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ON A CONJECTURE BY ANDRZEJ WRO�NSKI FOR BCK-ALGEBRAS
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Abstract. We give a detailed proof of a conjecture by Andrzej Wro�nski on embedding

BCK-algebras satisfying

(z �

� x) �

� (y �

� x) � (z �

� y) �

� (x �

� y)

into reducts of hoops (i.e., naturally ordered commutative integral monoids with resid-

uation).

1. Introduction

BCK-algebras, introduced by Is�eki [Ise66], are the equivalent algebraic semantics of the

BCK logic of Meredith, in the sense of Blok and Pigozzi [BP89]. As is well known, every

BCK-algebra may be viewed as a f ��; 0g-subreduct of a pocrim (partially ordered commuta-

tive residuated integral monoid, as coined by Blok and Raftery [BR95])|see Theorem 2.4

below.

Among pocrims, we distinguish those for which the order is natural, i.e., those for which

a � b if and only if 9c b = a+c. They include for instance positive cones of Abelian lattice-

ordered groups and are sometimes called naturally ordered pocrims. They have appeared in

the literature also under the names complementary semigroups [Bos69], hoops [BO], BCK-

algebras with a supremum [Cor82], naturally ordered commutative integral monoids with

residuation [Wro85]. We shall use the name hoops because it is conveniently short.

It was �rst observed by Bosbach [Bos69], in a more general context, that the natural

order could be expressed by the identity

(i) x+ (y �� x) � y + (x �� y).

Note that this identity expresses the fact that the binary term x _ y := y + (x �� y) is

commutative, thus de�ning a join operation.

Identity (i) may be reformulated, using residuation only, by

(ii) (z �� x) �� (y �� x) � (z �� y) �� (x �� y),

in the sense that a pocrim satis�es (i) if and only if it satis�es (ii). An immediate observation

is that all residuation subreducts of hoops satisfy (ii).

Based on the argument above, Wro�nski formulated the conjecture that all BCK-algebras

satisfying (ii) may be obtained as f ��; 0g-subreducts of hoops [Wro85].

The main aim of this paper is to provide a detailed proof of Wro�nski's conjecture. The

main result (Theorem 5.1) with an outline of its proof, has appeared in [BF93].
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2. Preliminaries

Given a �rst order structure A = hA;Li and L1 � L we say that AL1 = hA;L1i is the

L1-reduct of A: An L1-structure B = hB;L1i is said to be an L1-subreduct of A if B is a

substructure of AL1 . Given a class K of L-structures, KL1and SKL1 denote respectively the

class of L1-reducts and the class of L1-subreducts of members of K.

BCK-algebras. A BCK-algebra is an algebra A = hA; ��; 0i of type (2; 0) which satis�es

the following axioms:

(1) ((x �� y) �� (x �� z)) �� (z �� y) � 0

(2) x �� 0 � x

(3) 0 �� x � 0

(4) If x �� y � 0 and y �� x � 0 then x � y.

Note that the usual symbols for the binary operation on a BCK-algebra are either � or

�; the latter is sometimes omitted or replaced by juxtaposition. Our choice of �� (monus)

is justi�ed by the fact that in this paper we will be looking at certain BCK-algebras as

f ��; 0g-subreducts of hoops.

The class of all BCK-algebras is a quasivariety. Wro�nski [Wro83] and, independently,

Higgs [Hig84] have shown that this class is a proper quasivariety, i.e., it is not a variety.

The binary relation � on A, de�ned by a � b if and only if a �� b = 0, is a partial order

with least element 0|see [IT78].

It is well known that in a BCK-algebra, the following always hold:

(5) x �� x � 0

(6) x �� y � x

(7) x �� (x �� y) � y

(8) x �� (x �� (x �� y)) � x
�� y

(9) (x �� y) �� z � (x �� z) �� y.

The previous properties yield that �� is isotone on the left and antitone on the right:

(10) If x � y then x
�� z � y

�� z and z �� y � z
�� x.

The de�nition of BCK-algebras we adopted is slightly shorter than the one due to

Is�eki [IT78]. See [BR95] for a discussion on the equivalence between both.

For simplicity, we will abbreviate (x �� y) �� z as x �� y
�� z. For each natural number n,

de�ne x �� ny inductively by x �� 0y := x; x �� (n+ 1)y := x
�� ny

�� y.

Observe that if A is a totally ordered BCK-algebra it follows from (2) and (3) that for

all a; b 2 A a
�� b �� (b �� a) = a

�� b; a simple argument by induction on n shows that A also

satis�es the identities:

(Ln) x �� y
�� n(y �� x) � x

�� y for every natural number n.

A BCK-algebra, however, need not be totally ordered to satisfy (Ln). In fact it suÆces

to consider BCK-algebras in the relative subvariety de�ned by the identity

(11) z �� x
�� (y �� x) � z

�� y
�� (x �� y).

Lemma 2.1. Let A = hA; ��; 0i be a BCK-algebra satisfying (11). Then for every natural

number n, (Ln) also holds in A.

