INTERPOLATION THEOREM BETWEEN B_{0}^{p} AND $B M O$

Katsuo Matsuoka

Received April 28, 2000

Dedicated to Professor Sumiyuki Koizumi on his seventieth birthday
Abstract. C. Fefferman and E. M. Stein proved the interpolation theorem between L^{p} and $B M O$. The purpose of this paper is to consider the analogue of the above theorem of C. Fefferman and E. M. Stein, i.e. the interpolation theorem between B_{0}^{p} and $B M O$, by means of the properties of the sharp function f^{\sharp} and the duality that the space $C M O^{p}$ is the dual space to $H A^{p^{\prime}}, 1 / p+1 / p^{\prime}=1$.

1 Introduction In [B], A. Beurling showed that

$$
B^{p}=\left\{f \in L_{l o c}^{p}\left(\mathbf{R}^{n}\right): \sup _{R \geq 1}\left(\frac{1}{|B(0, R)|} \int_{B(0, R)}|f(x)|^{p} d x\right)^{1 / p}<\infty\right\}
$$

where $1<p<\infty$ and where $B(0, R)$ is the open ball in \mathbf{R}^{n}, having center 0 and radius $R>0$, is the dual of the so-called Beurling algebra $A^{p^{\prime}}, 1 / p+1 / p^{\prime}=1$. Also, Y. Chen and K. Lau [CL] and J. Garcia-Cuerva [G] defined the spaces $C M O^{p}$, which are similar to John-Nirenberg's $B M O$, and developed the H^{1}-theory analogue concerning the Hardy spaces $H A^{p}$ associted with $A^{p}, 1<p<\infty$, on \mathbf{R}^{1} and \mathbf{R}^{n}, respectively. In particular, the 'grand maximal function' characterization, the atomic decomposition, and $H A^{p}-C M O^{p^{\prime}}$ duality corresponding to Fefferman-Stein's $H^{1}-B M O$ duality were obtained.

By regarding B^{p} as an L^{p} analogue, K. Matsuoka calculated the interpolation space between B^{p}-spaces and also the related interpolation spaces, using the complex method in $\left[\mathrm{M}_{1}\right]$ and the real method in $\left[\mathrm{M}_{2}\right]$. His results are, e.g.,

$$
\left(B^{p_{0}}, B^{p_{1}}\right)_{[\theta]}=\left(B^{p_{0}}, B^{p_{1}}\right)^{[\theta]}=B^{p} \quad \text { (equal norms) }
$$

and

$$
\left(B^{p_{0}}, B^{p_{1}}\right)_{\theta, p}=B^{p} \quad \text { (equivalent norms) }
$$

1991 Mathematics Subject Classification. 42B25, 42B35.
Key words and phrases. interpolation, central mean oscillation, sharp function.
where $1<p_{0}, p_{1}<\infty, 0<\theta<1,1 / p=(1-\theta) / p_{0}+\theta / p_{1}\left(c f .\left[\mathrm{M}_{3}\right]\right)$. On the other hand, C. Fefferman and E. M. Stein [FS] gave the interpolation space between L^{p} and $B M O$, i.e.

$$
\left(L^{p_{0}}, B M O\right)_{[\theta]}=L^{p},
$$

where $1<p_{0}<\infty, 0<\theta<1,1 / p=(1-\theta) / p_{0}(c f .[J])$. They deduced this result from the properties of the sharp function f^{\sharp}.

In this paper, we will show the interpolation theorem between the subspace B_{0}^{p} of B^{p} and $B M O$, which is the analogue of the interpolation theorem between L^{p} and $B M O$ obtained by C. Fefferman and E. M. Stein, using the sharp function f^{\sharp} and $H A^{p}-C M O^{p^{\prime}}$ duality.

2 Preliminaries First, we will recall the definitions of the space B^{p}, the subspace B_{0}^{p} of B^{p} and the Beurling algebra A^{p} (see [CL] and [G]).

Definition 2.1 Let $1<p<\infty$, and let

$$
\begin{equation*}
B^{p}=\left\{f \in L_{l o c}^{p}\left(\mathbf{R}^{n}\right):\|f\|_{B^{p}}=\sup _{R \geq 1}\left(\frac{1}{|B(0, R)|} \int_{B(0, R)}|f(x)|^{p} d x\right)^{1 / p}<\infty\right\}, \tag{2.1}
\end{equation*}
$$

where $B(0, R)$ is the open ball in \mathbf{R}^{n}, having center 0 and radius $R>0$, and

$$
\begin{equation*}
B_{0}^{p}=\left\{f \in B^{p}: \lim _{R \rightarrow \infty} \frac{1}{|B(0, R)|} \int_{B(0, R)}|f(x)|^{p} d x=0\right\} . \tag{2.2}
\end{equation*}
$$

