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CONNECTIONS ON A -FRAME BUNDLES
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Abstract. We study the frame bundle F (`) of a vector bundle ` with �bre type a

projective �nitely generated module over a (topological) algebra A . The topological-

algebraic structure of A is crucial in our considerations. In fact, if A is a Q-algebra, F (`)

is a smooth principal bundle and its connections correspond bijectively to A -connections

on `, as in the case of Banach bundles. If A is not a Q-algebra, then F (`) is only a

topological principal bundle. However, it can be provided with sheaf-theoretic entities,

legitimately called connections, which essentially describe the connections of `. As a

result, the geometry of our bundles can be reduced to a topological-algebraic context

embodying all the previous cases and giving an example of the e�ectiveness of the

methods of the \abstract di�erential geometry" initiated in [10] for \vector sheaves"

and further applied and extended for \principal sheaves" in [25], here combined with

topological algebra theory.

1. Introduction

In pure mathematics as well as in theoretical physics, some of the vector spaces dealt with

have the additional structure of a module over a topological algebra A . The consideration of

this additional topological-algebraic structure lead to a successful treatment of a number of

problems, e.g. in operator theory [3], in theoretical physics [21], in di�erential topology [11],

to name but a few of them. In particular, one frequently encounters manifolds and vector

bundles, whose models are projective �nitely generated A -modules (for some applications of

this aspect in di�erential geometry, mechanics and PDEs, see also [4, 20, 22]). In the sequel,

such manifolds and bundles are called A -manifolds and A -bundles, respectively.

The structure and classi�cation of the topological A -bundles have been studied in a series

of papers by A. Mallios (see [9] and the references therein), whereas di�erentiable A -bundles

have been considered by the second author, within an appropriate di�erential framework

([14, 15, 16]). In both cases, A is a locally m-convex algebra (in e�ect, even arbitrary

topological algebras, in general, have been employed by A. Mallios, loc.cit), thus abstracting

all the aforementioned examples and applications.

An object of prime interest over a di�erentiable A -bundle, being, as it actually is, of a

di�erential-geometric character, is, undoubtedly, that of a connection. It has already been

proven ([16]) that A -bundles admit linear connections, which, in contrast to the general

in�nite-dimensional case (cf. [1, 26]), are equivalent to covariant A -derivations (see [15]).

On the other hand, it is often convenient to view a vector bundle as one associated with

its bundle of frames and to reduce linear connections on the former to connections on the

latter.

The purpose of this paper is to study the previous reduction in the context of A -bundles,

with A a suitable, not necessarily normed topological algebra. Unfortunately, a major

diÆculty arises here: If P is the �bre type of a non-Banachable in�nite dimensional vector
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bundle, the general linear group of P is not necessarily a Lie group, not even a topological

one (for instance, if P is not normable; see [12, p. 369] and [28, p. 144, (1.4)]). Thus the

frame bundle of such a vector bundle may not exist, let alone have connections.

However, in our context, the module structure of the models allows us to partially over-

come this diÆculty. In fact, for an A -bundle `, the structural group of the frame bundle

F (`) is the group GLA (P ) of A -linear automorphisms of P , which is always a topological

group. If, in addition, A is a Q-algebra (i.e., the set of the invertible elements of A is open),

GLA (P ) is proved to be a Lie group and F (`) is a di�erentiable principal bundle (Theo-

rems 3.5 and 3.6, below). Moreover, each linear connection r on ` induces a 0-cochain

of local forms (!�) satisfying the analogue of the well known compatibility condition and

vice-versa. In turn, the same family globalizes to a principal connection form ! on F (`)

and the bijective correspondence between the linear connections of ` and the connections

on F (`) is established (Theorem 4.3).