Proof. We start by showing that (L) follows from (11). Our proof is based on an argument

due to Bosbach [Bos69]. Let a; b 2 A and c = a
�� (b �� a). Then c � a, by (6), and

a
��c � b

��a � b
��c, by (7) and (10). Thus, a ��c ��(b ��c) = 0 and, by (11), a ��b ��(c ��b) = 0,

which implies that a ��b � c
��b = a

��(b ��a) ��b. Since, by (9), a ��(b ��a) ��b = a
��b ��(b ��a),

we conclude that a �� b � a
�� b

�� (b �� a). On the other hand, a �� b
�� (b �� a) � a

�� b by
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(6) and therefore a �� b = a
�� b

�� (b �� a) for all a; b 2 A. So (L) holds, as claimed. An easy

argument by induction on n now completes the proof of (Ln). 2

In short, in any BCK-algebra, (11) implies (L). The converse need not hold, as the

following example illustrates:

Example 2.2. Consider the 4-element set A = f0; a; b; cg, totally ordered by 0 < a < b < c

and de�ne a binary operation �� on A by x �� 0 = x for all x 2 A, x �� y = 0 for all x; y 2 A
such that x � y and b

�� a = c
�� a = c

�� b = a. It is easy to verify that A = hA; ��; 0i is a

BCK-algebra which satis�es (L). However, c ��a ��(b ��a) = a
��a = 0 6= a

��0 = c
��b ��(a ��b)

and therefore (11) fails in A.

In [Cor80b], Cornish considered the variety of BCK-algebras de�ned by the identity

(J) x �� (x �� (y �� (y �� x))) � y
�� (y �� (x �� (x �� y))).

It is clear that the quasi-identity (4) follows from (J) and hence the class of BCK-

algebras satisfying (J) is a variety. It is much harder to show that (J) follows from the

quasi-equational basis for the class of all BCK-algebras satisfying (11), henceforth called

HBCK-algebras.

Theorem 2.3. [Fer92, BF93, Kow94] The class of all HBCK-algebras is a variety with

equational basis (1){(3), (11) and (J).

An algebraic proof of this theorem was �rst obtained by the author in her Ph.D. The-

sis [Fer92, BF93]. More recently, Kowalski [Kow94] obtained a syntactic derivation of (11)

from the quasi-equational basis for the variety HBCK of all HBCK-algebras.

Pocrims and hoops. A structure A = hA; +; 0;�i is a partially ordered commutative

monoid if hA; +; 0i is a commutative monoid and � is a partial order on A compatible with

+, i.e., such that for all x; y; z 2 A, if x � y, then x + z � y + z. A is (dually) integral

if 0 is the least element of A. A is (dually) residuated if for all x; y 2 A there is a least

element z such that x � y+ z. Such z is called the residual of y relative to x and is denoted

by x �� y. A partially ordered commutative residuated integral monoid hA; +; 0;�i can be

treated as an algebra hA; +; ��; 0i, since the partial order can be retrieved via x � y i�

x
�� y = 0. Such algebras will be referred to by the acronym pocrim.

The f ��; 0g-subreducts of pocrims satisfy all of (1){(4); hence they are BCK-algebras.

The converse also holds, as was independently established by Pa lasi�nski [Pal82], Ono and

Komori [OK85] and Fleischer [Fle88].

Theorem 2.4. [Pal82, OK85, Fle88] Let A = hA; ��; 0i be an algebra of type (2; 0). A is a

BCK-algebra if and only if it is a f ��; 0g-subreduct of some pocrim.

Pocrims can be traced back to research undertaken in the �rst half of this century on

residuation in lattices of ideals of commutative rings with identity. In fact, if R is a com-

mutative ring with identity 1 and Id(R) is the monoid of ideals of R, with the usual ideal

multiplication, ordered by reversed set inclusion, then for any two ideals I; J of R the resid-

ual of I relative to J exists and is given by J �� I = fx 2 R : xI � Jg. Hence, Id(R) is (the

universe of) a pocrim.

The class M of all pocrims is a proper quasivariety [Hig84]. This class has been thor-

oughly investigated by Blok and Raftery [BR97].

B�uchi and Owens [BO] introduced a special class of pocrims which they called hoops. A

thorough study of hoops may be found in [BF00].
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A partially ordered commutative monoid A = hA; +; 0;�i is called naturally ordered if

for all x; y 2 A,

x � y i� (9z 2 A) (y = x+ z):

An algebra A = hA; +; ��; 0i is called a hoop if it is a naturally ordered pocrim. We

denote the class of hoops by HO.

A word of caution is in order. `Hoops' in this paper are the same as `dual hoops' and

are termwise equivalent to `hoops' as considered in [BF00]. It should be noted that the

only signi�cant alteration is the reversal of the order relation considered. The author has

adopted the new designation based on the traditional order relation for BCK-algebras and

in accordance with the convention adopted by Blok and Raftery [BR97].

Given a hoop, it is easy to observe that x � y if and only if y = x + (y �� x). Moreover,

x+(y ��x) = y+(x ��y) holds for all x; y. As a consequence, every hoop is a join-semilattice

with respect to its natural order, where the join operation is given by x _ y := x+ (y �� x),

see [BP94]. The underlying _-semilattice of any hoop is distributive, in the sense of Gr�atzer

[Gra87], i.e., whenever a � b _ c, there exist b0 � b, c0 � c such that a = b
0 _ c0|see

[Bos69, BO].

Conversely any pocrim satisfying the equation x + (y �� x) = y + (x �� y) is naturally

ordered and hence a hoop. In fact, if x � y then y = y+ 0 = y+ (x �� y) = x+ (y ��x); and

if, for some z, y = x+ z, then x = x+ 0 � x+ z = y. Hence we may say that the class of

hoops consists of those pocrims satisfying

(H) x+ (y �� x) � y + (x �� y).

