FUZZY HYPERBCK-IDEALS OF HYPERBCK-ALGEBRAS

YOUNG BAE JUN AND XIAO LONG XIN

Received August 7, 2000

ABSTRACT. The fuzzification of the notion of a (weak, strong, reflexive) hyperBCK-ideal is considered, and relations among them and some related properties are given.

1. Introduction

The study of BCK-algebras was initiated by Iséki in 1966 as a generalization of the concept of set-theoretic difference and propositional calculus. Since then a great deal of literature has been produced on the theory of BCK-algebras. In particular, emphasis seems to have been put on the ideal theory of BCK-algebras (see [1, 2, 7]). The hyperstructure theory (called also multialgebras) was introduced in 1934 by Marty [6] at the 8th congress of Scandinavian Mathematiciens. In [5], Jun et al. applied the hyperstructures to BCK-algebras, and introduced the concept of a hyperBCK-algebra which is a generalization of a BCK-algebra, and investigated some related properties. They also introduced the notion of a (weak, strong, reflexive) hyperBCK-ideal, and gave relations among them. In this paper we consider the fuzzification of the notion of a (weak, strong, reflexive) hyperBCK-ideal, gave relations among them and investigate some related properties.

2. Preliminaries

An algebra (X; *, 0) of type (2, 0) is said to be a *BCK*-algebra if it satisfies: for all $x, y, z \in X$,

(I) ((x * y) * (x * z)) * (z * y) = 0, (II) (x * (x * y)) * y = 0, (III) x * x = 0, (IV) 0 * x = 0, (V) x * y = 0 and y * x = 0 imply x = y. Note that an algebra (X, *, 0) of type (2,0) is a *BCK*-algebra if and only if (i) ((y * z) * (x * z)) * (y * x) = 0, (ii) ((z * x) * y) * ((z * y) * x) = 0,

(iii) (x * y) * x = 0,

(iv) x * y = 0 and y * x = 0 imply that x = y,

for all $x, y \in X$ (see [7]). Note that the identity x * (x * (x * y)) = x * y holds in a *BCK*-algebra. A non-empty subset *I* of a *BCK*-algebra *X* is called an ideal of *X* if $0 \in I$, and $x * y \in I$ and $y \in I$ imply $x \in I$ for all $x, y \in X$.

A fuzzy set μ in a set X is a function $\mu: X \to [0, 1]$. A fuzzy set μ in a set X is said to satisfy the **inf** (resp. **sup**) property if for any subset T of X there exists $x_0 \in T$ such that $\mu(x_0) = \inf_{x \in T} \mu(x)$ (resp. $\mu(x_0) = \sup_{x \in T} \mu(x)$).

²⁰⁰⁰ Mathematics Subject Classification. 06F35, 03E72, 20N20.

Key words and phrases. Fuzzy (weak, s-weak, strong) hyperBCK-ideal.

Let *H* be a non-empty set endowed with a hyperoperation "o". For two subsets *A* and *B* of *H*, denote by $A \circ B$ the set $\bigcup_{a \in A, b \in B} a \circ b$. We shall use $x \circ y$ instead of $x \circ \{y\}, \{x\} \circ y$,

or $\{x\} \circ \{y\}$.

Definition 2.1 (Jun et al. [5]). By a *hyperBCK-algebra* we mean a non-empty set H endowed with a hyperoperation " \circ " and a constant 0 satisfing the following axioms:

- (HK1) $(x \circ z) \circ (y \circ z) \ll x \circ y$,
- (HK2) $(x \circ y) \circ z = (x \circ z) \circ y$,
- (HK3) $x \circ H \ll \{x\},\$
- (HK4) $x \ll y$ and $y \ll x$ imply x = y,

for all $x, y, z \in H$, where $x \ll y$ is defined by $0 \in x \circ y$ and for every $A, B \subseteq H, A \ll B$ is defined by $\forall a \in A, \exists b \in B$ such that $a \ll b$. In such case, we call " \ll " the hyperorder in H.