Nevertheless, in the most important and frequently met examples of A -bundles, A is

either the algebra C(X) of continuous functions on a topological space X , or the algebra

C1(X) of di�erentiable functions over a smooth manifold. In both cases, A is not a Q-

algebra, unless X is compact (as a matter of fact, the compactness of X is the necessary

and suÆcient condition, the previous functional algebras to be Q; see [7, 10]). Therefore, in

the general (non-compact) case, one has to treat F (`) only as a topological bundle. In this

case, (!�) cannot be globalized to a connection form on F (`), as before. Yet, singling out

some of the continuous sections of F (`) (which play the rôle of \di�erentiable" sections of

F (`)), we obtain an appropriate sheaf of germs of sections F(E) of the topological bundle

F (`) and we provide it with a global morphism D (with values in a sheaf of forms), fully

determined by (and determining) (!�). As a result (see Theorem 5.3), linear connections

on ` are in a bijective correspondence with the morphisms D, which can legitimately be

called connections of F(E) (cf. [25], in conjunction with [10]).

In brief, we conclude that linear connections on ` (de�ned within a smooth context) are

completely determined by sheaf-theoretic objects (de�ned in a topological-algebraic context)

and vice-versa. In particular, in the case of Q-algebras, the previous sheaf morphisms

coincide, within a bijection, with ordinary connections on the di�erential bundle of frames

F (`).

2. Preliminaries

Although several aspects of the theory of topological A -bundles are developed for general

locally convex (or even topological) algebras [9], in the di�erential framework, in order to

obtain a convenient di�erentiation method, additional assumptions on the algebra A are

necessary (see [14]). Thus, throughout this paper, A is a commutative locally m-convex (abr.

lmc) algebra with unit (for the relevant terminology see [7]) and P(A ) is the category of

projective �nitely generated A -modules. We recall that, by de�nition, for every M 2 P(A ),

there are M1 2 P(A ) and m 2 N, so that M �M1 = Am . Obviously, A 2 P(A ). Since the

objects of P(A ) will be the models of the manifolds and bundles considered here, we should

�x a topology and a method of di�erentiation on them.

Let M; M1; m be as above. The product topology on Am induces the relative topology

�M onM . It turns out that �M does not depend on M1 or m, and it is the unique topology

makingM a topological A -module and any A -multilinear map onM continuous (for details

see [8, 13]).

In the sequel, for anyM; N 2 P(A ), 0M denotes the zero element ofM , N (x) the family

of open neighbourhoods of x 2 M and LA (M;N) the set of A -linear maps M ! N . We
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apply the following di�erentiation method due to Vu Xuan Chi [27], originally de�ned for

modules over a topological ring:

Let x 2M and W 2 N (x). A mapping f :W ! N is said to be A -di�erentiable at x, if

there exists Df(x) 2 LA (M;N), such that the remainder of f at x

�(h) := f(x+ h)� f(x)�Df(x)(h)

satis�es the condition

8V 2 N (0N ) 9U 2 N (0M ) : 8B 2 N (0A ) 9A 2 N (0A ) :

a 2 A ) �(aU) � aBV:

This di�erentiation, applied to our case, where the structure of the modules is richer than the

one considered in [27], has a number of fundamental properties, missing both in the context

of [27] and in that of locally convex spaces. In particular, (i) A -di�erentiability implies

continuity; (ii) the composition and the evaluation mappings are A -di�erentiable and (iii)

the chain rule holds for every order of di�erentiation (for the proofs we refer to [14], where

an analogous di�erentiation is introduced for �-algebras). An in�nitely A -di�erentiable map

will be called A -smooth.

Following the standard pattern, we obtain the category Man(A ) of A -manifolds , mod-

elled on the objects of P(A ), and A -smooth morphisms. We obtain the tangent spaces

T (X; x); x 2 X 2Man(A ), by considering classes of equivalent A -curves, that is, A -smooth

maps de�ned on open neighbourhoods of 0A with range in X . If X is modelled on M and

(U; �) is a chart at x, then the bijection

�� : T (X; x)!M : [(�; x)] 7! D(� Æ �)(0)

provides an A -module structure on T (X; x). Furthermore, the tangent bundle TX of X is

an A -manifold. If f : X ! Y is A -smooth, the di�erential df : TX ! TY is also A -smooth

and its restrictions on the tangent spaces are A -linear maps.