More precisely, it is known that an algebra A = hA; +; ��; 0i is a hoop if and only if

hA; +; 0i is a commutative monoid that satis�es the following identities:

(12) (x �� y) �� z � x
�� (y + z),

(5) x �� x � 0,

(H) x+ (y �� x) � y + (x �� y); see [BF00, Bos69].

Hence, the class HO of all hoops is a variety.

Among the easiest yet most relevant examples of hoops one has

Example 2.5. Let G = hG; +;�; 0;_;^i be a lattice-ordered Abelian group, or Abelian

`-group, for short, and P (G) its positive cone, i.e, P (G) = fx 2 G : x � 0g. On P (G)

de�ne the operation

x
�� y = (x� y) _ 0:

Then P(G) = hP (G); +; ��; 0i is a hoop. If we consider the `-group of the integers, Z =

hZ; +;�; 0;_;^i and its positive cone, the natural numbers, we obtain the in�nite hoop

C1 = hf0; 1; 2; : : :g; +; ��; 0i.

Example 2.6. Given an Abelian `-group G = hG; +;�; 0;_;^i and an arbitrary element

u 2 G, u > 0, de�ne on the set G[u] = fx 2 G : 0 � x � ug the following operations:

a+u b = (a+ b) ^ u

a
�� b = (a� b) _ 0:

Then hG[u]; +u;
��; 0i is a hoop.

In particular, as in Example 2.5, if we consider the Abelian `-group of the integers

Z = hZ; +;�; 0;_;^i and an arbitrary positive integer m, we obtain the �nite hoop Cm =

hf0; 1; 2; : : : ;mg; +m;
��; 0i.
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3. Commutative BCK-algebras

The order relation de�ned on BCK-algebras has no interesting properties in general.

In fact, every poset with a least element 0 can be given the structure of a (Hilbert or

positive implicative) BCK-algebra, by de�ning a �� b = 0 if a � b and a
�� b = a if a 6� b|

see [Cor82, Die66]. However, given a BCK-algebra, the term operation x
�� (x �� y) de�nes

a lower bound of both x and y (cf. (6) and (7)).

It was shown by S. Tanaka [IT78, Tan75] that, given any BCK-algebra A, the binary

term x
�� (x �� y) de�nes a meet-semilattice operation on its universe if and only if it is a

commutative term operation, i.e., if A satis�es the identity

x
�� (x �� y) � y

�� (y �� x):(T)

BCK-algebras satisfying (T) are therefore called commutative BCK-algebras [Yut77]. It

is well-known that the class of commutative BCK-algebras is a variety; indeed quasi-identity

(4) follows from (T).

We say that a commutative BCK-algebra A is upwards directed if every pair of elements

a; b 2 A has an upper bound; A is called bounded if it has a greatest element.

Lemma 3.1. Every upwards directed commutative BCK-algebra can be embedded into a

bounded commutative BCK-algebra.

Proof. Let A be an upwards directed commutative BCK-algebra. For each z 2 A, let

A[z] = fx 2 A : 0 � x � zg be the order ideal below z. A[z] is a subuniverse of A with

largest element z and therefore A[z] = hA[z]; ��; 0i is a bounded commutative BCK-algebra.

We claim that A 2 ISPu(A[z] : z 2 A).

In order to prove our claim, consider the family of order �lters of A given by Fa = fz 2
A : a � zg, a 2 A. Each Fa is non-empty. Since A is upwards directed, for every a; b 2 A
there exists c 2 A, such that Fc � Fa \ Fb. Thus the family fFa : a 2 Ag has the �nite

intersection property and therefore there exists an ultra�lter U over A containing all the

members of the family. Fix such an ultra�lter and de�ne the map  : A �!
Q

z2AA[z]=U

by  (A) = (a ^ z)z2A=U .

Let a; b 2 A, a 6= b. Without loss of generality assume a 6� b. Then Fa � fz 2 A : a^z 6=
b ^ zg. Since Fa 2 U then fz 2 A : a ^ z 6= b ^ zg 2 U , as well and therefore  (A) 6=  (b).

Thus  is one-one.

For arbitrary a; b 2 A we have  (A) ��  (b) =  (a �� b) if and only if F = fz 2 A :

z ^ (a �� b) = (z ^ a) �� (z ^ b)g 2 U . Choose c 2 A such that a; b � c. Then for z 2 Fc,

a; b � c � z implies that a ��b � z (by (6)) and therefore z^(a ��b) = a
��b = (z^a) ��(z^b).

Hence, Fc � F and therefore F 2 U . This concludes the proof that  is an embedding of

A into the bounded commutative BCK-algebra
Q

z2AA[z]=U . 2

Recall from Example 2.2, that in a BCK-algebra (L) does not imply (11). However, when

we restrict ouselves to commutative BCK-algebras, (L) and (11) are equivalent. This result

was established by Cornish, Sturm and Traczyk by means of a rather technical proof [CST84,

Lemma 2.4].

