ORTHOGONAL TRACES ON SEMI-PRIME GAMMA RINGS

Mehmet Ali Öztürk, Young Bae Jun
and Kyung Ho Kim

Received March 14, 2000

Abstract. We deal with some conditions in order that traces would be orthogonal on semiprime Γ-rings.

1. Introduction

In [8], J. Vukman proved some results related with symmetric bi-derivations on prime and semiprime rings, and then M. A. Öztürk et al. [5] applied the Vukman's idea to prime and semi-prime Γ-rings. In this paper, we consider (orthogonal) traces of symmetric biderivations on semi-prime Γ-rings, and we provide some conditions in order that traces would be orthogonal on semi-prime Γ-rings.

2. Preliminaries

Let M and Γ be two abelian groups. If for all $x, y, z \in M$ and all $\alpha, \beta \in \Gamma$ the conditions
(i) $x a y \in M$,
(ii) $(x+y) \alpha z=x \alpha z+y \alpha z, x(\alpha+\beta) z=x \alpha z+x \beta z, x \alpha(y+z)=x \alpha y+x \alpha z$,
(iii) $(x \alpha y) \beta z=x \alpha(y \beta z)$
are satisfied, then we call M a Γ-ring. By a right (resp. left) ideal of a Γ-ring M we mean an additive subgroup U of M such that $U \Gamma M \subseteq U$ (resp. $M \Gamma U \subseteq U$). If U is both a right and a left ideal, then we say that U is an ideal of M. For each a of a Γ-ring M the smallest right ideal containing a is called the principal right ideal generated by a and is denoted by $\langle a\rangle_{r}$. Similarly we define $\langle a\rangle_{l}$ (resp. $\langle a\rangle$), the principal left (resp. two sided) ideal generated by a. An ideal P of a Γ-ring M is said to be prime if for any ideals A and B of $M, A \Gamma B \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$. An ideal Q of a Γ-ring M is said to be semi-prime if for any ideal U of $M, U \Gamma U \subseteq Q$ implies $U \subseteq Q$. A Γ-ring M is said to be prime (resp. semi-prime) if the zero ideal is prime (resp. semi-prime).

Theorem 2.1 ([3, Theorem 4]). If M is a Γ-ring, the following conditions are equivalent:
(i) M is a prime Γ-ring.
(ii) If $a, b \in M$ and $a \Gamma M \Gamma b=\langle 0\rangle$, then $a=0$ or $b=0$.
(iii) If $\langle a\rangle$ and $\langle b\rangle$ are principal ideals in M such that $\langle a\rangle \Gamma\langle b\rangle=\langle 0\rangle$, then $a=0$ or $b=0$.
(iv) If A and B are right ideals in M such that $A \Gamma B=\langle 0\rangle$, then $A=\langle 0\rangle$ or $B=\langle 0\rangle$.
(v) If A and B are left ideals in M such that $A \Gamma B=\langle 0\rangle$, then $A=\langle 0\rangle$ or $B=\langle 0\rangle$.

Let M be a Γ-ring. If there exists a least positive integer n such that $n x=0$ for all $x \in M$, then M is said to have characteristic n, denoted by char M. A Γ-ring M is said to

[^0]be n-torsion free if $n x=0$ implies $x=0$ for any $x \in M$ and a positive integer n. If M is a prime Γ-ring with char $M \neq n$, that is, there exists $0 \neq b \in M$ such that $n b \neq 0$, then M is n-torsion free. Because if $n a=0$, then by $0=n a \Gamma M \Gamma n b$, we have $a=0$ which means that M is n-torsion free.

Lemma 2.2 ([3, Corollary 1]). A Γ-ring M is semi-prime if and only if $a \Gamma M \Gamma a=0$ implies $a=0$.