3. A -bundles and their frame bundles

Let X;E 2Man(A ), � : E ! X be A -smooth and P 2 P(A ). Moreover, let

Ex := ��1(x) 2 P(A ); 8x 2 X;

and assume that there exists an open covering U := fU�g�2I of X and a family of (trivial-

izing) A -di�eomorphisms

�� : ��1(U�)! U� � P; � 2 I;

such that pr1 Æ �� = � and each restriction ��x : Ex ! fxg � P ; x 2 U�, is an A -module

isomorphism. We call the triplet ` = (E; �;X) an A -bundle.

One trivially checks that the tangent bundle `X := (TX; �X ; X) of any A -manifold X is

an A -bundle.

It is worthy to note that in the framework of in�nite dimensional vector bundles, even in

the Banach case, we need one more assumption, that is, the di�erentiability of the transition

functions (cf. condition (VB.3) in [6]). In our context, although the underlying vector spaces

of the models are in�nite-dimensional locally convex spaces, the condition under discussion

is guaranteed by the properties of the projective �nitely generated A -modules. In fact, we

have

Lemma 3.1. Let M; N; P 2 P(A ), U � M open and f : U �N ! P an A -smooth map,

so that the partial maps fx, x 2 U , are A -linear. Then, the map

F : U ! LA (N;P ) : x 7! fx
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is A -smooth.

Proof. Let N1; P1 2 P(A ) and n; p 2 N, with N � N1 = A n and P � P1 = A p . We

consider the A -smooth extension of f

f : U � (N �N1)! P � P1 : (x; y; y1) 7! (f(x; y); 0);

which induces the map F : U ! LA (A
n ; A p ) : x 7! f

x
. It is clear that LA (N;P ) is a direct

factor of LA (A
n ; A p ). If pr denotes the respective projection, then F = pr Æ F is A -smooth

if and only if F is A -smooth, the other component of F vanishing. Since LA (A
n ; A p ) is

A -isomorphic with the A -module Mn�p(A ) of n � p matrices with entries in A , it suÆces

to prove that

U !Mn�p(A ) : x 7! (aij(x)) := (prj Æ fx(ei))

is A -smooth. This is a consequence of the A -smoothness of the maps

f
i
: U ! A p : x 7! f(x; ei) = (ai1(x); : : : ; aip(x)); i = 1; : : : ; n:

As a result of the preceding lemma, we obtain

Proposition 3.2. Let ` = (E; �;X) be an A -bundle of �bre type P 2 P(A ), with trivializing

covering f(U�; ��)g�2I . Then, the transition functions

g�� : U� \ U� ! LA (P ) := LA (P; P ) : x 7! ��x Æ �
�1

�x
(3.1)

are A -smooth.

The previous transition functions take values, in e�ect, in the group GLA (P ) of invertible

elements of the algebra LA (P ). The latter, being an object of P(A ), admits the canonical

topology and the algebra multiplication

LA (P )� LA (P )! LA (P ) : (f; g) 7! g Æ f(3.2)

is continuous, as an A -bilinear map. On the other hand, the inversion is also continuous

(see [7, Lemma 6.3]), thus GLA (M), topologized with the relative topology induced by the

canonical topology of LA (P ), is a topological group. Therefore, (g��) determines a topological

principal bundle F (`) = (F (E); GLA (P ); X; p), called the frame bundle of `. We summarize

the previous considerations in

Theorem 3.3. If ` is an A -bundle of �bre type P 2 P(A ), then F (`) is a topological

principal bundle with structural group GLA (P ).

Assume now that A is a Q-algebra, i.e., the group A Æ of invertible elements of A is open.

This property is inherited to the algebra LA (P ), for every P 2 P(A ) ([24, Corollary 1.2]

and [8, Theorem 1.1]). The composition

GLA (P )�GLA (P )! GLA (P ) : (f; g) 7! g Æ f;

being now the restriction of an A -smooth map on an open subset is also A -smooth. But,

the di�erentiability of the inversion can not be deduced from that of the multiplication (viz.

composition), since this deduction is based on the inverse mapping theorem, which is not

valid in general. However, the di�erentiability in question is obtained in a straightforward

way described in the next

Lemma 3.4. Let A be a commutative lmc Q-algebra with unit and P 2 P(A ). Then the

inversion � in GLA (P ) is A -smooth.