Example 2.2 (Jun et al. [5]). (1) Let (H, *, 0) be a *BCK*-algebra and define a hyperoperation "o" on *H* by $x \circ y = \{x * y\}$ for all $x, y \in H$. Then *H* is a hyper*BCK*-algebra.

(2) Define a hyperoperation " \circ " on $H := [0, \infty)$ by

$$x \circ y := \begin{cases} [0, x] & \text{if } x \le y \\ (0, y] & \text{if } x > y \ne 0 \\ \{x\} & \text{if } y = 0 \end{cases}$$

for all $x, y \in H$. Then H is a hyper BCK-algebra.

(3) Let $H = \{0, 1, 2\}$. Consider the following table:

0	0	1	2
0	{0}	{0}	{0}
1	$\{1\}$	$\{0, 1\}$	$\{0, 1\}$
2	$\{2\}$	$\{1, 2\}$	$\{0, 1, 2\}$

Then H is a hyper BCK-algebra.

Proposition 2.3 (Jun et al. [5]). In a hyperBCK-algebra H, the condition (HK3) is equivalent to the condition:

(2-1) $x \circ y \ll \{x\}$ for all $x, y \in H$.

In any hyperBCK-algebra H, the following hold (see Jun et al. [5]):

(2-2) $x \circ 0 \ll \{x\}, 0 \circ x \ll \{0\}$ and $0 \circ 0 \ll \{0\}$ for all $x, y \in H$, $(2-3) \quad (A \circ B) \circ C = (A \circ C) \circ B, A \circ B \ll A \text{ and } 0 \circ A \ll \{0\},$ $(2-4) \quad 0 \circ 0 = \{0\},\$ (2-5) $0 \ll x$, (2-6) $x \ll x$, (2-7) $A \ll A$, (2-8) $A \subseteq B$ implies $A \ll B$, $(2-9) \quad 0 \circ x = \{0\},\$ $(2-10) \quad 0 \circ A = \{0\},\$ (2-11) $A \ll \{0\}$ implies $A = \{0\},\$ (2-12) $A \circ B \ll A$, (2-13) $x \in x \circ 0$, (2-14) $x \circ 0 \ll \{y\}$ implies $x \ll y$, (2-15) $y \ll z$ implies $x \circ z \ll x \circ y$, (2-16) $x \circ y = \{0\}$ implies $(x \circ z) \circ (y \circ z) = \{0\}$ and $x \circ z \ll y \circ z$, (2-17) $A \circ \{0\} = \{0\}$ implies $A = \{0\}$,

for all $x, y, z \in H$ and for all non-empty subsets A, B and C of H.

Definition 2.4 (Jun et al. [5]). Let I be a non-empty subset of a hyper BCK-algebra H. Then I is said to be a hyper BCK-ideal of H if

(HI1) $0 \in I$,

(HI2) $x \circ y \ll I$ and $y \in I$ imply $x \in I$ for all $x, y \in H$.

Definition 2.5 (Jun et al. [4]). A hyperBCK-ideal I of H is said to be *reflexive* if $x \circ x \subseteq I$ for all $x \in H$.

Definition 2.6 (Jun et al. [4]). Let I be a non-empty subset of H. Then I is called a *strong hyperBCK-ideal* of a hyperBCK-algebra H if it satisfies (HI1) and (SHI) $(x \circ y) \cap I \neq \emptyset$ and $y \in I$ imply $x \in I$ for all $x, y \in H$.

Note that every strong hyper BCK-ideal of a hyper BCK-algebra is a hyper BCK-ideal (see [4, Theorem 3.8]).

Definition 2.7 (Jun et al. [5]). Let I be a non-empty subset of a hyperBCK-algebra H. Then I is called a *weak hyperBCK-ideal* of H if it satisfies (HII) and

(WHI) $x \circ y \subseteq I$ and $y \in I$ imply $x \in I$ for all $x, y \in H$.