A mapping $D(\cdot, \cdot): M \times M \rightarrow M$ is said to be symmetric bi-additive if it is additive in both arguments and $D(x, y)=D(y, x)$ for all $x, y \in M$. By the trace of $D(\cdot, \cdot)$ we mean a $\operatorname{map} d: M \rightarrow M$ defined by $d(x)=D(x, x)$ for all $x \in M$. A symmetric bi-additive map is called a symmetric bi-derivation if $D(x \beta z, y)=D(x, y) \beta z+x \beta D(z, y)$ for all $x, y, z \in M$ and $\beta \in \Gamma$. Since a map $D(\cdot, \cdot)$ is symmetric bi-additive, the trace of $D(\cdot, \cdot)$ satisfies the relation $d(x+y)=d(x)+d(y)+2 D(x, y)$ for all $x, y \in M$, and is an even function.

Definition 2.3 ([6, Definition 2.1]). Let M be a semi-prime Γ-ring, and let $D_{1}(\cdot, \cdot)$ and $D_{2}(\cdot, \cdot)$ be symmetric bi-derivations of M. If the traces d_{1} and d_{2} of $D_{1}(\cdot, \cdot)$ and $D_{2}(\cdot, \cdot)$, respectively, satisfy $d_{1}(x) \Gamma M \Gamma d_{2}(y)=0=d_{2}(y) \Gamma M \Gamma d_{1}(x)$ for all $x, y \in M$, then d_{1} and d_{2} are called orthogonal traces.

Note that, the trace of a non-zero symmetric bi-derivation in a semi-prime Γ-ring isn't orthogonal with itself. Let M be a Γ-ring. For a subset S of $M, l(S)=\{a \in M \mid a \Gamma S=0\}$ is called the left annihilator of S. A right annihilator $r(S)$ can be defined similarly.

Lemma 2.4 ([5, Lemma 3]). Let M be a 2-torsion free semi-prime Γ-ring, U a non-zero ideal of M and $a, b \in M$. Then the following are equivalent.
(i) $a \alpha x \beta b=0$ for all $x \in U$ and $\alpha, \beta \in \Gamma$,
(ii) $b \alpha x \beta a=0$ for all $x \in U$ and $\alpha, \beta \in \Gamma$,
(iii) $a \alpha x \beta b+b \alpha x \beta a=0$ for all $x \in U$ and $\alpha, \beta \in \Gamma$.

If one of the conditions is fulfilled and $l(U)=0$, then $a \alpha b=0=b \alpha a$ for all $\alpha \in \Gamma$. Moreover if M is a prime Γ-ring, then $a=0$ or $b=0$.
Lemma 2.5 ([5, Lemma 4]). Let M be a 2, 3-torsion free semi-prime Γ - ring and U a non-zero ideal of M. Let $D_{1}(\cdot, \cdot)$ and $D_{2}(\cdot, \cdot)$ be symmetric bi-derivations of M, and let d_{1} and d_{2} be the traces of $D_{1}(\cdot, \cdot)$ and $D_{2}(\cdot, \cdot)$ respectively. Then
(i) If $d_{1}(U) \Gamma U \Gamma d_{2}(U)=0$, then $d_{1}(M) \Gamma U \Gamma d_{2}(M)=0$,
(ii) If $l(U)=0$ and $d_{1}(M) \Gamma U \Gamma d_{2}(M)=0$, then $d_{1}(M) \Gamma M \Gamma d_{2}(M)=0$.

3. Main results

Theorem 3.1. Let M be a 2, 3-torsion free semi-prime Γ-ring, U a non-zero ideal of M and $l(U)=0$. Let $D_{1}(\cdot, \cdot)$ and $D_{2}(\cdot, \cdot)$ be symmetric bi-derivations of M, and let d_{1} and d_{2} be the traces of $D_{1}(\cdot, \cdot)$ and $D_{2}(\cdot, \cdot)$ respectively. Then d_{1} and d_{2} are orthogonal if and only if $d_{1}(u) \Gamma d_{2}(v)+d_{2}(u) \Gamma d_{1}(v)=0$ for all $u, v \in U$.
Proof. If d_{1} and d_{2} are orthogonal, then $d_{1}(x) \Gamma M \Gamma d_{2}(y)=0=d_{2}(y) \Gamma M \Gamma d_{1}(x)$ for all $x, y \in M$. So we have $d_{1}(u) \Gamma d_{2}(v)=0=d_{2}(v) \Gamma d_{1}(u)$ by Lemma 2.4, and hence