Proof. Let f 2 GLA (P ). Setting D�(f)(h) := �f Æ h Æ f , for every h 2 LA (P ), we form

the remainder of � at f

�(h) := �(f + h)� �(f)�D�(f)(h):
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It is not hard to show that �(h) = f�1 Æ  (h) Æ f�1, where  (h) = h Æ (f + h)�1 Æ h.

We prove that  is in�nitesimal: Let 0 be the zero element of LA (P ) and V 2 N (0). The

continuity of the composition at (0; f�1;0) implies the existence of U1 2 N (0); V1 2 N (f�1)

with U1 Æ V1 Æ U1 � V . Since V1 2 N (f�1) and � is continuous, there exists V2 2 N (f)

with V �1
2

� V1. The continuity of the A -module operations also determine A1 2 N (0A )

and U2 2 N (0), with A1U2 � V2 � f 2 N (0). We set U := U1 \ U2, and, for B 2 N (0A ),

A := A1 \B. Then, for any a 2 A and h 2 U , we have

 (ah) = ah Æ (f + ah)�1 Æ ah = a2h Æ (f + ah)�1 Æ h

2 aAU1 Æ (f +A1U2)
�1 Æ U1 � aBU1 Æ V

�1

2
Æ U1

� aBU1 Æ V1 Æ U1 � aBV;

thus proving the assertion. Since an A -linear combination of in�nitesimal mappings is

in�nitesimal, � is also in�nitesimal, by which we complete the proof.

As a result, we obtain

Theorem 3.5. Let A be a commutative lmc Q-algebra with unit. Then, GLA (P ) is a Lie

group, for every P 2 P(A ).

Applying now a standard reasoning we conclude that the following holds true

Theorem 3.6. For any A -bundle ` of �bre type P 2 P(A ), with A as in Theorem 3.5, the

corresponding bundle of frames F (`) is a di�erentiable principal bundle.

4. Connections on A -bundles

In this section we introduce connections on A -bundles and, in the case of a Q-algebra,

we study the interplay between them and their counterparts on the corresponding (di�er-

entiable) bundles of frames.

For any A -bundle ` = (E; �;X), the set of A -smooth sections of ` will be denoted by

�(X;E).

De�nition 4.1. An A -connection on ` = (E; �;X) is an A -bilinear map

r : �(X;TX)� �(X;E)! �(X;E) : (�; s)! r�s

satisfying the following properties:

i) rf�s = f � r�s,

ii) r�(fs) = f � r�s + (df Æ �) � s,

for every � 2 �(X;TX); s 2 �(X;E) and every A -smooth f : X ! A .

In this de�nition we essentially identify a connection with a covariant derivation. This

well known result for �nite dimensional bundles, (derived from the existence of bases in the

models), is not true in the in�nite dimensional case, even for Banach bundles (cf. [1, 26]).

Here, although bases do not exist, this property of �nite dimensional bundles is recovered

by showing that r is equivalent with a family of (generalized) Christo�el symbols, through

an embedding of the given A -bundle in one with bases and an extension of r to a suitable

map (which is not a connection!).

For our aim, we say that X 2 Man(A ) admits A -bump functions, if, for every open

U � X and x 2 U , there is an open V � X , with x 2 V � V � U , and an A -smooth

f : X ! A , so that f j
V
= 1; f jXnU = 0. The existence of A -bump functions is ensured

for every A -manifold, if A coincides with the algebra C(X) of continuous functions on a

completely regular Hausdor� topological spaceX or the algebra C1(X) of smooth functions

on a compact manifold X (see [17] and [18], respectively). The general case remains still

an open problem.
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Also, before proving our result, we �x some further notations. For an A -bundle ` =

(E; �;X), we consider an atlas f(U�; ��)g�2I of X and a trivializing covering f(U�; ��)g�2I
of `, over the same open covering U := fU�g�2I of X . For every vector �eld � 2 �(X;TX),

its local expression �
�
Æ � Æ ��1

�
will be simply denoted by ��. Similarly, for every section

� 2 �(X;E), the principal part of its local expression pr2 Æ �� Æ � Æ �
�1

�
will be denoted by

��.