3. Fuzzy HyperBCK-ideals

In what follows, H shall mean a hyper BCK-algebra unless specified otherwise.

Definition 3.1. A fuzzy set μ in H is called a *fuzzy hyperBCK-ideal* of H if

(i) $x \ll y$ implies $\mu(y) \le \mu(x)$, (ii) $\mu(x) \ge \min\{\inf_{a \in x \circ y} \mu(a), \mu(y)\},\$

for all $x, y \in H$.

Example 3.2. Let *H* be the hyper*BCK*-algebra in Example 2.2(3). Define a fuzzy set μ in *H* by $\mu(0) = 1$, $\mu(1) = 0.3$ and $\mu(2) = 0$. It is easily verified that μ is a fuzzy hyper*BCK*-ideal of *H*.

Definition 3.3. A fuzzy set μ in H is called a *fuzzy strong hyperBCK-ideal* of H if

$$\inf_{a \in x \circ x} \mu(a) \ge \mu(x) \ge \min\{\sup_{b \in x \circ y} \mu(b), \mu(y)\}$$

for all $x, y \in H$.

Definition 3.4. A fuzzy set μ in H is called a *fuzzy s-weak hyperBCK-ideal* of H if (i) $\mu(0) > \mu(x)$ for all $x \in H$,

(ii) for every $x, y \in H$ there exists $a \in x \circ y$ such that $\mu(x) \ge \min\{\mu(a), \mu(y)\}$.

Definition 3.5. A fuzzy set μ in H is called a *fuzzy weak hyperBCK-ideal* of H if

$$\mu(0) \ge \mu(x) \ge \min\{\inf_{a \in x \circ y} \mu(a), \mu(y)\}$$

for all $x, y \in H$.

Let μ be a fuzzy *s*-weak hyper BCK-ideal of H and let $x, y \in H$. Then there exists $a \in x \circ y$ such that $\mu(x) \ge \min\{\mu(a), \mu(y)\}$. Since $\mu(a) \ge \inf_{b \in x \circ y} \mu(b)$, it follows that

$$\mu(x) \geq \min\{\inf_{b \in x \circ y} \mu(b), \mu(y)\}.$$

Hence every fuzzy s-weak hyperBCK-ideal is a fuzzy weak hyperBCK-ideal. It is not easy to find an example of a fuzzy weak hyperBCK-ideal which is not a fuzzy s-weak hyperBCK-ideal. But we have the following proposition.

Proposition 3.6. Let μ be a fuzzy weak hyperBCK-ideal of H. If μ satisfies the inf property, then μ is a fuzzy s-weak hyperBCK-ideal of H.

Proof. Since μ satisfies the **inf** property, there exists $a_0 \in x \circ y$ such that $\mu(a_0) = \inf_{a \in x \circ y} \mu(a)$. It follows that

It follows that

$$\mu(x) \ge \min\{\inf_{a \in x \circ y} \mu(a), \mu(y)\} = \min\{\mu(a_0), \mu(y)\}$$

ending the proof. \Box

Note that, in a finite hyper BCK-algebra, every fuzzy set satisfies **inf** (also **sup**) property. Hence the concept of fuzzy weak hyper BCK-ideals and fuzzy *s*-weak hyper BCK-ideals coincide in a finite hyper BCK-algebra.

Proposition 3.7. Let μ be a fuzzy strong hyperBCK-ideal of H and let $x, y \in H$. Then (i) $\mu(0) \ge \mu(x)$,

- (ii) $x \ll y$ implies $\mu(y) \le \mu(x)$,
- (iii) $\mu(x) \ge \min\{\mu(a), \mu(y)\}$ for all $a \in x \circ y$.

Proof. (i) Since $0 \in x \circ x$ for all $x \in H$, we have

$$\mu(0) \ge \inf_{a \in x \circ x} \mu(a) \ge \mu(x),$$

which proves (i).