$$
d_{1}(u) \Gamma d_{2}(v)+d_{2}(u) \Gamma d_{1}(v)=0
$$

for all $u, v \in U$. Conversely, assume that $d_{1}(u) \Gamma d_{2}(v)+d_{2}(u) \Gamma d_{1}(v)=0$ for all $u, v \in U$. Then

$$
\begin{equation*}
d_{1}(u) \gamma d_{2}(v)+d_{2}(u) \gamma d_{1}(v)=0 \tag{1}
\end{equation*}
$$

for all $u, v \in U$ and $\gamma \in \Gamma$. Replacing v by $v+w$ in (1) where $w \in U$ and using the fact that M is 2-torsion free, we get

$$
\begin{equation*}
d_{1}(u) \gamma D_{2}(v, w)+d_{2}(u) \gamma D_{1}(v, w)=0 \tag{2}
\end{equation*}
$$

for all $u, v, w \in U$ and $\gamma \in \Gamma$. Substituting $u+v$ for u in (2) we have

$$
\begin{equation*}
D_{1}(u, v) \gamma D_{2}(v, w)+D_{2}(u, v) \gamma D_{1}(v, w)=0 \tag{3}
\end{equation*}
$$

for all $u, v, w \in U$ and $\gamma \in \Gamma$. Now replacing w by $w \beta u$ in (3) where $\beta \in \Gamma$ and using (3), we obtain

$$
\begin{equation*}
D_{1}(u, v) \gamma w \beta D_{2}(v, u)+D_{2}(u, v) \gamma w \beta D_{1}(v, u)=0 \tag{4}
\end{equation*}
$$

for all $u, v, w \in U$ and $\gamma, \beta \in \Gamma$. Substituting u for v in (4), we get

$$
\begin{equation*}
d_{1}(u) \gamma w \beta d_{2}(u)+d_{2}(u) \gamma w \beta d_{1}(u)=0 \tag{5}
\end{equation*}
$$

for all $u, w \in U$ and $\gamma, \beta \in \Gamma$. It follows from (5) and Lemma 2.4 that $d_{1}(u) \Gamma U \Gamma d_{2}(u)=0$ for all $u \in U$. In a similar way, we get $d_{2}(u) \Gamma U \Gamma d_{1}(u)=0$ for all $u \in U$. This shows that d_{1} is orthogonal with d_{2} by Lemma 2.5 .

Theorem 3.2. Let M be a 2,3-torsion free semi-prime Γ-ring, U a non-zero ideal of M and $l(U)=0$. Let $D_{1}(\cdot, \cdot)$ and $D_{2}(\cdot, \cdot)$ be symmetric bi-derivations of M such that $d_{2}(U) \subset$ U and d_{1} and d_{2} the traces of $D_{1}(\cdot, \cdot)$ and $D_{1}(\cdot, \cdot)$ respectively. Then the following are equivalent:
(i) d_{1} and d_{2} are orthogonal,
(ii) $d_{1} d_{2}=0$,
(iii) There exists $a, b \in M$ and $\gamma, \beta \in \Gamma$ such that $\left(d_{1} d_{2}\right)(u)=a \beta u+u \gamma b$ for all $u \in U$,
(iv) $d_{1} d_{2}=f$, where f is the trace of a symmetric bi-additive mapping $F(\cdot, \cdot)$ of M.