Theorem 4.2. Let X be an A -manifold modelled on M 2 P(A ) admitting A -bump func-

tions and let ` = (E; �;X) be an A -bundle of �bre type P 2 P(A ). Then ` has an A -

connection r, if and only if, there is a family of A -smooth maps (:generalized Christo�el

symbols)

�� : U� ! L2
A
(M � P; P ) � LA (M;LA (P )); � 2 I;

satisfying the compatibility condition:

(4.1)
��(x)(h; k) =

= [g��(x) Æ ��(x)�D(g�� Æ �
�1

�
)(��(x))]( ��� Æ ��

�1

�
(h); g��(x)(k));

for every h 2M , k 2 P , �; � 2 I and x 2 U� \ U�.

Proof. The family f��g�2I de�nes an A -connection [1, 26]. Conversely, let r be an

A -connection of `. Since M; P 2 P(A ), there exist N; Q 2 P(A ) and m; p 2 N, such that

M �N ' Am and P �Q ' A p . Consider the trivial A -bundle `1 = (N �Q; p1; N). Then

the cartesian product ` � `1 = (F := E �N �Q; � � p1; X �N) is an A -bundle of �bre

type A p and the base space Y := X �N 2Man(A ) is modelled on Am .

Let now 
 denote the zero section of `1. Also, let pX : X�N ! X and pE : E�N�Q!

E be the canonical projections and consider the mapping

er : �(Y; TY )� �(Y; F )! �(Y; F ) : (�; S)! r�s� 
;

where �(x) := dpX(�(x; 0)) and s(x) := pE(S(x; 0)), for every x 2 X: er is not an A -

connection. If feig1�i�m and fejg1�j�p are the canonical bases of A
m and A p , pM and pN

the canonical projections of Am to M and N , and pP and pQ are the canonical projections

of A p to P and Q, then, for every � 2 I , the families f@ig1�i�m and f�jg1�j�p, with

@i(x; y) := (�
�1

�
(pM (ei)); pN (ei)) ; (x; y) 2 U �N;

�j(x; y) := (��1
�x

(pP (ej)); pQ(ej)) ; (x; y) 2 U �N;

are (local) frames of TY and F , respectively. The existence of A -bump functions results in

the de�nition of local er's, therefore, of a family of A -smooth maps e�k
�ij

: V� := U��N ! A ,

given by

er@i
�j =

X
k

e�k
�ij
�k:

We de�ne the mappings

e�� : ��(U�)�N ! L2
A
(Am ; A p ; A p ) : (h; y) 7! e��(h; y) :

e��(h; y)(a; b) =
X
i;j;k

aibje�k�ij(x; y)ek

for every (a; b) 2 A
m � A

p and (h = �(x); y) 2 ��(U�)�N , and

�� : ��(U�)! L2
A
(M;P ;P ) : h 7! ��(h) :
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��(h)(a; b) = pP Æ e��(h; 0)(a; b) ; (h; a; b) 2 ��(U�)�M � P:

The ��'s are the required generalized Christo�el symbols of r. In fact, one can prove that

(r�s)�(h) = Ds�(h)(��(h)) + ��(h)(��(h); s�(h)):

for every � 2 �(X;TX); s 2 �(X;E); � 2 I . The compatibility condition is a matter of

straightforward (although tedious) calculations (see also [1]).

A similar procedure proves that an A -connection is equivalent with a splitting of a certain

short exact sequence of A -bundles (see [15]), again a fact known for �nite dimensional

bundles (as well as, e.g. in the context of abstract di�erential geometry [10]) but not valid

in the in�nite dimensional framework.

Suppose now that A is aQ-algebra and let �1(U�; LA (P )) denote the A -module of LA (P )-

valued smooth (inMan(A )) 1-forms on U� (� 2 I). The Christo�el symbols f��g�2I induce

the 0-cochain of 1-forms (!�)�2I de�ned by

!�;x(v) � h := ��(x)(���(v); h);(4.2)

for every x 2 U�, v 2 TxB and h 2 P .

