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INTERPOLATION THEOREM BETWEEN B} AND BMO

KATSUO MATSUOKA
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ABSTRACT. C. Fefferman and E. M. Stein proved the interpolation theorem between LP
and BMO. The purpose of this paper is to consider the analogue of the above theorem of
C. Fefferman and E. M. Stein, i.e. the interpolation theorem between BY and BM O, by means
of the properties of the sharp function f* and the duality that the space CMOP is the dual
space to HA? | 1/p+1/p' = 1.

1 Introduction In [B], A. Beurling showed that

1/p
B? = el su / )|Pdx <00y,
f loc( ) R>Ii <|B 0 R | ()R | )

where 1 < p < co and where B(0, R) is the open ball in R™, having center 0 and radius R > 0, is
the dual of the so-called Beurling algebra A?', 1/p+1/p’ =1. Also, Y. Chen and K. Lau [CL] and
J. Garcia-Cuerva [G] defined the spaces C M OP, which are similar to John-Nirenberg’s BM O, and
developed the H'-theory analogue concerning the Hardy spaces H AP associted with AP, 1 < p < oo,
on R' and R™, respectively. In particular, the ’grand maximal function’ characterization, the
atomic decomposition, and H AP-CMOP' duality corresponding to Fefferman-Stein’s H'-BMO
duality were obtained.

By regarding B? as an LP analogue, K. Matsuoka calculated the interpolation space between
BP-spaces and also the related interpolation spaces, using the complex method in [M;] and the

real method in [M,]. His results are, e.g.,
(B, B") (g = (BpO,Bpl)[G] = B? (equal norms)

and

(B™,B"), ,=B" (equivalent norms),
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where 1 < pg,p1 < 00, 0 < 8 <1, 1/p=(1-6)/po+6/p1 (cf. [M3]). On the other hand,
C. Fefferman and E. M. Stein [FS] gave the interpolation space between L¥ and BMO, i.e.

(L¥°,BMO)y = L”,

where 1 < pyp < 00, 0 < 8 <1, 1/p=(1-0)/po (cf. [J]). They deduced this result from the
properties of the sharp function f*.

In this paper, we will show the interpolation theorem between the subspace Bf of B? and
BMQO, which is the analogue of the interpolation theorem between LP and BMO obtained by
C. Fefferman and E. M. Stein, using the sharp function f* and HAP-CMOP" duality.

2 Preliminaries First, we will recall the definitions of the space B?, the subspace B} of B?

and the Beurling algebra AP (see [CL] and [G]).

Definition 2.1 Let 1 < p < oo, and let

(21)  B"=({f€Lj.R"):|flls

loc

1 1/p
up <|B(7 |f(ﬂf)|pdl°> <oop,

=5
R>1 0,R)| JB(o,R)

where B(0, R) is the open ball in R™, having center 0 and radius R > 0, and

P _ P . lm 1 p el
(2.2) Bf —{fEB .R1~>00 B0 R B(07R)|f(a:)| dx 0}.
Also let
1/p
(2.3) ar = {f il = inf ( /R n If(:r)l”w(:r)(””d:r> < oo} ,

where § is the class of functions w on R™ such that w’s are positive, radial, nonincreasing with

respect to |z|, and

w(0) + / ) w(z)dr = 1.

Here we note that BP, Bfj and AP are Banach spaces, and that the space C2°(R") of those C>
functions having compact support on R™ is dense in Bf and AP for 1 < p < oo (see Proposition

1.3 of [G]). Note also that
(2.4) L'NLP* > APr 5 AP and  BP* D BP2 O L™

if1<p1 < pg < 0.
The following result is a basic duality theorem (see [B], [CL] and [G] for details).
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Theorem 2.2 Let 1 < p,p' < oo with 1/p+1/p' = 1. Then,
(2.5) (47)" = B",

and the duality is given by

(2.6) (f9)= | f@g@dz (fear, geB).
R

And also

(2.7) (BEY" = A,

Next, we state the definitions of the function of central mean oscillation of order p and the

Hardy space associated to AP, which are due to [CL] and [G].