(ii) Let $x, y \in H$ be such that $x \ll y$. Then $0 \in x \circ y$ and so $\sup_{b \in x \circ y} \mu(b) \ge \mu(0)$. If follows

from (i) that

$$\mu(x) \ge \min\{\sup_{b \in x \circ y} \mu(b), \mu(y)\} \ge \min\{\mu(0), \mu(y)\} = \mu(y).$$

(iii) Let $x, y \in H$. Since

$$\mu(x) \ge \min\{\sup_{b \in x \circ y} \mu(b), \mu(y)\} \ge \min\{\mu(a), \mu(y)\}$$

for all $a \in x \circ y$, we conclude that (iii) is true. \Box

Corollary 3.8. If μ is a fuzzy strong hyperBCK-ideal of H, then

$$\mu(x) \ge \min\{\inf_{a \in x \circ y} \mu(a), \mu(y)\}$$

for all $x, y \in H$.

Proof. Since $\mu(a) \ge \inf_{b \in x \circ y} \mu(b)$ for all $a \in x \circ y$, the result is by Proposition 3.7(iii). \Box

Corollary 3.9. Every fuzzy strong hyperBCK-ideal is both a fuzzy s-weak hyperBCK-ideal (and hence a fuzzy weak hyperBCK-ideal) and a fuzzy hyperBCK-ideal.

Proof. Straightforward. \Box

Proposition 3.10. Let μ be a fuzzy hyperBCK-ideal of H and let $x, y \in H$. Then

- (i) $\mu(0) \ge \mu(x)$,
- (ii) if μ satisfies the **inf** property, then $\mu(x) \ge \min\{\mu(a), \mu(y)\}$ for some $a \in x \circ y$.

Proof. (i) Since $0 \ll x$ for each $x \in H$, we have $\mu(x) \leq \mu(0)$ by Definition 3.1(i) and hence (i) holds.

(ii) Since μ satisfies the **inf** property, there is $a_0 \in x \circ y$ such that $\mu(a_0) = \inf_{a \in x \circ y} \mu(a)$. Hence

$$\mu(x) \ge \min\{\inf_{a \in x \circ y} \mu(a), \mu(y)\} = \min\{\mu(a_0), \mu(y)\},\$$

which implies that (ii) is true. \Box

Corollary 3.11. (i) Every fuzzy hyperBCK-ideal of H is a fuzzy weak hyperBCK-ideal of H.

(ii) If μ is a fuzzy hyperBCK-ideal of H satisfying **inf** property, then μ is a fuzzy s-weak hyperBCK-ideal of H.

Proof. Straightforward. \Box

The following example shows that the converse of Corollary 3.9 and Corollary 3.11(i) may not be true.

Example 3.12. (1) Consider the hyper BCK-algebra H in Example 2.2(3). Define a fuzzy set μ in H by

$$\mu(x) = \begin{cases} 1 & \text{if } x = 0, \\ \frac{1}{2} & \text{if } x = 1, \\ 0 & \text{if } x = 2. \end{cases}$$

Then we can see that μ is a fuzzy hyper BCK-ideal of H and hence it is also a fuzzy weak hyper BCK-ideal of H. But μ is not a fuzzy strong hyper BCK-ideal of H since $\min\{\sup_{a \in 2^{\circ}1} \mu(a), \mu(1)\} = \min\{\mu(1), \mu(1)\} = \mu(1) = \frac{1}{2} > 0 = \mu(2).$

(2) Consider the hyper BCK-algebra H in Example 2.2(3). Define a fuzzy set μ in H by

$$\mu(x) = \begin{cases} 1 & \text{if } x = 0, \\ \frac{1}{2} & \text{if } x = 2, \\ 0 & \text{if } x = 1. \end{cases}$$

Then μ is a fuzzy weak hyper *BCK*-ideal of *H* but it is not a fuzzy hyper *BCK*-ideal of *H* since $1 \ll 2$ but $\mu(1) \not\geq \mu(2)$.