Proof. (i) \Rightarrow (ii), (i) \Rightarrow (iii) and (i) \Rightarrow (iv) are given in [6, Theorem 2.7].
(ii) \Rightarrow (i): Assume that $d_{1} d_{2}=0$. Then

$$
\begin{equation*}
\left(d_{1} d_{2}\right)(u)=0 \text { for all } u \in U . \tag{6}
\end{equation*}
$$

Since M is 2 -torsion free, by linearizing (6) we obtain

$$
\begin{align*}
& D_{1}\left(d_{2}(u), d_{2}(v)\right)+2 D_{1}\left(D_{2}(u, v), d_{2}(v)\right) \\
& \quad+2 D_{1}\left(D_{2}(u, v), d_{2}(u)\right)+4 D_{1}\left(D_{2}(u, v), D_{2}(u, v)\right)=0 \tag{7}
\end{align*}
$$

for all $u, v \in U$. Substituting $-u$ for u in (7), we have

$$
\begin{align*}
& D_{1}\left(d_{2}(u), d_{2}(v)\right)-2 D_{1}\left(D_{2}(u, v), d_{2}(v)\right) \tag{8}\\
& \quad-2 D_{1}\left(D_{2}(u, v), d_{2}(u)\right)+4 D_{1}\left(D_{2}(u, v), D_{2}(u, v)\right)=0
\end{align*}
$$

for all $u, v \in U$. Adding (7) and (8) and using the fact that M is 2-torsion free, we obtain

$$
\begin{equation*}
D_{1}\left(d_{2}(u), d_{2}(v)\right)+2 D_{1}\left(D_{2}(u, v), D_{2}(u, v)\right)=0 \tag{9}
\end{equation*}
$$

for all $u, v \in U$. Substituting $u+w$ for u in (9) where $w \in U$ and using the fact that M is 2-torsion free, we have

$$
\begin{equation*}
D_{1}\left(D_{2}(u, w), d_{2}(v)\right)+2 D_{1}\left(D_{2}(u, v), D_{2}(w, v)\right)=0 \tag{10}
\end{equation*}
$$

for all $u, v, w \in U$. Replacing u by $u \gamma k$ in (10) where $k \in U$ and $\gamma \in \Gamma$ and using (10) again, we have

$$
\begin{align*}
D_{2}(u, w) & \gamma D_{1}\left(k, d_{2}(v)\right)+D_{1}\left(u, d_{2}(v)\right) \gamma D_{2}(k, w) \\
& +2 D_{1}\left(u, D_{2}(w, v) \gamma D_{2}(k, v)\right) \tag{11}\\
& +2 D_{2}(u, v) \gamma D_{1}\left(k, D_{2}(w, v)\right)=0
\end{align*}
$$

for all $u, v, w, k \in U$ and $\gamma \in \Gamma$. Since M is 3-torsion free, by substituting v for w in (11) we get

$$
\begin{equation*}
D_{2}(u, v) \gamma D_{1}\left(k, d_{2}(v)\right)+D_{1}\left(u, d_{2}(v)\right) \gamma D_{2}(k, v)=0 \tag{12}
\end{equation*}
$$

for all $u, v, k \in U$ and $\gamma \in \Gamma$. Using $k \beta u$ for k in (12) where $\beta \in \Gamma$, we get

$$
\begin{equation*}
D_{2}(u, v) \gamma k \beta D_{1}\left(u, d_{2}(v)\right)+D_{1}\left(u, d_{2}(v)\right) \gamma k \beta D_{2}(u, v)=0 \tag{13}
\end{equation*}
$$

for all $u, v, k \in U$ and $\gamma, \beta \in \Gamma$. It follows from Lemma 2.4 that

$$
\begin{equation*}
D_{2}(u, v) \gamma k \beta D_{1}\left(u, d_{2}(v)\right)=0 \tag{14}
\end{equation*}
$$

for all $u, v, k \in U$ and $\gamma, \beta \in \Gamma$. Writing $v+w$ for v in (14) and by using (14), we get