A commutative BCK-algebra is called a  Lukasiewicz algebra (L-algebra, for short) if it

satis�es (L) or, equivalently if it satis�es (11).  Lukasiewicz algebras form a subvariety of the

variety of commutative BCK-algebras. They have been studied by Komori, under the name

C algebras [Kom78]. Because C algebras are the algebraic models of the implicational frag-

ment of the  Lukasiewicz propositional calculus, we follow Pa lasi�nski and Wro�nski [PW86]

in naming these algebras after  Lukasiewicz.
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All totally ordered commutative BCK-algebras are necessarily L-algebras. Traczyk [Tra79]

has shown that bounded commutative BCK-algebras are subdirect products of totally or-

dered bounded commutative BCK-algebras; therefore, bounded commutative BCK-algebras

are L-algebras. Hence, by Lemma 3.1, every upwards directed commutative BCK-algebra

is an L-algebra. This seems to have been known to specialists in BCK-algebras. However,

we have not seen its proof in print.

A hoop is called a Wajsberg hoop if it satis�es (T). Wajsberg hoops are crucial to the

study of hoops in general, as seen in [BF00]. Clearly, f ��; 0g-subreducts of Wajsberg hoops

are L-algebras. Moreover, every bounded L-algebra, with largest element 1, is necessarily

a (f ��; 0g-reduct of a) Wajsberg hoop. To the author's knowledge, this result was �rst

announced without proof by Bosbach [Bos74] and also referred to by Romanowska and

Traczyk [RT80]. We include here a proof that may be inferred from Bosbach's work on

cone algebras [Bos82].

Lemma 3.2. [Bos74, RT80] If A = hA; ��; 0i is an L-algebra with largest element 1, then it

is the f ��; 0g-reduct of a (bounded) Wajsberg hoop, where the monoid operation + is de�ned

by x+ y := 1 �� (1 �� x
�� y) for all x; y 2 A.

Proof. We will show that hA; +; 0i is a commutative monoid which, when enriched with ��,

satis�es (12), (5) and (H). Hence hA; +; ��; 0i is a hoop.

Observe that for arbitrary a 2 A, a = a^ 1 = 1 �� (1 �� a). Now we proceed to show that

+ is commutative. Given a; b 2 A, a+ b = 1 �� (1 �� a
�� b) = 1 �� (1 �� b

�� a) = b+ a. Also,

0 + a = 1 �� (1 �� 0 �� a) = 1 �� (1 �� a) = a ^ 1 = a by (2) and (T). Hence we have proved

that hA;+; 0i is a commutative groupoid with identity 0.

Before showing that + is associative, we will prove that (H) and (12) hold in A. As for

(H), let a; b 2 A. Then

a+ (b �� a) = 1 �� (1 �� a
�� (b �� a))

= 1 �� (1 �� b
�� (a �� b)) by (11)

= b+ (a �� b):

Next we will check that (12) also holds. Here we will use repeatedly our previous remark

that for arbitrary a 2 A, a = a^ 1 = 1 �� (1 �� a). First note that 1 �� (a+ b) = 1 �� (1 �� (1 ��
a

�� b)) = 1 ^ (1 �� a
�� b) = 1 �� a

�� b. Hence, for all a; b; c 2 A,

a
�� (b+ c) = 1 �� (1 �� a) �� (b+ c)

= 1 �� (b+ c) �� (1 �� a) by (9)

= 1 �� b
�� c

�� (1 �� a)

= 1 �� (1 �� a) �� b
�� c by (9) twice

= a
�� b

�� c:

Associativity of + will now be derived as a consequence of (12). First observe that for

all a; b; c; d 2 A

d
�� (a+ (b+ c)) = d

�� a
�� (b+ c) = d

�� a
�� b

�� c = d
�� (a+ b) �� c = d

�� ((a+ b) + c);

by several applications of (12). In particular, ((a+ b) + c) �� (a+ (b+ c)) = ((a+ b) + c) ��
((a+b)+c) = 0. Thus (a+b)+c � a+(b+c). Similarly, one obtains a+(b+c) � (a+b)+c.

Thus the operation + endows A with the structure of a commutative monoid satisfying

(12), (5) and (H). Therefore hA; +; ��; 0i is a hoop. Since it satis�es (T) and has a top

element, hA; +; ��; 0i is a (bounded) Wajsberg hoop, as claimed. 2
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Every totally ordered L-algebra is trivially upwards directed and therefore may be em-

bedded into a bounded L-algebra, by Lemma 3.1. Since every L-algebra is a subdirect

product of totally ordered L-algebras, we obtain

Theorem 3.3. Every L-algebra is a f ��; 0g-subreduct of a (bounded) Wajsberg hoop.

We conclude this section with another consequence of Lemma 3.1.

Proposition 3.4. If A is an upwards directed L-algebra then the quasivariety Q(A) =

ISPPu(A) is generated by its bounded members.

Proof. As observed in the proof of Lemma 3.1, for each z 2 A, A[z] is a (bounded)

subalgebra of A. Hence, A[z] 2 Q(A). Since A 2 ISPu(A[z] : z 2 A); then Q(A) =

ISPPu(A[z] : z 2 A). 2

4. Subdirectly irreducible HBCK-algebras

Let Q be a quasivariety of algebras of type � and A an algebra of type � . A Q-congruence

on A is any congruence � on A such that A=� 2 Q. Q-congruences on A are closed under

arbitrary intersection and the set ConQA, of all Q-congruences on A, is an algebraic lattice.