Also let

$$
\begin{equation*}
A^{p}=\left\{f:\|f\|_{A^{p}}=\inf _{\omega \in \Omega}\left(\int_{\mathbf{R}^{n}}|f(x)|^{p} \omega(x)^{-(p-1)} d x\right)^{1 / p}<\infty\right\}, \tag{2.3}
\end{equation*}
$$

where Ω is the class of functions ω on \mathbf{R}^{n} such that ω 's are positive, radial, nonincreasing with respect to $|x|$, and

$$
\omega(0)+\int_{\mathbf{R}^{n}} \omega(x) d x=1 .
$$

Here we note that B^{p}, B_{0}^{p} and A^{p} are Banach spaces, and that the space $C_{c}^{\infty}\left(\mathbf{R}^{n}\right)$ of those C^{∞} functions having compact support on \mathbf{R}^{n} is dense in B_{0}^{p} and A^{p} for $1<p<\infty$ (see Proposition 1.3 of [G]). Note also that

$$
\begin{equation*}
L^{1} \cap L^{p_{1}} \supset A^{p_{1}} \supset A^{p_{2}} \quad \text { and } \quad B^{p_{1}} \supset B^{p_{2}} \supset L^{\infty} \tag{2.4}
\end{equation*}
$$

if $1<p_{1}<p_{2}<\infty$.
The following result is a basic duality theorem (see [B], [CL] and [G] for details).

Theorem 2.2 Let $1<p, p^{\prime}<\infty$ with $1 / p+1 / p^{\prime}=1$. Then,

$$
\begin{equation*}
\left(A^{p}\right)^{*}=B^{p^{\prime}} \tag{2.5}
\end{equation*}
$$

and the duality is given by

$$
\begin{equation*}
\langle f, g\rangle=\int_{\mathbf{R}^{n}} f(x) g(x) d x \quad\left(f \in A^{p}, \quad g \in B^{p^{\prime}}\right) \tag{2.6}
\end{equation*}
$$

And also

$$
\begin{equation*}
\left(B_{0}^{p}\right)^{*}=A^{p^{\prime}} \tag{2.7}
\end{equation*}
$$

Next, we state the definitions of the function of central mean oscillation of order p and the Hardy space associated to A^{p}, which are due to [CL] and [G].

Definition 2.3 Let $1<p<\infty$. A function $f \in L_{l o c}^{p}\left(\mathbf{R}^{n}\right)$ will be said to belong to a class of functions of central mean oscillation of order $p, C M O^{p}$, if

$$
\begin{equation*}
\|f\|_{C M O^{p}}=\sup _{R \geq 1}\left(\frac{1}{|B(0, R)|} \int_{B(0, R)}\left|f(x)-m_{R}(f)\right|^{p} d x\right)^{1 / p}<\infty \tag{2.8}
\end{equation*}
$$

where $B(0, R)$ is the open ball in \mathbf{R}^{n}, having center 0 and radius $R>0$, and

$$
\begin{equation*}
m_{R}(f)=\frac{1}{|B(0, R)|} \int_{B(0, R)} f(x) d x \tag{2.9}
\end{equation*}
$$

Then, by identifying functions which differ by a constant almost everywhere, it follows that $C M O^{p} \supset B^{p} \supset B_{0}^{p}$, which inclusions are proper, and that $C M O^{p}$ is a Banach space. Moreover,

$$
\begin{equation*}
C M O^{p_{1}} \supset C M O^{p_{2}} \tag{2.10}
\end{equation*}
$$

if $1<p_{1}<p_{2}<\infty$.
Definition 2.4 For $1<p<\infty$, we shall define the Hardy space $H A^{p}$ associated to A^{p} and the norm $\|\cdot\|_{H A^{p}}$ as

$$
\begin{equation*}
H A^{p}=\left\{f \in A^{p}: f \text { real }, \quad f^{*} \in A^{p}\right\} \tag{2.11}
\end{equation*}
$$

where f^{*} is the nontangential maximal function of the Poisson integral of f, i.e. for every $x \in \mathbf{R}^{n}$,

$$
\begin{align*}
f^{*}(x) & =\sup _{|y-x|<t}\left|\left(f * P_{t}\right)(y)\right| \tag{2.12}\\
& =\sup _{|y-x|<t}\left|c_{n} \int_{\mathbf{R}^{n}} f\left(y-x^{\prime}\right) \frac{t}{\left(t^{2}+\left|x^{\prime}\right|^{2}\right)^{(n+1) / 2}} d x^{\prime}\right|, \quad c_{n}=\frac{\Gamma\left(\frac{n+1}{2}\right)}{\pi^{(n+1) / 2}},
\end{align*}
$$

and

$$
\begin{equation*}
\|f\|_{H A^{p}}=\left\|f^{*}\right\|_{A^{p}} \tag{2.13}
\end{equation*}
$$

respectively.