Theorem 3.13. If μ is a fuzzy strong hyperBCK-ideal of H, then the set $\mu_t := \{x \in H \mid \mu(x) \geq t\}$ is a strong hyperBCK-ideal of H when $\mu_t \neq \emptyset$ for $t \in [0, 1]$.

proof. Let μ be a fuzzy strong hyper BCK-ideal of H and $\mu_t \neq \emptyset$ for $t \in [0, 1]$. Then there is $a \in \mu_t$ and so $\mu(a) \ge t$. By Proposition 3.7(i), $\mu(0) \ge \mu(a) \ge t$ and so $0 \in \mu_t$. Let $x, y \in H$ be such that $(x \circ y) \cap \mu_t \neq \emptyset$ and $y \in \mu_t$. Then there exists $a_0 \in (x \circ y) \cap \mu_t$ and hence $\mu(a_0) \ge t$. By Definition 3.3, we have $\mu(x) \ge \min\{\sup_{a \in x \circ y} \mu(a), \mu(y)\} \ge \min\{\mu(a_0), \mu(y)\} \ge \min\{t, t\} = t$

and so $x \in \mu_t$. It follows that μ_t is a strong hyper BCK-ideal of H. \Box

Lemma 3.14 ([3, Proposition 3.7]). Let A be a subset of a hyperBCK-algebra H. If I is a hyperBCK-ideal of H such that $A \ll I$, then A is contained in I.

Theorem 3.15. Let μ be a fuzzy set in H satisfying the **sup** property. If the set $\mu_t := \{x \in H \mid \mu(x) \ge t\} (\ne \emptyset)$ is a strong hyperBCK-ideal of H for all $t \in [0, 1]$, then μ is a fuzzy strong hyperBCK-ideal of H.

Proof. Assume that $\mu_t \neq \emptyset$ is a strong hyper BCK-ideal of H for all $t \in [0, 1]$. Then there exists $x \in \mu_t$ and hence $x \circ x \ll x \in \mu_t$. Using Lemma 3.14, we have $x \circ x \subseteq \mu_t$. Thus for each $a \in x \circ x$, we have $a \in \mu_t$ and hence $\mu(a) \geq t$. It follows that $\inf_{a \in x \circ x} \mu(a) \geq t = \mu(x)$. Moreover let $x, y \in H$ and put $k = \min\{\sup_{a \in x \circ y} \mu(a), \mu(y)\}$. By hypothesis, μ_k is a strong hyper BCK-ideal of H. Since μ satisfies the **sup** property, there is $a_0 \in x \circ y$ such that $\mu(a_0) = \sup_{a \in x \circ y} \mu(a)$. Thus $\mu(a_0) = \sup_{a \in x \circ y} \mu(a) \geq \min\{\sup_{a \in x \circ y} \mu(a), \mu(y)\} = k$ and so $a_0 \in \mu_k$. This shows that $a_0 \in x \circ y \cap \mu_k$ and hence $x \circ y \cap \mu_k \neq \emptyset$. Combining $y \in \mu_k$ and noticing that μ_k is a strong hyper BCK-ideal of H we get $x \in \mu_k$. Hence $\mu(x) \geq k = \min\{\sup_{a \in x \circ y} \mu(a), \mu(y)\}$.

Therefore μ is a fuzzy strong hyper BCK-ideal of H. \Box

Example 3.16. (1) Let $H = \{0, 1, 2\}$. Consider the following table:

Then *H* is a hyper*BCK*-algebra. Moreover we can see that $I_1 := \{0, 1\}$ and $I_2 := \{0, 2\}$ are strong hyper*BCK*-ideals of *H*. Define μ by $\mu(0) = 1, \mu(1) = 0.3$ and $\mu(2) = 0.2$. Then we can see that

$$\mu_t = \begin{cases} H & \text{if } 0 \le t \le 0.2, \\ \{0, 1\} & \text{if } 0.2 < t \le 0.3, \\ \{0\} & \text{if } 0.3 < t \le 1. \end{cases}$$

Since $\{0\}, \{0, 1\}$ and H are strong hyper BCK-ideals of H, It follows from Theorem 3.15 that μ is a fuzzy strong hyper BCK-ideal of H.