We check that (4.1) and (4.2) yield the compatibility condition:

!� = Ad(g�1
��

) � !� + g�1
��
� dg�� :(4.3)

Therefore, following the classical method (see e.g. [19, 23]), we obtain a global 1-form

! 2 �1(F (E); LA (P )), given by the relations

!j��1(U�) = Ad(g�1
�

) � ��!� + g�1
�
� dg�;(4.4)

where g� : ��1(U�)! GLA (P ) is the A -smooth map de�ned by the equality p = s�(�(p)) �

g�(p), for every p 2 ��1(U�); here (s�) are the natural sections of F (`) with respect to

U . Then, ! is a connection form on the frame bundle F (`) (see ibid. and [5]) with local

connection forms the given !�'s.

Conversely, starting with a connection form !, condition (4.3), along with (4.2), implies

(4.1) which, in turn, determines an A -connection on E.

Therefore, we have proved

Theorem 4.3. If A is a unital commutative lmc Q-algebra, A -connections on ` = (E; �;X)

correspond bijectively to connections on F (`) = (F (E); GLA (P ); X; p).

5. Connections on topological frame bundles

The problem now is to see what can be said if A is not necessarily a Q-algebra. In this

case, our framework lacks the tools (e.g. implicit function theorem) to prove that GLA (P ) is

a manifold, and, consequently, a Lie group. Therefore, although the local forms (4.2) exist,

(4.4) is meaningless and (!�) does not globalize to a connection form ! on F (E). However,

to each r, we shall correspond a global object generalizing the notion of a (principal)

connection and living in an appropriate sheaf.

To this end we note that the principal parts of the (continuous) local sections of the

topological bundle F (`) take values in GLA (P ), which is embedded in LA (P ) 2 P(A ). We

say that a map g : U ! GLA (P ) (U � X open) is A -smooth, if the embeddings of g and

g�1 in LA (P ), where g
�1(x) := g(x)�1, with x 2 U , are A -smooth. Accordingly, a local

section of F (`) will be called A -smooth, if its principal parts are A -smooth. We denote by

�(U; F (E)) the set of A -smooth sections of F (`) over an open U � X and by F(E) the

corresponding sheaf, generated by the presheaf U 7! �(U; F (E)); thus

F(E)(U) �= �(U; F (E)) ; U � X open :
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Similarly, GL(P ) denotes the sheaf of germs of smooth GLA (P )-valued maps on X , i.e.

GL(P )(U) �= C1(U;GLA (P ));(5.1)

the smoothness here being also meant in the generalized sense de�ned above. The local

structure of F (E) along with (5.1), induce the (local) isomorphisms

e�� : F(E)jU�
�
=

�! GL(P )jU� ; � 2 I(5.2)

which are GL(P )jU� -equivariant. The corresponding transition transformations coincide, in

virtue of (5.2), with the cocycle (g��) of E, viewed now as an element of Z1(U ;GL(P )).

Therefore, in A. Grothendieck's [2] terminology, F(E) is a principal sheaf of structure type

GL(P ) and with structure sheaf GL(P ). If A is a Q-algebra, F(E) coincides with the sheaf

of germs of ordinary smooth sections of F (`). The isomorphisms (5.2) determine the natural

sections

�� := e��1
�
Æ 1jU� ;

of F(E), where 1 is the global unit section of GL(P ).

Besides, we denote by e
1 := 
1

X
(LA (P )) the sheaf of germs of LA (P )-valued smooth

1-forms on X ; thus

e
1(U) := 
1

X
(LA (P ))(U) �= �1(U;LA (P )); U � X open :(5.3)

Finally, we de�ne the morphism of sheaves of sets @ : G(P ) ! e
1 induced by the shea��-

cation of the ordinary operator of total (or logarithmic) di�erentiation @(g) := g�1 � dg, for

every g 2 C1(U;GLA (P )) and U � X open. Clearly, GL(P ) acts naturally on e
1. Namely,

for any g 2 GL(P )(U) and � 2 e
1(U), the 1-form Ad(g) � � is given by

(Ad(g) � �)x(u) := g(x) Æ �x(u) Æ g(x)
�1;

if x 2 U and u 2 TxX . Therefore, we immediately check that

@(g � h) = Ad(h�1) � @(g) + @(h); g; h 2 GL(P )(U):(5.4)