Then, with this norm, $H A^{p}$ becomes a Banach space. Moreover,

$$
\begin{equation*}
H^{1} \cap A^{p_{1}} \supset H A^{p_{1}} \supset H A^{p_{2}} \tag{2.14}
\end{equation*}
$$

if $1<p_{1}<p_{2}<\infty$.
In the following, the theorem describes the duality corresponding to Fefferman-Stein's H^{1} $B M O$ duality, adapted to $H A^{p}$-space (see [CL] and [G]).

Theorem 2.5 Let $1<p, p^{\prime}<\infty$ with $1 / p+1 / p^{\prime}=1$. Then,

$$
\begin{equation*}
\left(H A^{p}\right)^{*}=C M O^{p^{\prime}} \tag{2.15}
\end{equation*}
$$

and the duality is given by

$$
\begin{equation*}
\langle f, g\rangle=\int_{\mathbf{R}^{n}} f(x) g(x) d x \quad\left(f \in H A^{p}, \quad g \in C M O^{p^{\prime}}\right) \tag{2.16}
\end{equation*}
$$

In the remainder of this section, we make some comments about the Hardy-Littlewood maximal function and the grand maximal function.

Definition 2.6 For any function f on \mathbf{R}^{n}, the Hardy-Littlewood maximal function $M f$ is defined by

$$
\begin{equation*}
(M f)(x)=\sup _{x \in B} \frac{1}{|B|} \int_{B}|f(y)| d y \quad\left(x \in \mathbf{R}^{n}\right) \tag{2.17}
\end{equation*}
$$

where the supremum is taken over all open balls $B \subset \mathbf{R}^{n}$ containing x.
Then, the following maximal theorem, which is the analogue of the Hardy-Littlewood maximal theorem, was shown in [CL] and [G].

Theorem 2.7 Suppose $1<p<\infty$. If $f \in B^{p}$, then $M f \in B^{p}$ and

$$
\begin{equation*}
\|M f\|_{B^{p}} \leq C_{p}\|f\|_{B^{p}} \tag{2.18}
\end{equation*}
$$

where C_{p} is a constant depending only on n and p.
Definition 2.8 Let N be a positive integer, and let

$$
\begin{equation*}
\mathcal{A}_{N}=\left\{\phi \in \mathcal{S}\left(\mathbf{R}^{n}\right): \sup _{|\alpha| \leq N,|\beta| \leq N}\|\phi\|_{\alpha, \beta}=\sup _{|\alpha| \leq N,|\beta| \leq N}\left\{\sup _{x \in \mathbf{R}^{n}}\left|x^{\alpha} \partial_{x}^{\beta} \phi(x)\right|\right\} \leq 1\right\} \tag{2.19}
\end{equation*}
$$

where $\mathcal{S}\left(\mathbf{R}^{n}\right)$ is the Schwarz class and α and β are n-tuples of natural numbers. Then, for any function f on \mathbf{R}^{n}, the grand maximal function $\mathcal{M}_{N} f$ is defined by

$$
\begin{equation*}
\left(\mathcal{M}_{N} f\right)(x)=\sup _{\phi \in \mathcal{A}_{N}}\left\{\sup _{|y-x|<t}\left|\left(f * \phi_{t}\right)(y)\right|\right\} \quad\left(x \in \mathbf{R}^{n}\right) \tag{2.20}
\end{equation*}
$$

where $\phi_{t}(x)=t^{-n} \phi(x / t), t>0$. If N is sufficiently large and then N is fixed, we use the notation \mathcal{M} to stand for \mathcal{M}_{N}.

Then, in [G], the following characterization of $H A^{p}$ was proved.

Theorem 2.9 Let $1<p<\infty$ and f be a real function on \mathbf{R}^{n}. Then, the following conditions are equivalent:
(i) $f \in H A^{p}$;
(ii) $\mathcal{M} f \in A^{p}$.

Besides,

$$
\begin{equation*}
\|f\|_{H A^{p}} \approx\|\mathcal{M} f\|_{A^{p}} \tag{2.21}
\end{equation*}
$$

3 The sharp function In this section, we will consider the property of the sharp function which enables us to interpolate between B_{0}^{p} and $B M O$.

