1(D2(u,v), Da(u,v)) =0

for all u,v € U. Applying all steps which start from (7), we get the result.

(iv) = (i): Let (d1d2)(u) = f(u), where f is the trace of a symmetric bi-additive mapping
F(-,-) of M. By linearizing this expression and by using the fact that M is 2-torsion free,
we get

Dy (d2 (U), ds (’U)) + 2D, (DQ (U,, ’U), ds (U))

(34) + 2D1(Dy(u,v),ds(v)) + 2D1(D2(u,v), Da(u,v)) = F(u,v)

for all u,v € U. Writing —u for u in (34), we get

D1 (d2 (U), d2 (’U)) — 2D1 (DQ (U,, ’U), d2 (U))

(35) 9Dy (D, v), do (0)) + 2D1 (D, v), Da (1, v)) = —F(u, v)

for all u,v € U. Adding (34) and (35) and using the fact that M is 2-torsion free, we get
(36) Dy (d2(u), d2(v)) + 2D1(D2(u, v), Da(u,v)) = 0

for all u,v € U. Thus, applying all steps which start from (8) we get the result. Hence the
proof of the theorm is completed. O

Corollary 3.3. Let M be a 2, 3-torsion free prime I'-ring and U a non-zero ideal of M. Let
D;(-,"), D2(,-) be symmetric bi-derivations of M such that ds(u) C U and d; and dy the
traces of Dy(-,-) and Ds(-,-), respectively. If one of the equivalent conditions in Theorem
3.2 is valid, then D1 =0 or Dy = 0.

Corollary 3.4. Let M be a 2, 3-torsion free semi-prime I'-ring and U a non-zero ideal of
M. Let D(-,-) be a symmetric bi-derivation of M such that d(u) C D(-,-) and d the traces
of D(-,-). If one of the equivalent conditions in Theorem 3.2 is valid, then D = 0.
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