With the previous notations we prove the following basic result

Theorem 5.1. Under the identi�cation (5.3), the 0-cochain (!�) 2 Co(U ; e
1) of local

forms determines a unique morphism of sheaves of sets D : F(E)! e
1
satisfying

D(s � g) = Ad(g�1) �D(s) + @(g) ;(5.5)

for every s 2 F(E)(U); g 2 GL(P )(U) and U � X open. Moreover,

D(��) = !�; � 2 I:

Proof. Let u 2 F(E) be an arbitrarily chosen element with p(u) = x, where p is the

projection of F(E). If x 2 U� 2 U , then we set

D(u) := Ad(h�1
�
) � !�(x) + @(h�);(5.6)

for an h� 2 GL(P )(U�), uniquely determined by u = ��(x) � h�.

D is well de�ned. Indeed, if x 2 U�\U� , we see that h� = g��(x)
�1 �h�. Thus, in virtue

of (4.3) and (5.4), we check that

Ad(h�1
�
) � !�(x) + @(h�) = Ad(h�1

�
� g��(x)) � (Ad(g

�1

��
) � !� + @(g��))

+ @(g��(x)
�1 � h�)

= Ad(h�1
�
) � !� + Ad(h�1

�
� g��(x)) � @(g��)

�Ad(g�1
�

) �Ad(g��(x))@(g��(x)) + @(h�)

= Ad(h�1
�
) � !� + @(h�):
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The continuity of D at an arbitrary uÆ 2 F(E) is proved as follows: let p(uÆ) = xÆ 2 U�.

By the local structure of sheaves, there are open neighbourhoods V and U of uÆ and xÆ,

respectively, such that pjV is a homeomorphism. Setting � := (pjV )
�1 andW := �(U \U�),

we see that the local sections � and �� satisfy the equality

�(x) = ��(x) � h(x) ; x 2 U \ U�;

for a uniquely determined h 2 GL(P )(U \ U�). Hence, by (5.6),

D(�(x)) = Ad(h(x)�1) � !�(x) + @(h(x)) ; x 2 U \ U�;

from which we deduce that DjW = [Ad(h�1) �!� + @] Æ pjW , thus proving the continuity.

Conversely, we have

Proposition 5.2. Let D : F(E) ! e
1
be a morphism of sheaves of sets satisfying (5.5).

Then D determines a (unique) A -connection r.

Proof. De�ne the forms !� := D(��) 2 ~
1(U�), � 2 I . Then

!� = D(s� � g��) = Ad(g�1
��

) � !� + @(g��);

which, by the identi�cations (5.3), coincides with the compatibility condition (4.3). Then

(4.2) determines the (generalized) Christo�el symbols of an A -connection, as a consequence

of Theorem 4.2.

We call D a generalized connection of F(E), as a consequence of the next theorem, which

summarizes the main results of the paper.

Theorem 5.3. Let A be an arbitrary commutative lmc algebra with unit and let ` =

(E; �;X) be an A -bundle. Besides, let F (`) denote the bundle of frames of ` and F(E)

the sheaf of germs of sections of F (`). Then, there exists a bijective correspondence between

A -connections r on E and generalized connections D on F(E).

If, in particular, A is a Q-algebra, then both of the previous connections correspond

bijectively to a global connection (form) ! on the bundle of frames F (`).

>From the previous discussion we see that generalized connections D on a topological object,

namely F(E), describe, through appropriate isomorphisms, the connections of E in all of

their equivalent forms, as well as, in case of aQ-algebra, the corresponding connections of the

(smooth) frame bundle F (`). Therefore, this sheaf-theoretic approach provides a convenient

technique for enlarging certain aspects of Di�erential Geometry to a non-smooth context

(cf. also [10, 25]).
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