$$
\begin{align*}
D_{2}(u, v) & \gamma k \beta D_{1}\left(u, d_{2}(w)\right)+D_{2}(u, w) \gamma k \beta D_{1}\left(u, d_{2}(v)\right) \\
& +2 D_{2}(u, v) \gamma k \beta D_{1}\left(u, D_{2}(v, w)\right) \tag{15}\\
& +2 D_{2}(u, w) \gamma k \beta D_{1}\left(u, D_{2}(v, w)\right)=0
\end{align*}
$$

for all $u, v, k, w \in U$ and $\gamma, \beta \in \Gamma$. Replacing w by $-w$ in (15), we have

$$
\begin{align*}
-D_{2}(u, v) & \gamma k \beta D_{1}\left(u, d_{2}(w)\right)-D_{2}(u, w) \gamma k \beta D_{1}\left(u, d_{2}(v)\right) \\
& -2 D_{2}(u, v) \gamma k \beta D_{1}\left(u, D_{2}(v, w)\right) \tag{16}\\
& +2 D_{2}(u, w) \gamma k \beta D_{1}\left(u, D_{2}(v, w)\right)=0
\end{align*}
$$

for all $u, v, k, w \in U$ and $\gamma, \beta \in \Gamma$. Adding up (15) and (16) and using the fact that M is 2-torsion free, we obtain

$$
\begin{equation*}
D_{2}(u, v) \gamma k \beta D_{1}\left(u, d_{2}(w)\right)+2 D_{2}(u, w) \gamma k \beta D_{1}\left(u, D_{2}(v, w)\right)=0 \tag{17}
\end{equation*}
$$

for all $u, v, k, w \in U$ and $\gamma, \beta \in \Gamma$. Replacing k by $k \beta D_{1}\left(d_{2}(w), u\right) \beta^{\prime} m \gamma^{\prime} D_{2}(u, v) \gamma k$ in (17) where $m \in M$ and $\gamma^{\prime}, \beta^{\prime} \in \Gamma$ and using (15) and the fact that M is a semi-prime Γ-ring, we get

$$
\begin{equation*}
D_{2}(u, v) \gamma k \beta D_{1}\left(d_{2}(w), u\right)=0 \tag{18}
\end{equation*}
$$

for all $u, v, k, w \in U$ and $\gamma, \beta \in \Gamma$. Substituting $w+p$ for w in (18) where $p \in U$ and using the fact that M is 2 -torsion free, we have

$$
\begin{equation*}
D_{2}(u, v) \gamma k \beta D_{1}\left(D_{2}(w, p), u\right)=0 \tag{19}
\end{equation*}
$$

for all $u, v, k, w, p \in U$ and $\gamma, \beta \in \Gamma$. Writing $k \gamma^{\prime} t$ for k in (19) where $t \in U$ and $\gamma^{\prime} \in \Gamma$, we get

$$
\begin{equation*}
D_{2}(u, v) \gamma k \gamma^{\prime} t \beta D_{1}\left(D_{2}(w, p), u\right)=0 \tag{20}
\end{equation*}
$$

for all $u, v, k, w, p, t \in U$ and $\gamma, \beta, \gamma^{\prime} \in \Gamma$. In the similar manner, writing $t \gamma^{\prime} w$ for w in (20) and using (20), we have

$$
\begin{equation*}
D_{2}(u, v) \gamma k \beta D_{2}(t, p) \gamma^{\prime} D_{1}(w, u)+D_{2}(u, v) \gamma k \beta D_{1}(t, u) \gamma^{\prime} D_{2}(w, p)=0 \tag{21}
\end{equation*}
$$

for all $u, v, k, w, p, t \in U$ and $\gamma, \beta, \gamma^{\prime} \in \Gamma$. Writing $d_{2}(t)$ for t in (21), it follows from (18) that

$$
\begin{equation*}
D_{2}(u, v) \gamma k \beta D_{2}\left(d_{2}(t), p\right) \gamma^{\prime} D_{1}(w, u)=0 \tag{22}
\end{equation*}
$$