Given a quasivariety of algebras Q; we say that A 2 Q is subdirectly irreducible relative

to Q if the lattice ConQA has a unique minimal nontrivial congruence. We say that A 2 Q
is simple relative to Q if ConQA is the two-element lattice. If no confusion arises, A 2 Q
is simply called relatively subdirectly irreducible for short (respectively, relatively simple),

whenever ConQA has a unique minimal nontrivial congruence (respectively, ConQA is the

two element lattice).

If a class K of algebras is a relative subvariety of a quasivariety Q (i.e., K = Q \ V for

some variety V) then it is easy to see that for A 2 K, ConKA = ConQA and therefore

A 2 K is subdirectly irreducible (respectively simple) relative to K if and only if A is

subdirectly irreducible (respectively simple) relative to Q: Moreover, if K itself is a variety

and A 2 K then Con A = ConQA and A is subdirectly irreducible (respectively simple)

relative to Q if and only if A is subdirectly irreducible (respectively simple) in the usual

sense.

The discussion above applies to the quasivariety BCK of BCK-algebras and its relative

subvarieties. In particular, in view of Theorem 2.3, for any HBCK-algebra A, the lattice of

congruences of A relative to BCK coincides with the full lattice of congruences of A.

As in many algebraic structures, in particular those arising from Logic, (relative) congru-

ences on BCK-algebras are in close association with certain distinguished subsets, namely

ideals. To be more precise, given a BCK-algebra A, and a subset I � A, we say that I is

an ideal of A if 0 2 I and whenever a 2 I and b
�� a 2 I then b 2 I .

Every ideal of a BCK-algebra is an order ideal, since if a 2 I and b � a then b ��a = 0 2 I
and so b 2 I . Moreover, every ideal is also a subuniverse, since b ��a � b in any BCK-algebra.

If A is a BCK-algebra and X � A, then the ideal generated by X is the set I(X) =

fb 2 A : 9n 2 N 9 a1; a2; : : : ; an 2 X b
�� a1

�� a2
�� : : :

�� an = 0g. If, in particular,

X = fag then I(a) = fb 2 A : b �� na = 0 for some n 2 Ng. Ideals of a BCK-algebra form

an algebraic lattice denoted by Id(A), where I ^J = I \J and I _J = fa 2 A : a ��g ��f =

0; for some f 2 I; g 2 Jg.
If A is a BCK-algebra and � is a congruence on A, the coset 0=� = fa 2 A : (a; 0) 2 �g

is an ideal, frequently called the kernel of �. Conversely, whenever I is an ideal of A the

binary relation �I de�ned on A by (a; b) 2 �I if and only if a �� b; b
�� a 2 I is not only a

congruence on A but also A=�I is a BCK-algebra and therefore �I is a congruence relative

to BCK: Indeed �I is the largest congruence on A with I as its kernel.
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The correspondence ConBCKA �! Id(A) de�ned by � 7! 0=� is an order isomorphism,

with inverse map given by I 7! �I (see [BR95]).

Since the relative subvariety HBCK is itself a variety (recall Theorem 2.3) when we

consider an HBCK-algebra A we can say that the lattices Id(A) and ConA are isomor-

phic. This observation, together with a simple argument on ideals, implies that the variety

HBCK has the congruence extension property, (CEP, for short)|see, for instance [BR95],

Proposition 1 (ii) for details.

In the remainder of this section, we will study in detail the structure of subdirectly

irreducible HBCK-algebras. We start by describing simple BCK and HBCK-algebras.

The only congruence on any given BCK-algebra A having A as its kernel is the universal

congruence A2 [RRS91, Remarks 2.7a]. This implies that if A has only two ideals it is

necessarily simple and conversely.

Lemma 4.1. 1
Let A be an BCK-algebra.

(i) A is simple if and only if it satis�es

(13) For all a; b, if a 6= 0 then there exists n 2 N such that b
�� na = 0.

(ii) If A is simple, it satis�es

(14) For all a; b a
�� b = a implies a = 0 or b = 0.

Proof. (i) Recall that, for every a 2 A, I(a) = fb 2 A : b �� na = 0 for some n 2 Ng; hence

(13) states that I(a) = A for every nonzero a 2 A. Therefore (13) holds if and only if A

has exactly two ideals, f0g and A. By the remark above, this is equivalent to saying that

A is simple.

(ii) Assume A is simple and let a; b 2 A be such that a �� b = a. Then for all n 2 N,

a
��nb = a. Since A satis�es (13), if b 6= 0 then a ��n0b = 0, for some n0 2 N, and so a = 0.

2

Observe that any totally ordered L-algebra satis�es (14). Conversely, we have:

Proposition 4.2. Let A be an HBCK-algebra satisfying

(14) For all a; b a
�� b = a implies a = 0 or b = 0.

Then A is a totally ordered L-algebra.

Proof. The fact that A is totally ordered is a consequence of (L) (see [Bos69]). Indeed, for

any a; b 2 A a
�� b

�� (b �� a) = a
�� b. Hence, by (14), a �� b = 0 or b �� a = 0 and therefore,

a � b or b � a.

To see that A satis�es (T), let a; b 2 A and assume without loss of generality that b < a;

since b �� (b �� a) = b
�� 0 = b, it suÆces to show that b = a

�� (a �� b).

a
�� b

�� (b �� (a �� (a �� b))) =

= a
�� (a �� (a �� b)) �� (b �� (a �� (a �� b))) by (8)

= a
�� b

�� (a �� (a �� b) �� b) by (11)

= a
�� b

�� 0 by (7)

= a
�� b by (2):

Hence, by (14), either a �� b = 0 or b �� (a �� (a �� b)) = 0. Since the assumption was that

b < a, we have a �� b 6= 0. Therefore b �� (a �� (a �� b)) = 0 and so b = a
�� (a �� b), as claimed.