Definition 3.1 For any $f \in L_{l o c}^{1}\left(\mathbf{R}^{n}\right)$, let

$$
\begin{equation*}
f_{B}=\frac{1}{|B|} \int_{B} f(y) d y \tag{3.1}
\end{equation*}
$$

be the mean value of f in a open ball $B \subset \mathbf{R}^{n}$. Then, the sharp function f^{\sharp} is defined by

$$
\begin{equation*}
f^{\sharp}(x)=\sup _{x \in B} \frac{1}{|B|} \int_{B}\left|f(y)-f_{B}\right| d y \quad\left(x \in \mathbf{R}^{n}\right), \tag{3.2}
\end{equation*}
$$

where the supremum is taken over all open balls $B \subset \mathbf{R}^{n}$ containing x.

Then, applying Theorem 2.7, we obviously get the following theorem (see $\left[\mathrm{M}_{4}\right]$).

Theorem 3.2 Suppose $1<p<\infty$. If $f \in B^{p}$, then $f^{\sharp} \in B^{p}$ and

$$
\begin{equation*}
\left\|f^{\sharp}\right\|_{B^{p}} \leq C_{p}\|f\|_{B^{p}}, \tag{3.3}
\end{equation*}
$$

where C_{p} is a constant depending only on n and p.

Combining the sharp function with the grand maximal function, the following duality inequality is obtained (see [St, p. 147]).

Proposition 3.3 The duality inequality

$$
\begin{equation*}
\left|\int_{\mathbf{R}^{n}} f(x) g(x) d x\right| \leq c \int_{\mathbf{R}^{n}} f^{\sharp}(x)(\mathcal{M} g)(x) d x \tag{3.4}
\end{equation*}
$$

holds whenever $g \in H^{1}$ and f is bounded.

As a consequence of Proposition 3.3, we can now prove the following inequality (cf. $\left[\mathrm{M}_{4}\right]$).

Theorem 3.4 Suppose $1<p<\infty$. If $f \in B_{0}^{p_{0}}$, for some $1<p_{0}<p$, and $f^{\sharp} \in B^{p}$, then $f \in C M O^{p}$ and

$$
\begin{equation*}
\|f\|_{C M O^{p}} \leq C_{p}\left\|f^{\sharp}\right\|_{B^{p}}, \tag{3.5}
\end{equation*}
$$

where C_{p} is a constant depending only on n and p.
proof. The proof of this theorem is similar to that of Theorem 2 of [St, p. 148].
Given $f \in B_{0}^{p_{0}}$, there exists a sequence $\left\{f_{k}\right\} \subset C_{c}^{\infty}\left(\mathbf{R}^{n}\right)$ such that $f_{k} \rightarrow f$ in $B^{p_{0}}$ norm. Hence, the maximal theorem 2.7 shows that $f_{k}{ }^{\sharp} \rightarrow f^{\sharp}$ in $B^{p_{0}}$ norm. Then, using Proposition 3.3 and (2.14), for any $g \in H A^{p_{0}{ }^{\prime}}$, where $1 / p_{0}+1 / p_{0}{ }^{\prime}=1$,

$$
\left|\int_{\mathbf{R}^{n}} f_{k}(x) g(x) d x\right| \leq c \int_{\mathbf{R}^{n}} f_{k}^{\sharp}(x)(\mathcal{M} g)(x) d x .
$$

Further, by applying Theorem 2.2 and (2.21), a passage to the limit gives

$$
\left|\int_{\mathbf{R}^{n}} f(x) g(x) d x\right| \leq c \int_{\mathbf{R}^{n}} f^{\sharp}(x)(\mathcal{M} g)(x) d x,
$$

whenever $f \in B_{0}^{p_{0}}$ and $g \in H A^{p_{0}{ }^{\prime}}$. Therefore, it follows from (2.14), Theorem 2.2 and (2.21) that

$$
\left|\int_{\mathbf{R}^{n}} f(x) g(x) d x\right| \leq c_{p^{\prime}}\left\|f^{\sharp}\right\|_{B^{p}} \cdot\|g\|_{H A^{p^{\prime}}},
$$

where $1 / p+1 / p^{\prime}=1$. Thus, by the Hahn-Banach theorem and Theorem 2.5, we obtain

$$
\|f\|_{C M O^{p}}=\sup _{\|g\|_{H A A^{p}} \leq 1}\left|\int_{\mathbf{R}^{n}} f(x) g(x) d x\right| \leq C_{p}\left\|f^{\sharp}\right\|_{B^{p}} .
$$

This completes the proof.

4 Interpolation theorem We first state the real interpolation space between B^{p} and L^{∞}, which was obtained in $\left[\mathrm{M}_{2}\right]$.