Definition 2.3 Let 1 < p < co. A function f € L} (R™) will be said to belong to a class of

unctions of central mean oscillation of order p, CMOP?, i
fi D, ;

1/p
1
(2.8) lfllcaor = sup 7/ f(x) —mg(f)|Pdx < 00,
w2 \BOBN Joon |
where B(0, R) is the open ball in R™, having center 0 and radius R > 0, and
1
(2.9) malf) = f(@)da.

|B(0, R)| Jp(o,R)
Then, by identifying functions which differ by a constant almost everywhere, it follows that

CMO? > B? D Bf, which inclusions are proper, and that CMO? is a Banach space. Moreover,
(2.10) CMOP* D CMOP?
if1<p1 < pg < 0.

Definition 2.4 For 1 < p < oo, we shall define the Hardy space HA? associated to AP and the
norm || - ||mar as

(2.11) HA? ={f € AP : f real, f* € AP},

where f* is the nontangential maximal function of the Poisson integral of f, i.e. for every x € R™,

(212)  f*(@)

sup | (f * F1) (y)]

ly—z|<t
t T ("_-H)
= sw e [ fly-a) i e = DCT)
ly—=|<t n (2 + |x/|2)(n+1)/2 a(nt1)/2
and
(2.13) IFllzar = 11F7 |4,

respectively.
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Then, with this norm, H A” becomes a Banach space. Moreover,
(2.14) H'N AP* 5 HAP* O HAP?

if 1 <p <po < oo0.
In the following, the theorem describes the duality corresponding to Fefferman-Stein’s H!-

BMO duality, adapted to HAP-space (see [CL] and [G]).
Theorem 2.5 Let 1 < p,p’ < oo with 1/p+ 1/p' = 1. Then,
(2.15) (HAP)* = CMOY,
and the duality is given by

(2.16) o) = | f@)g(z)de (feHAP, geCMOP’).
RTL

In the remainder of this section, we make some comments about the Hardy-Littlewood maximal
function and the grand maximal function.
Definition 2.6 For any function f on R", the Hardy-Littlewood mazimal function M f is defined
by
1 n
(27) ) =sw o [ Wi @Ry,
B

zEB
where the supremum is taken over all open balls B C R™ containing x.

Then, the following maximal theorem, which is the analogue of the Hardy-Littlewood maximal

theorem, was shown in [CL] and [G].

Theorem 2.7 Suppose 1 < p < oo. If f € BP, then M f € BP and
(2.18) 1M fllge < CpllfllBe,

where C), is a constant depending only on n and p.

Definition 2.8 Let N be a positive integer, and let

(219) Ay = {¢ ESRM: s |ldlap= sup { sup |maa£¢<w>|} < 1},
|a|<N,|BI<N la|<N,[8]<N LzeRn
where S(R™) is the Schwarz class and o and 8 are n-tuples of natural numbers. Then, for any
function f on R™, the grand mazimal function My f is defined by
(2.20) (Mnf)(z) = sup { sup |(f * ¢t)(y)|} (z e R"),
PEAN |ly—z|<t

where ¢(x) =t "¢(z/t), t > 0. If N is sufficiently large and then N is fized, we use the notation
M to stand for My .
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Then, in [G], the following characterization of H AP was proved.

Theorem 2.9 Let 1 < p < oo and f be a real function on R™. Then, the following conditions are
equivalent:

(i) fe HA?;

(i) Mf e Ar.

Besides,

(2.21) 1 fllzar & [[Mflar.

3 The sharp function In this section, we will consider the property of the sharp function which

enables us to interpolate between Bf and BMO.