2

1The author is indebted to a Referee, who pointed out that Lemma 4.1(i) holds for arbitrary BCK-

algebras and not only for HBCK-algebras, as originally stated.
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Thus we conclude

Corollary 4.3. Every simple HBCK-algebra is a totally ordered L-algebra.

Example 4.4. The �nite chainsCm
f

�

�;0g
;m 2 N, as well asC1

f
�

�;0g are simple L-algebras.

We now turn our attention to subdirectly irreducible HBCK-algebras. Recall that an

algebra A is subdirectly irreducible if and only if A has a congruence � 6= � that is

contained in every nonzero congruence of A. We call � the monolith of A. Observe that if

A is a subdirectly irreducible HBCK-algebra, U = 0=� is the unique minimal ideal of A

distinct from f0g. U is contained in every ideal of A not equal to f0g. In the sequel, we

will always denote this ideal by U .

Proposition 4.5. Let A be a subdirectly irreducible HBCK-algebra with monolith �. Then

U is a subuniverse of A and hU ; ��; 0i is a simple totally ordered L-algebra.

Proof. We observed earlier that every ideal is a subuniverse. By CEP and Corollary 4.3,

hU ; ��; 0i is necessarily a simple, totally ordered L-algebra. 2

Given a subdirectly irreducible HBCK-algebra A with least nonzero ideal U , we say that

a 2 A is �xed if for all u 2 U; a
�� u = a. The set of �xed elements of A is denoted by F .

The set S = (A n F ) [ f0g is called the support of U .

Proposition 4.6. Let A be a subdirectly irreducible HBCK-algebra with monolith � , U =

0=� and set of �xed elements F . Then

(i) For all a 2 A if a 6= 0 then u 6= 0 and u � a for some u 2 U ,

(ii) U \ F = f0g,

(iii) An element a 2 A is �xed if and only if a
�� x = a for some x 2 U n f0g.

Proof. (i) Let a 2 A; a 6= 0 and let I(A) = fx 2 A : x �� na = 0 for some n 2 Ng be the

ideal of A generated by a. Since I(A) 6= f0g, it follows that U � I(A). Let x 2 U n f0g;
then there exists m 2 N such that x

�� ma = 0. Choose m minimal with respect to the

condition x ��ma = 0 and let u = x
�� (m� 1)a. Then u � x and u 6= 0 and so u 2 U n f0g.

Moreover, u �� a = x
�� (m� 1)a �� a = x

��ma = 0 and therefore u � a.

(ii) Let a 2 U \ F and u 2 U; u 6= 0. Since a is �xed, a �� u = a. By Proposition 4.5,

U is the universe of a simple HBCK-algebra, and hence U satis�es (14) by Lemma 4.1(ii);

since a; u 2 U we have a = 0, as claimed.

(iii) Assume a 6= 0 and a
�� x = a for some x 2 U , x 6= 0. Let u 2 U be arbitrary; in

order to show that a 2 F , we verify that a ��u = a. Since a ��x = a, we have a ��nx = a for

every n 2 N. On the other hand, a �� (a �� u) � u and so a �� (a �� u) 2 U . Since U satis�es

(13) and x 6= 0, a �� (a �� u) �� n0x = 0 for some n0 2 N. Hence, 0 = a
�� (a �� u) �� n0x =

(a �� n0x) �� (a �� u) = a
�� (a �� u); thus a �� u = a.

The converse is immediate, since U 6= f0g. 2

Lemma 4.7. Let A be a subdirectly irreducible HBCK-algebra, U its least ideal distinct

from f0g, F its set of �xed elements and S the support of U . Let a 2 F; a 6= 0. Then

(i) for all u 2 U u � a,

(ii) for all b 2 A if a � b then b 2 F ,

(iii) for all b 2 A a
�� b; b

�� a 2 F ,

(iv) for all b 2 S b � a; a
�� b = a.
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Proof. (i) Since a 6= 0, and U is the least ideal distinct from f0g, U � I(A). Thus, given

u 2 U , u ��ma = 0 for some m 2 N. On the other hand,

u
�� a = u

�� a
�� (a �� u) by (L)

= u
�� a

�� a since a is �xed

= u
�� 2a

By induction, one derives u ��na = u
��a, for every n 2 N. In particular, 0 = u

��ma = u
��a

and so u � a.

(ii) Let a � b. Let u 2 U be arbitrary. Then a = a
�� u � b

�� u and so a �� (b �� u) = 0.

Now,

b
�� (b �� u) = b

�� (b �� u) �� 0 (2)

= b
�� (b �� u) �� (a �� (b �� u))

= b
�� a

�� (b �� u
�� a) by (11)

= b
�� a

�� (b �� u
�� (a �� u)) since a is �xed

= b
�� a

�� (b �� a
�� (u �� a)) by (11)

= b
�� a

�� (b �� a
�� 0) since u � a

= b
�� a

�� (b �� a) by (2)

= 0 by (5):

So b � b
�� u and b

�� u � b (by (6)) and therefore b �� u = b, yielding b 2 F .