for all $u, v, k, w, p, t \in U$ and $\gamma, \beta, \gamma^{\prime} \in \Gamma$. Writing $t+q$ for t in (22) where $q \in U$ and using the fact that M is 2 -torsion free, we get

$$
\begin{equation*}
D_{2}(u, v) \gamma k \beta D_{2}\left(D_{2}(t, q), p\right) \gamma^{\prime} D_{1}(w, u)=0 \tag{23}
\end{equation*}
$$

for all $u, v, k, w, p, t, q \in U$ and $\gamma, \beta, \gamma^{\prime} \in \Gamma$. It follows by sustituting $k \beta^{\prime} r$ for k in (23), where $r \in U$ and $\beta^{\prime} \in \Gamma$, that

$$
\begin{equation*}
D_{2}(u, v) \gamma k \beta^{\prime} r \beta D_{2}\left(D_{2}(t, q), p\right) \gamma^{\prime} D_{1}(w, u)=0 \tag{24}
\end{equation*}
$$

for all $u, v, k, w, p, t, q, r \in U$ and $\gamma, \beta, \gamma^{\prime}, \beta^{\prime} \in \Gamma$. Again, writing $r \beta^{\prime} w$ for w in (23), we have

$$
\begin{equation*}
D_{2}(u, v) \gamma k \beta^{\prime} r \beta D_{2}\left(D_{2}(t, q), p\right) \gamma^{\prime} r \beta^{\prime} D_{1}(w, u)=0 \tag{25}
\end{equation*}
$$

for all $u, v, k, w, p, t, q, r \in U$ and $\gamma, \beta, \gamma^{\prime}, \beta^{\prime} \in \Gamma$. Substituting $r \beta^{\prime} t$ for t in (23) and using (24)and (25), we have

$$
\begin{align*}
D_{2}(u, v) & \gamma k \beta D_{2}(r, p) \beta^{\prime} D_{2}(t, q) \gamma^{\prime} D_{1}(w, u) \\
& +D_{2}(u, v) \gamma k \beta D_{2}(r, q) \beta^{\prime} D_{2}(t, p) \gamma^{\prime} D_{1}(w, u)=0 \tag{26}
\end{align*}
$$

for all $u, v, k, w, p, t, q, r \in U$ and $\gamma, \beta, \gamma^{\prime}, \beta^{\prime} \in \Gamma$. Since M is 2-torsion free, it follows by replacing q by p in (26) that

$$
\begin{equation*}
D_{2}(u, v) \gamma k \beta D_{2}(r, p) \beta^{\prime} D_{2}(t, p) \gamma^{\prime} D_{1}(w, u)=0 \tag{27}
\end{equation*}
$$

for all $u, v, k, w, p, t \in U$ and $\gamma, \beta, \gamma^{\prime}, \beta^{\prime} \in \Gamma$. Replacing k by $D_{2}(t, p) \gamma^{\prime} D_{1}(w, u) \alpha k \alpha^{\prime} m$ in (27) where $m \in M$ and $\alpha, \alpha^{\prime} \in \Gamma$, we have

$$
D_{2}(u, v) \gamma D_{2}(t, p) \gamma^{\prime} D_{1}(w, u) \alpha k \alpha^{\prime} m \beta D_{2}(r, p) \beta^{\prime} D_{2}(t, p) \gamma^{\prime} D_{1}(w, u)=0
$$