Definition 3.1 For any f € L}, (R"™), let

loc

1
(3.1) fB= —/ f(y)dy
|B| /5
be the mean value of f in a open ball B C R™. Then, the sharp function f* is defined by
f 1 n
(3.2) fHa) =sup — | |f(y) - feldy ~ (z€R"),
z€EB |B| B

where the supremum is taken over all open balls B C R™ containing x.
Then, applying Theorem 2.7, we obviously get the following theorem (see [My]).

Theorem 3.2 Suppose 1 < p < co. If f € BP, then f* € B? and

(3.3) 1£¥ 152 < CllFll e,
where C), is a constant depending only on n and p.

Combining the sharp function with the grand maximal function, the following duality inequality

is obtained (see [St, p. 147]).

Proposition 3.3 The duality inequality

(3-4) f(z)g(x)dz| < c - fi(x)(Mg)(z)dz

‘R"

holds whenever g € H' and f is bounded.

As a consequence of Proposition 3.3, we can now prove the following inequality (cf. [My]).
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Theorem 3.4 Suppose 1 < p < oco. If f € BY°, for some 1 < py < p, and f* € BP, then
feCMOP and

(3.5) I fllcaor < CpllfAllBe,

where C), is a constant depending only on n and p.

proof.  The proof of this theorem is similar to that of Theorem 2 of [St, p. 148].
Given f € Bh°, there exists a sequence { fr,} C C°(R™) such that fr — f in BP° norm. Hence,
the maximal theorem 2.7 shows that fku — f%in BP° norm. Then, using Proposition 3.3 and

(2.14), for any g € HA”OI, where 1/pg + 1/po’ =1,

‘ fu()g(e)de
Rn

<c [ fif(@)(Mg)(z)da.
R’n
Further, by applying Theorem 2.2 and (2.21), a passage to the limit gives

f(@)g(z)dx

<c [ fH@)(Mg)(2)dz,
R~

‘R"

whenever f € Bf® and g € HAP' . Therefore, it follows from (2.14), Theorem 2.2 and (2.21) that

‘ [ H@(@)da] < ool ol

where 1/p+ 1/p' = 1. Thus, by the Hahn-Banach theorem and Theorem 2.5, we obtain

f@)g(z)dz| < Cyllf¥]| -

Rn

lfllcaror = sup
/Sl

N9l ap

This completes the proof.

4 Interpolation theorem We first state the real interpolation space between BP and L°°,

which was obtained in [Ms].
Theorem 4.1 Suppose 1 < pg < o0 and 0 <6 < 1. Then
(4.1) (B, L>), ,=B" (equivalent norms),
where 1/p=(1—0)/po.
Next, we note that this theorem implies the following interpolation theorem (Corollary 4.2).

Corollary 4.2 Suppose 1 < pg < 0o, and let T be a sublinear operator such that

T : BY — B
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and

T:L° — L*®
boundedly. Then, for every p with py < p < 00,

T:B? —» B?
boundedly.

We are now in a position to prove the following inerpolation theorem between Bf and BMO.
This theorem is the analogous result of the interpolation theorem between LP and BMO due to
C. Fefferman and E. M. Stein, which is an extension of the Marcinkiewicz interpolation theorem

(see Theorem 3.7 of Chapter II of [GR]).

Theorem 4.3 Suppose 1 < pg < 0o, and let T be a linear operator such that
T:B" — Bl

and

T:L* - BMO

boundedly. Then, for every p with py < p < 00,
T:B? - CMO?
boundedly.

proof.  Considering the sublinear operator f — (T'f)%, it follows from Theorem 3.2 and the
definition of BM O that this is bounded in BP° and also in L*°. Hence, by Corollary 4.2, we have
that for every p with py < p < 00, it is bounded in BP.

Now, for every p with pp < p < oo, let f € BP. Then, in view of the assumption and (2.4),
Tf € BL°. Moreover, by applying the above assertion just proved, (T'f)* € BP. Thus, using
Theorems 3.4 and 3.2, T'f € CMOP and

T flleaor < Coll(TF) e < Cpll fllse-
This concludes the proof of Theorem 4.3.
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