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INTERPOLATION THEOREM BETWEEN B
p

0 AND BMO
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Dedicated to Professor Sumiyuki Koizumi on his seventieth birthday

Abstract. C. Fe�erman and E. M. Stein proved the interpolation theorem between Lp

and BMO. The purpose of this paper is to consider the analogue of the above theorem of

C. Fe�erman and E. M. Stein, i.e. the interpolation theorem between B
p

0
and BMO, by means

of the properties of the sharp function f ] and the duality that the space CMOp is the dual

space to HAp
0

, 1=p+ 1=p0 = 1.

1 Introduction In [B], A. Beurling showed that

Bp =

8<
:f 2 L

p

loc
(Rn) : sup

R�1

 
1

jB(0; R)j

Z
B(0;R)

jf(x)jpdx

!1=p

<1

9=
; ;

where 1 < p <1 and where B(0; R) is the open ball in Rn, having center 0 and radius R > 0, is

the dual of the so-called Beurling algebra Ap
0

, 1=p+1=p0 = 1. Also, Y. Chen and K. Lau [CL] and

J. Garcia-Cuerva [G] de�ned the spaces CMOp, which are similar to John-Nirenberg's BMO, and

developed theH1-theory analogue concerning the Hardy spacesHAp associted with Ap, 1 < p <1,

on R1 and Rn, respectively. In particular, the 'grand maximal function' characterization, the

atomic decomposition, and HAp-CMOp
0

duality corresponding to Fe�erman-Stein's H1-BMO

duality were obtained.

By regarding Bp as an Lp analogue, K. Matsuoka calculated the interpolation space between

Bp-spaces and also the related interpolation spaces, using the complex method in [M1] and the

real method in [M2]. His results are, e.g.,

(Bp0 ; Bp1)[�] = (Bp0 ; Bp1)
[�]

= Bp (equal norms)

and

(Bp0 ; Bp1)
�;p

= Bp (equivalent norms);
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where 1 < p0; p1 < 1, 0 < � < 1, 1=p = (1� �)=p0 + �=p1 (cf. [M3]). On the other hand,

C. Fe�erman and E. M. Stein [FS] gave the interpolation space between Lp and BMO, i.e.

(Lp0 ; BMO)[�] = Lp;

where 1 < p0 < 1, 0 < � < 1, 1=p = (1� �)=p0 (cf. [J]). They deduced this result from the

properties of the sharp function f ].

In this paper, we will show the interpolation theorem between the subspace B
p

0 of Bp and

BMO, which is the analogue of the interpolation theorem between Lp and BMO obtained by

C. Fe�erman and E. M. Stein, using the sharp function f ] and HAp-CMOp
0

duality.

2 Preliminaries First, we will recall the de�nitions of the space Bp, the subspace Bp

0 of Bp

and the Beurling algebra Ap (see [CL] and [G]).

De�nition 2.1 Let 1 < p <1, and let

Bp =

8<
:f 2 L

p

loc
(Rn) : kfkBp = sup

R�1

 
1

jB(0; R)j

Z
B(0;R)

jf(x)jpdx

!1=p

<1

9=
; ;(2.1)

where B(0; R) is the open ball in Rn, having center 0 and radius R > 0, and

B
p

0 =

(
f 2 Bp : lim

R!1

1

jB(0; R)j

Z
B(0;R)

jf(x)jpdx = 0

)
:(2.2)

Also let

Ap =

(
f : kfkAp = inf

!2


�Z
Rn

jf(x)jp!(x)�(p�1)dx

�1=p

<1

)
;(2.3)

where 
 is the class of functions ! on Rn such that !'s are positive, radial, nonincreasing with

respect to jxj, and

!(0) +

Z
Rn

!(x)dx = 1:

Here we note that Bp, B
p

0 and Ap are Banach spaces, and that the space C1c (Rn) of those C1

functions having compact support on Rn is dense in B
p

0 and Ap for 1 < p < 1 (see Proposition

1.3 of [G]). Note also that

L1
\ Lp1 � Ap1 � Ap2 and Bp1 � Bp2 � L1(2.4)

if 1 < p1 < p2 <1.