(iii) Let b 2 A. We want to show that both a
�� b and b

�� a are in F . Let u 2 U be

arbitrary. With respect to a �� b, observe that a �� b
�� u = a

�� u
�� b = a

�� b and therefore

a
�� b 2 F .

As for b �� a, we have

b
�� a = b

�� a
�� 0 by (2)

= b
�� a

�� (u �� a) by (i)

= b
�� u

�� (a �� u) by (11)

= b
�� u

�� a since a is �xed

= b
�� a

�� u by (9):

Hence, b �� a 2 F .

(iv) Let b 2 S. If b = 0, all statements are trivially true. Hence we may assume without

loss of generality that b 6= 0, i.e., b 2 A n F . By (iii), b �� a 2 F . Since b �� a � b and b 62 F ,

it follows from (ii) that b �� a = 0. Thus b � a. On the other hand, to show a
�� b = a it

suÆces to show that a �� (a �� b) = 0. Let u 2 U , u 6= 0. Then a
�� u = a and

a
�� (a �� b) �� u = a

�� u
�� (a �� b) = a

�� (a �� b):

So a ��(a ��b) is �xed. By (ii), the fact that a ��(a ��b) � b and b 62 F , one gets a ��(a ��b) = 0

and so a �� b = a. 2

Ordinal sums. In order to present the structure of subdirectly irreducible HBCK-algebras,

we recall the construction of the ordinal sum of two BCK-algebras,A and B, denoted A�B.

If, for simplicity, we assume A \ B � f0Ag, de�ne A �B to be the algebra with universe

A [ (B n f0g), and operations 0A�B = 0A = 0B,

x
�� y =

8>><
>>:

x
��
A
y for x; y 2 A;

x
��
B
y for x; y 2 B n f0g and x 6� y;

x for x 2 B n f0g; y 2 A;
0 otherwise;
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Observe that this de�nition places all elements of A below all elements of B n f0g.
If A \ B 6� f0Ag replace B with an isomorphic copy B0 such that A \ B0 � f0Ag

and de�ne their ordinal sum as above. This construction was introduced, in the study of

BCK-algebras, by Is�eki and Yutani [IY80]. For any BCK-algebras A and B, A � B is a

BCK-algebra and A and B are among its subalgebras; Cornish [Cor82] showed that if A

and B are HBCK-algebras, so is A�B.

Lemma 4.8. Let A �B be the ordinal sum of two BCK-algebras and assume jAj > 1. If

A�B is n-generated for some n < ! then B is k-generated for some k < n.

Proof. We may assume that A\B = f0g. Since B is isomorphic to A�B=A, it is therefore

generated by the images (under the natural homomorphism) of the n generators of A�B.

Since A is non-trivial, it must contain (at least) one of the generators of A�B; its image

is 0, a redundant generator. Thus B is generated by (at most) n� 1 generators. 2

If A and B are HBCK-algebras and furthermore A is subdirectly irreducible then A�B
is also subdirectly irreducible. We are now ready to describe subdirectly irreducible HBCK-

algebras.

Theorem 4.9. Let A be a subdirectly irreducible HBCK-algebra, U its least ideal distinct

from f0g, F its set of �xed elements and S the support of U .

(i) F and S are subuniverses of A.

(ii) U � S, and S = hS; ��; 0i is a subdirectly irreducible L-algebra. In particular, S is

totally ordered.

(iii) A = S�F.

Proof. (i) 0 is �xed, hence 0 2 F . To see that F is closed under the binary operation, let

a; b 2 F . If a = 0 then b
�� a = b

�� 0 = b 2 F . If a 6= 0 then a
�� b 2 F , by Lemma 4.7(iii).

This concludes the proof that F is a subuniverse of A.

To show that S is also a subuniverse of A, let a; b 2 S. Since b �� a � b, then b
�� a 2 S,

by Lemma 4.7 (ii). Thus S is a subuniverse of A as claimed.

(ii) U � S by Proposition 4.6 (ii) and the de�nition of S. Since U is the least ideal of A

not equal to f0g it follows from the congruence extension property that U is also the least

ideal of S not equal to f0g. Hence S is subdirectly irreducible.

To prove that S is a totally ordered L-algebra, it suÆces, by Proposition 4.2, to verify

that it satis�es (14). Let a; b 2 S and assume that a �� b = a. If b 6= 0 then by Proposition

4.6 (i) there exists u 2 U such that u � b and u 6= 0. Then a = a
�� b � a

�� u � a, so a is

�xed, by Proposition 4.6(iii). Thus a 2 F \ S and hence a = 0.

(iii) This follows immediately from (i) together with Lemma 4.7 (iv). 2

A typical subdirectly irreducible HBCK-algebra may be depicted as in Figure 1 below.

�

�

�

�

. 0

F n f0g

8<
:

U

�
9>>=
>>;
S

Figure 1. A subdirectly irreducible HBCK-algebra
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Observe that under the conditions of Theorem 4.9 S is an ideal of A and F ' A=S.

Let n < ! and let En denote the class of all BCK-algebras which satisfy the identity

("n) x �� ny � x
�� (n+ 1)y.

For each n < !, En is a variety [Cor80b]. In particular, E1 is the well-known class of

Hilbert algebras, �rst studied by Diego [Die66]. For these algebras, the description given

in Theorem 4.9 is well-known; the subdirectly irreducible Hilbert algebras are precisely the

algebras of the form C1
f

�

�;0g �B, where C1
f

�

�;0g is the 2-element Hilbert algebra and B is

any Hilbert algebra. More generally we have

Corollary 4.10. If A is any HBCK-algebra in En, then A is subdirectly irreducible if and

only if A = C
f

�

�;0g
m �B for some m, 1 � m � n, and some HBCK-algebra B in En.