(2) Consider the hyper BCK-algebra H as in Example 2.2(2). We can see that there exist only two strong hyper BCK-ideals $\{0\}$ and H itself (see [4, Example 3.6(2)]). Define a fuzzy set μ by

$$\mu(x) = \begin{cases} 1 & \text{if } x \in [0, 1], \\ 0 & \text{if } x \in (1, \infty) \end{cases}$$

Then $\mu_1 = [0, 1]$ is not a strong hyper *BCK*-ideal of *H* and so μ is not a fuzzy strong hyper *BCK*-ideal of *H* by Theorem 3.13.

Theorem 3.17. Let μ be a fuzzy set in H. Then μ is a fuzzy hyper-BCK-ideal of H if and only if $\mu_t := \{x \in H \mid \mu(x) \ge t\}$ is a hyperBCK-ideal of H whenever $\mu_t \neq \emptyset$ for $t \in [0, 1]$.

Proof. Let μ be a fuzzy hyper BCK-ideal of H and assume $\mu_t \neq \emptyset$ where $t \in [0, 1]$. Then there exists $a \in \mu_t$ and hence $\mu(a) \geq t$. By Proposition 3.10(i), $\mu(0) \geq \mu(a) \geq t$ and so $0 \in \mu_t$. Let $x, y \in H$ be such that $x \circ y \ll \mu_t$ and $y \in \mu_t$. Thus for any $a \in x \circ y$, there exists $a_0 \in \mu_t$ such that $a \ll a_0$ and so $\mu(a_0) \leq \mu(a)$. Hence $\mu(a) \geq t$ for all $a \in x \circ y$. It follows that $\inf_{a \in x \circ y} \mu(a) \geq t$ so that $\mu(x) \geq \min\{\inf_{a \in x \circ y} \mu(a), \mu(y)\} \geq \min\{t, \mu(y)\} \geq t$, which shows that $x \in \mu_t$ and μ_t is a hyper BCK-ideal of H.

Conversely assume that for each $t \in [0, 1]$, $\mu_t \neq \emptyset$ is a hyper *BCK*-ideal of *H*. Let $x \ll y$ and $t = \mu(y)$. Then $y \in \mu_t$, and thus $x \ll \mu_t$. It follows from Lemma 3.14 that $x \in \mu_t$ and hence $\mu(x) \ge t = \mu(y)$. Moreover let $x, y \in H$ and put $t = \min\{\inf_{a \in x \circ y} \mu(a), \mu(y)\}$. Then $y \in \mu_t$, and for each $a \in x \circ y$ we have $\mu(a) \ge \inf_{b \in x \circ y} \mu(b) \ge \min\{\inf_{b \in x \circ y} \mu(b), \mu(y)\} = t$ and hence $a \in \mu_t$, which follows that $x \circ y \subseteq \mu_t$. Thus $x \circ y \ll \mu_t$. Combining $y \in \mu_t$ and μ_t being a hyper *BCK*-ideal of *H*, we get $x \in \mu_t$ and so $\mu(x) \ge t = \min\{\inf_{a \in x \circ y} \mu(a), \mu(y)\}$, which shows that μ is a fuzzy hyper *BCK*-ideal of *H*. \Box

Theorem 3.18. Let μ be a fuzzy set in H. Then μ is a fuzzy weak hyperBCK-ideal of H if and only if the set $\mu_t := \{x \in H \mid \mu(x) \geq t\}$ is a weak hyperBCK-ideal of H whenever $\mu_t \neq \emptyset$ for $t \in [0, 1]$.