Taking β^{\prime} for γ and u, v for r, p respectively in the previous equation and using $l(U)=0$, we have

$$
\begin{equation*}
D_{2}(u, v) \gamma D_{2}(t, v) \beta D_{1}(w, u)=0 \tag{28}
\end{equation*}
$$

for all $u, v, w, t \in U$ and $\gamma, \beta \in \Gamma$. Replacing w by $k \gamma^{\prime} w$ in (28), we get

$$
\begin{equation*}
D_{2}(u, v) \gamma D_{2}(t, v) \beta k \gamma^{\prime} D_{1}(w, u)=0 \tag{29}
\end{equation*}
$$

for all $u, v, k, w, t \in U$ and $\gamma, \beta, \gamma^{\prime} \in \Gamma$. Again, replacing t by $t \gamma^{\prime} k$ in (28) and using (29), we get

$$
\begin{equation*}
D_{2}(u, v) \gamma t \gamma^{\prime} D_{2}(k, v) \beta D_{1}(w, u)=0 \tag{30}
\end{equation*}
$$

for all $u, v, k, w, t \in U$ and $\gamma, \beta, \gamma^{\prime} \in \Gamma$. Replacing t by $D_{1}(w, u) \alpha t \beta^{\prime} m$ in (30) where $m \in M$, we have

$$
\begin{equation*}
D_{2}(u, v) \gamma D_{1}(w, u) \alpha t \beta^{\prime} m \gamma^{\prime} D_{2}(k, v) \beta D_{1}(w, u)=0 \tag{31}
\end{equation*}
$$

for all $u, v, w, k, t \in U$ and $\gamma, \beta^{\prime}, \gamma^{\prime} \in \Gamma$ and $m \in M$. Writing β for γ and writing u for k in (31), it follows from $l(U)=0$ that

$$
\begin{equation*}
D_{2}(u, v) \beta D_{1}(w, u)=0 \tag{32}
\end{equation*}
$$

for all $u, v, w \in U$ and $\beta \in \Gamma$. Now, writing $w \gamma v$ for w in (32), we get

$$
D_{2}(u, v) \beta w \gamma D_{1}(u, v)=0
$$

for all $u, v, w \in U$ and $\gamma, \beta \in \Gamma$, and so by taking u for v in the previous equation, we get $d_{2}(x) \Gamma M \Gamma d_{2}(y)=0$ for all $x, y \in M$ by Lemma 2.5. Similarly, we get $d_{1}(y) \Gamma M \Gamma d_{2}(x)=0$ for all $x, y \in M$.
(iii) \Rightarrow (i): Assume that there exists $a, b \in M$ and $\gamma, \beta \in \Gamma$ such that $\left(d_{1} d_{2}\right)(u)=$ $a \beta u+u \gamma b$ for all $u \in U$. Then by linearizing and using the fact that M is a 2-torsion free, we get

$$
\begin{align*}
& D_{1}\left(d_{2}(u), d_{2}(v)\right)+2 D_{1}\left(D_{2}(u, v), d_{2}(u)\right) \\
& \quad+2 D_{1}\left(D_{2}(u, v), d_{2}(v)\right)+2 D_{1}\left(D_{2}(u, v), D_{2}(u, v)\right)=0 \tag{33}
\end{align*}
$$

for all $u, v \in U$. Applying all steps which start from (7), we get the result.
(iv) $\Rightarrow(\mathrm{i})$: Let $\left(d_{1} d_{2}\right)(u)=f(u)$, where f is the trace of a symmetric bi-additive mapping $F(\cdot, \cdot)$ of M. By linearizing this expression and by using the fact that M is 2-torsion free, we get

$$
\begin{align*}
& D_{1}\left(d_{2}(u), d_{2}(v)\right)+2 D_{1}\left(D_{2}(u, v), d_{2}(u)\right) \\
& \quad+2 D_{1}\left(D_{2}(u, v), d_{2}(v)\right)+2 D_{1}\left(D_{2}(u, v), D_{2}(u, v)\right)=F(u, v) \tag{34}
\end{align*}
$$

for all $u, v \in U$. Writing $-u$ for u in (34), we get

$$
\begin{align*}
& D_{1}\left(d_{2}(u), d_{2}(v)\right)-2 D_{1}\left(D_{2}(u, v), d_{2}(u)\right) \tag{35}\\
& \quad-2 D_{1}\left(D_{2}(u, v), d_{2}(v)\right)+2 D_{1}\left(D_{2}(u, v), D_{2}(u, v)\right)=-F(u, v)
\end{align*}
$$

for all $u, v \in U$. Adding (34) and (35) and using the fact that M is 2-torsion free, we get

$$
\begin{equation*}
D_{1}\left(d_{2}(u), d_{2}(v)\right)+2 D_{1}\left(D_{2}(u, v), D_{2}(u, v)\right)=0 \tag{36}
\end{equation*}
$$

for all $u, v \in U$. Thus, applying all steps which start from (8) we get the result. Hence the proof of the theorm is completed.