Proof. One needs only to observe that if A is a subdirectly irreducible HBCK-algebra in

En, the support S of its minimal ideal U coincides with U . In fact, if s 2 S n U and u is

a nonzero element of U then a := s
�� nu is not in U (as U is an ideal) but a 2 S. Since

a� u = a we have that a 2 F \ S, i.e. a = 0, a contradiction. Hence S is the universe of

a subdirectly irreducible, totally ordered L-algebra S in En, by Theorem 4.9(ii). It follows

that S is a simple L-algebra in En and therefore is isomorphic to some C
f

�

�;0g
m , 1 � m � n;

see [Cor80a] for a detailed explanation. B is in En since it is a subalgebra of A. 2

For L-algebras the decomposition given in Theorem 4.9(iii) becomes trivial. Indeed, if

A is any subdirectly irreducible L-algebra we have U � S = A and F = f0g, and if in

addition A is simple then U = S = A and F = f0g.

5. Embedding Theorems

The key to proving Wro�nski's conjecture lies in the observation that many properties of

hoops do not depend on its monoid operation but solely on its residuation operation. One

example is the characterization of subdirectly irreducible HBCK-algebras, which resembles

closely the characterization of subdirectly irreducible hoops. Therefore, once the description

of subdirectly irreducible HBCK-algebras has been established, we can prove Wro�nski's

conjecture.

In order to show that HBCK = SHOf
�

�;0g one would like to �nd for each HBCK-algebra

A, a hoop B such that A embeds into (the residuation reduct of) B. For arbitrary BCK-

algebras and pocrims, this was achieved by taking the universe of B to be the set of order

�lters of a certain set of \ideal-like" subsets of A; the reader is referred to [BR97, Theorem

2.1] for a detailed account on this construction, due to Fleischer [Fle88] and Ono and Komori

[OK85]. This method does not quite work for HBCK-algebras. However, we may reduce

the general embedding problem by using the fact that every algebra is a subalgebra of an

ultraproduct of its �nitely generated subalgebras. Therefore it suÆces to show that every

�nitely generated HBCK-algebra embeds into a hoop.

Theorem 5.1. A BCK-algebra is isomorphic to a f ��; 0g-subreduct of a hoop if and only if

it is an HBCK-algebra.

Proof. Let A be an m-generated subdirectly irreducible HBCK-algebra. We prove the

theorem by induction on the number of generators.

If m = 1 then A is the 2-element (H)BCK-algebra, which is the f ��; 0g-reduct of the 2-

element hoop C1. Assume by induction that every k-generated HBCK-algebra with k < m,

is isomorphic to a f ��; 0g-subreduct of a hoop. Let A be m-generated and subdirectly

irreducible. Then A ' B�C, whereB is a subdirectly irreducible L-algebra. By Lemma 4.8,
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C is k-generated for some k < m. Therefore, by induction, C is a f ��; 0g-subreduct of some

hoop C�. By Theorem 3.3, B is a f ��; 0g-subreduct of a bounded Wajsberg hoop B�.

It follows from the de�nition of the fundamental operations on ordinal sums that A is

isomorphic to a f ��; 0g-subreduct of the hoop B� �C�. 2

A hoop is called n-potent if it satis�es the identity (Æn) x
n � x

n+1 or equivalently

("n) x ��ny � x
�� (n+ 1)y. In [BP94] Blok and Pigozzi asked whether every HBCK-algebra

in En is a subreduct of a n-potent hoop. Lemma 4.8 and Corollary 4.10 give a positive

answer to this question. Let HOn denote the variety of n-potent hoops and HBCKn denote

HBCK \ En.

Theorem 5.2. SHOn
f

�

�;0g = HBCKn.

Proof. The proof is similar to that of Theorem 5.1. We need only to make the following

observation. If A �= B � C is a subdirectly irreducible m-generated member of HBCKn

then B �= C
f

�

�;0g
k for some k � n, by Corollary 4.10 and Lemma 4.8; and C is a t-generated

member of HBCKn, for some t < m. By the induction hypothesis, C embeds into the

f ��; 0g-reduct of some n-potent hoop C�. Hence A is isomorphic to a residuation subreduct

of the hoop Ck �C�. It is easy to verify that Ck �C� is n-potent since both Ck and C�

are n-potent. 2

Concluding remarks. Some of the tools used to obtain the embedding theorems above,

ordinal sum constructions among them, have found further use in studying certain quasi-

varieties of BCK-algebras. As an example, the reader is referred to Blok and Raftery [BR97].

These authors have investigated conditions under which the residuation subreducts of a

variety of pocrims form a variety of BCK-algebras and have found several examples of such

varieties.

When applied to certain subvarieties of hoops, the techniques used to prove Wro�nski's

conjecture are also useful. To mention one application, one may consider the variety BH of

basic hoops (generated by totally ordered hoops), its subvarieties and respective varieties of

residuation subreducts [AFM]. The structure of basic hoops seems relevant in understanding

the algebraic semantics of (the positive fragment of) Propositional Basic Logic, which was

introduced by H�ajek [Haj98].
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