Proof. The proof is similar to the proof of Theorem 3.17. \Box

For any subset $I \subset H$ we define a fuzzy set μ_I in H by

$$\mu_I(x) := \begin{cases} 1 & \text{if } x \in I, \\ 0 & \text{otherwise.} \end{cases}$$

Theorem 3.19. Let I be a subset of H. Then

(i) I is a strong hyperBCK-ideal of H if and only if μ_I is a fuzzy strong hyperBCK-ideal of H.

(ii) I is a hyperBCK-ideal of H if and only if μ_I is a fuzzy hyper-BCK-ideal of H.

(iii) I is a weak hyperBCK-ideal of H if and only if μ_I is a fuzzy weak hyperBCK-ideal of H.

Proof. Let I be a subset of H. Then clearly μ_I is a fuzzy set in H satisfying **inf** and **sup** property.

(i) Let I be a strong hyper BCK-ideal of H. Note that μ_I satisfies

$$(\mu_I)_t = \begin{cases} I & \text{if } 0 < t \le 1, \\ H & \text{if } t = 0. \end{cases}$$

Then for each $t \in [0,1]$, $(\mu_I)_t$ is a strong hyper BCK-ideal of H. By Theorem 3.15, μ_I is a fuzzy strong hyper BCK-ideal of H. Conversely let μ_I be a fuzzy strong hyper BCK-ideal of H. Then $(\mu_I)_1 = I$ is a strong hyper BCK-ideal of H by Theorem 3.13. Hence (i) is true.

(ii) and (iii) are similar to (i). \Box

Using Theorems 3.13, 3.15, 3.17, 3.18, 3.19 and Corollaries 3.9 and 3.11, we have the following corollary.

Corollary 3.20. (i) Every strong hyperBCK-ideal of H is a hyper-BCK-ideal of H;
(ii) Every hyperBCK-ideal of H is a weak hyperBCK-ideal of H.

Definition 3.21. Let μ be a fuzzy set in H. Then μ is called a *fuzzy reflexive hyperBCK-ideal* of H if it satisfies

- (i) $\inf_{a \in x \circ x} \mu(a) \ge \mu(y),$
- (ii) $\begin{aligned} & \underset{\mu(x)}{\overset{a \in x \circ x}{\mapsto}} \geq \min\{\sup_{a \in x \circ y} \mu(a), \mu(y)\}, \end{aligned}$

for all $x, y \in H$.

Theorem 3.22. Every fuzzy reflexive hyperBCK-ideal of H is a fuzzy strong hyperBCK-ideal of H.

Proof. Straightforward. \Box

Theorem 3.23. If μ is a fuzzy reflexive hyperBCK-ideal of H, then μ_t is a reflexive hyperBCK-ideal of H whenever $\mu_t \neq \emptyset$ for $t \in [0, 1]$.

Proof. Let μ be a fuzzy reflexive hyper BCK-ideal of H and $\mu_t \neq \emptyset$ for $t \in [0, 1]$. Then there exists $a \in H$ such that $a \in \mu_t$ and so $\mu(a) \geq t$. By Theorem 3.22, μ is a fuzzy strong hyper BCK-ideal and moreover a hyper BCK-ideal of H. It follows from Theorem 3.17 that μ_t is a hyper BCK-ideal of H. Moreover for each $x \in H$ and $c \in x \circ x$, $\mu(c) \geq \inf_{b \in x \circ x} \mu(b) \geq t$.

 $\mu(a) \ge t$ by Definition 3.21(i). Hence $c \in \mu_t$ for each $c \in x \circ x$, which shows that $x \circ x \subseteq \mu_t$. Therefore μ_t is a reflexive hyper *BCK*-ideal of *H*. \Box

Theorem 3.24. Let μ is a fuzzy set in H satisfying the sup property. If $\mu_t \neq \emptyset$ is a reflexive hyperBCK-ideal of H for all $t \in [0,1]$, then μ is a fuzzy reflexive hyperBCK-ideal of H.