Corollary 3.3. Let M be a 2,3 -torsion free prime Γ-ring and U a non-zero ideal of M. Let $D_{1}(\cdot, \cdot), D_{2}(\cdot, \cdot)$ be symmetric bi-derivations of M such that $d_{2}(u) \subset U$ and d_{1} and d_{2} the traces of $D_{1}(\cdot, \cdot)$ and $D_{2}(\cdot, \cdot)$, respectively. If one of the equivalent conditions in Theorem 3.2 is valid, then $D_{1}=0$ or $D_{2}=0$.

Corollary 3.4. Let M be a 2, 3 -torsion free semi-prime Γ-ring and U a non-zero ideal of M. Let $D(\cdot, \cdot)$ be a symmetric bi-derivation of M such that $d(u) \subset D(\cdot, \cdot)$ and d the traces of $D(\cdot, \cdot)$. If one of the equivalent conditions in Theorem 3.2 is valid, then $D=0$.

References

[1] W. E. Barnes, On the Γ-rings of Nobusawa, Pacific J. of Math. 18(3) (1966), 411-422.
[2] M. Bresar and J. Vukman, Orthogonal derivations and extension of a theorem of Posner, Radovi Mathematicki 5 (1989), 237-246.
[3] S. Kyuno, On prime gamma rings, Pacific J. of Math. 25(1) (1978), 639-645.
[4] Gy. Maksa, On the trace of symmetric bi-derivations, C. R. Math. Rep. Acad. Sci. Canada 99 (1987), 303-307.
[5] M. A. Öztürk, M. Sapanci, M. Soytürk and K. H. Kim, Symmetric bi-derivations on prime gamma rings, Scientiae Mathematicae 3(2) (2000), 273-281.
[6] M. A. Öztürk and M. Sapanci, Orthogonal symmetric bi-derivations on semi-prime gamma rings, Hacettepe Bull. of Natural Sciences and Engineering, Series B Math and Statistics, 26 (1997), 31-46.
[7] M. Sapanci, M. A. Öztürk and Y. B. Jun, Symmetric bi-derivations on prime rings, East Asian Math. J. 14(1) (1998), 105-109.
[8] J. Vukman, Symmetric bi-derivations on prime and semi-prime rings, Aequationes Math. 38 (1989), 245-254.
[9] M. S. Yenigül and N. Argaç, Idelas and symmetric bi-derivations of prime and semi-prime rings., Math J. Okayama Univ. 35 (1993), 189-192..
[10] M. S. Yenigül and N. Argaç, On idelas and orthogonal symmetric derivation, Journal of Southwest China Normal University (Natural Science) 20(2) (1995), 137-140..
M. Ali Öztürk

Department of Mathematics
Faculty of Arts and Sciences
Cumhuriyet University
58140 Sivas, Turkey
Young Bae Jun
Department of Mathematics Education
Gyeongsang National University
Chinju, 660-701, Korea
E-mail:ybjun@nongae.gsnu.ac.kr
Kyung Ho Kim
Department of Mathematics
Chungju National University
Chungju 380-702, Korea
E-mail: ghkim@gukwon.chungju.ac.k

[^0]: 2000 Mathematics Subject Calssification. 16Y99, 16N60, 16W25.
 Key words and phrases. Symmetric bi-derivation, (orthogonal) trace, semi-prime Γ-ring.
 This paper is dedicated to the memory of Prof. Dr. Mehmet Sapanci .