Theorem 4.1 Suppose $1<p_{0}<\infty$ and $0<\theta<1$. Then

$$
\begin{equation*}
\left(B^{p_{0}}, L^{\infty}\right)_{\theta, p}=B^{p} \quad \text { (equivalent norms), } \tag{4.1}
\end{equation*}
$$

where $1 / p=(1-\theta) / p_{0}$.
Next, we note that this theorem implies the following interpolation theorem (Corollary 4.2).
Corollary 4.2 Suppose $1<p_{0}<\infty$, and let T be a sublinear operator such that

$$
T: B^{p_{0}} \rightarrow B^{p_{0}}
$$

and

$$
T: L^{\infty} \rightarrow L^{\infty}
$$

boundedly. Then, for every p with $p_{0}<p<\infty$,

$$
T: B^{p} \rightarrow B^{p}
$$

boundedly.

We are now in a position to prove the following inerpolation theorem between B_{0}^{p} and $B M O$. This theorem is the analogous result of the interpolation theorem between L^{p} and $B M O$ due to C. Fefferman and E. M. Stein, which is an extension of the Marcinkiewicz interpolation theorem (see Theorem 3.7 of Chapter II of [GR]).

Theorem 4.3 Suppose $1<p_{0}<\infty$, and let T be a linear operator such that

$$
T: B^{p_{0}} \rightarrow B_{0}^{p_{0}}
$$

and

$$
T: L^{\infty} \rightarrow B M O
$$

boundedly. Then, for every p with $p_{0}<p<\infty$,

$$
T: B^{p} \rightarrow C M O^{p}
$$

boundedly.

proof. Considering the sublinear operator $f \rightarrow(T f)^{\sharp}$, it follows from Theorem 3.2 and the definition of $B M O$ that this is bounded in $B^{p_{0}}$ and also in L^{∞}. Hence, by Corollary 4.2, we have that for every p with $p_{0}<p<\infty$, it is bounded in B^{p}.

Now, for every p with $p_{0}<p<\infty$, let $f \in B^{p}$. Then, in view of the assumption and (2.4), $T f \in B_{0}^{p_{0}}$. Moreover, by applying the above assertion just proved, $(T f)^{\sharp} \in B^{p}$. Thus, using Theorems 3.4 and $3.2, T f \in C M O^{p}$ and

$$
\|T f\|_{C M O^{p}} \leq C_{p}\left\|(T f)^{\sharp}\right\|_{B^{p}} \leq C_{p}\|f\|_{B^{p}} .
$$

This concludes the proof of Theorem 4.3.

References

[B] A. Beurling, Construction and analysis of some convolution algebra, Ann. Inst. Fourier, 14 (1964), 1-32.
[CL] Y. Chen and K. Lau, Some new classes of Hardy spaces, J. Func. Anal., 84 (1989), 255-278.
[FS] C. Fefferman and E. M. Stein, H^{p} spaces of several variables, Acta Math., 129 (1972), 137-193.
[G] J. Garcia-Cuerva, Hardy spaces and Beurling algebras, J. London Math. Soc. (2), 39 (1989), 499-513.
[GR] J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, NorthHolland, Amsterdam, 1985.
[J] P. W. Jones, Interpolation between Hardy spaces, 437-451 in Conference on Harmonic Analysis in Honor of Antoni Zygmund, edited by W. Beckner, A. P. Calderón, R. Fefferman and P. W. Jones, Wadsworth, Belmont, California, 1983.
[M_{1}] K. Matsuoka, Interpolation between some Banach spaces in generalized harmonic analysis, Tokyo J. Math., 13 (1990), 117-124.
[M_{2}] K. Matsuoka, Interpolation between some Banach spaces in generalized harmonic analysis: The real method, Tokyo J. Math., 14 (1991), 129-134.
$\left[\mathrm{M}_{3}\right]$ K. Matsuoka, Interpolation theorems for Banach spaces A^{p} and B^{p} with $1<p<\infty$, Research Bulletin of Nihon Daigaku Keizaigaku Kenkyukai, 29 (1999), 99-105.
[M_{4}] K. Matsuoka, On the sharp function on Banach spaces B_{0}^{p}, Research Bulletin of Nihon Daigaku Keizaigaku Kenkyukai, 30 (2000), 129-134.
[Sa] C. Sadosky, Interpolation of Operators and Singular Integrals, Marcel Dekker, New York, 1979.
[St] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, New Jersey, 1993.

College of Economics, Nihon University, Misaki-cho, Chiyoda-ku, Tokyo 101-8360, Japan