Proof. Let $\mu_t \neq \emptyset$ be a reflexive hyper BCK-ideal of H for all $t \in [0, 1]$. By [4, Theorem 3.6], $\mu_t \neq \emptyset$ is a strong hyper BCK-ideal of H for all $t \in [0, 1]$. Using Theorem 3.15, we have that μ is a fuzzy strong hyper BCK-ideal of H and thus it satisfies the condition (ii) of

the Definition 3.21. Now we show that μ satisfies (i) in the Definition 3.21. Let $x, y \in H$ and $\mu(y) = t$. Since $\mu_t \neq \emptyset$ is a reflexive hyper *BCK*-ideal of *H*, it follows that $x \circ x \subseteq \mu_t$. Thus for each $c \in x \circ x$, we have $c \in \mu_t$, and so $\mu(c) \ge t$. This shows that $\inf_{c \in x \circ x} \mu(c) \ge t = \mu(y)$. Therefore μ is a fuzzy reflexive hyper *BCK*-ideal of *H*. \Box

Theorem 3.25. Let μ be a fuzzy strong hyperBCK-ideal of H satisfying the sup property. Then μ is a fuzzy reflexive hyperBCK-ideal of H if and only if $\inf_{a \in x \circ x} \mu(a) \ge \mu(0)$ for all $x \in H$.

Proof. Let μ be a fuzzy reflexive hyper BCK-ideal of H. Then, by Definition 3.21(i), we have $\inf_{a \in x \circ x} \mu(a) \ge \mu(0)$. Conversely, assume $\inf_{a \in x \circ x} \mu(a) \ge \mu(0)$ for all $x \in H$. Since μ is a fuzzy hyper BCK-ideal of H, we get $\mu(0) \ge \mu(y)$ for all $y \in H$ and hence $\inf_{a \in x \circ x} \mu(a) \ge \mu(y)$ for all $x, y \in H$. Moreover put $t = \min\{\sup_{a \in x \circ y} \mu(a), \mu(y)\}$ where $x, y \in H$. Using Theorem 3.13 and 3.22, the set μ_t is a strong hyper BCK-ideal of H. Since μ satisfies the sup property, there exists $a_0 \in x \circ y$ such that $\mu(a_0) = \sup_{a \in x \circ y} \mu(a)$ and so $\mu(a_0) \ge t$, i.e., $a_0 \in \mu_t$.

This shows that $x \circ y \cap \mu_t \neq \emptyset$. It follows from $y \in \mu_t$ that $x \in \mu_t$ since μ_t is a strong hyper *BCK*-ideal of *H*. Therefore $\mu(x) \geq t = \min\{\sup_{a \in x \circ y} \mu(a), \mu(y)\}$, and hence μ is a fuzzy

reflexive hyper BCK-ideal of H. \Box

References

- [1] K. Iséki and S. Tanaka, Ideal theory of BCK-algebras, Math. Japonica 21 (1976), 351-366.
- [2] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japonica 23(1) (1978), 1-26.
- [3] Y. B. Jun and X. L. Xin, Scalar elements and hyperatoms of hyperBCK-algebras, Scientiae Mathematicae 2(3) (1999), 303-309.
- [4] Y. B. Jun, X. L. Xin, E. H. Roh and M. M. Zahedi, Strong hyperBCK-ideals of hyperBCK-algebras, Math. Japonica 51(3) (2000), 493-498.
- [5] Y. B. Jun, M. M. Zahedi, X. L. Xin and R. A. Borzoei, On hyperBCK-algebras, Italian J. Pure and Appl. Math. (to appear).
- [6] F. Marty, Sur une generalization de la notion de groupe, 8th Congress Math. Scandinaves, Stockholm (1934), 45-49.
- [7] J. Meng and Y. B. Jun, BCK-algebras, Kyungmoonsa, Seoul, Korea, 1994.

Y. B. Jun Department of Mathematics Education Gyeongsang National University Chinju 660-701, Korea *e-mail:* ybjun@nongae.gsnu.ac.kr

X. L. Xin Department of Mathematics Northwest University Xian 710069, P. R. China