The following result is a basic duality theorem (see [B], [CL] and [G] for details).
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Theorem 2.2 Let 1 < p; p0 <1 with 1=p+ 1=p0 = 1. Then,

(Ap)
�
= Bp

0

;(2.5)

and the duality is given by

hf; gi =

Z
Rn

f(x)g(x)dx
�
f 2 Ap; g 2 Bp

0

�
:(2.6)

And also

(B
p

0 )
�
= Ap

0

:(2.7)

Next, we state the de�nitions of the function of central mean oscillation of order p and the

Hardy space associated to Ap, which are due to [CL] and [G].

De�nition 2.3 Let 1 < p < 1. A function f 2 L
p

loc
(Rn) will be said to belong to a class of

functions of central mean oscillation of order p, CMOp, if

kfkCMOp = sup
R�1

 
1

jB(0; R)j

Z
B(0;R)

jf(x)�mR(f)j
pdx

!1=p

<1;(2.8)

where B(0; R) is the open ball in Rn, having center 0 and radius R > 0, and

mR(f) =
1

jB(0; R)j

Z
B(0;R)

f(x)dx:(2.9)

Then, by identifying functions which di�er by a constant almost everywhere, it follows that

CMOp
� Bp � B

p

0 , which inclusions are proper, and that CMOp is a Banach space. Moreover,

CMOp1 � CMOp2(2.10)

if 1 < p1 < p2 <1.

De�nition 2.4 For 1 < p < 1, we shall de�ne the Hardy space HAp associated to Ap and the

norm k � kHAp as

HAp = ff 2 Ap : f real; f� 2 Apg ;(2.11)

where f� is the nontangential maximal function of the Poisson integral of f , i.e. for every x 2 Rn,

f�(x) = sup
jy�xj<t

j (f � Pt) (y)j(2.12)

= sup
jy�xj<t

�����cn
Z
Rn

f(y � x0)
t

(t2 + jx0j2)
(n+1)=2

dx0

����� ; cn =
�
�
n+1
2

�
�(n+1)=2

;

and

kfkHAp = kf�kAp ;(2.13)

respectively.
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Then, with this norm, HAp becomes a Banach space. Moreover,

H1
\ Ap1 � HAp1 � HAp2(2.14)

if 1 < p1 < p2 <1.

In the following, the theorem describes the duality corresponding to Fe�erman-Stein's H1-

BMO duality, adapted to HAp-space (see [CL] and [G]).

Theorem 2.5 Let 1 < p; p0 <1 with 1=p+ 1=p0 = 1. Then,

(HAp)
�
= CMOp

0

;(2.15)

and the duality is given by

hf; gi =

Z
Rn

f(x)g(x)dx
�
f 2 HAp; g 2 CMOp

0

�
:(2.16)

In the remainder of this section, we make some comments about the Hardy-Littlewood maximal

function and the grand maximal function.

De�nition 2.6 For any function f on Rn, the Hardy-Littlewood maximal function Mf is de�ned

by

(Mf)(x) = sup
x2B

1

jBj

Z
B

jf(y)jdy (x 2 Rn) ;(2.17)

where the supremum is taken over all open balls B � Rn containing x.

Then, the following maximal theorem, which is the analogue of the Hardy-Littlewood maximal

theorem, was shown in [CL] and [G].

Theorem 2.7 Suppose 1 < p <1. If f 2 Bp, then Mf 2 Bp and

kMfkBp � CpkfkBp ;(2.18)

where Cp is a constant depending only on n and p.

De�nition 2.8 Let N be a positive integer, and let

AN =

(
� 2 S(Rn) : sup

j�j�N;j�j�N

k�k�;� = sup
j�j�N;j�j�N

�
sup
x2Rn

��x�@�
x
�(x)

��� � 1

)
;(2.19)

where S(Rn) is the Schwarz class and � and � are n-tuples of natural numbers. Then, for any

function f on Rn, the grand maximal function MNf is de�ned by

(MNf)(x) = sup
�2AN

(
sup

jy�xj<t

j(f � �t)(y)j

)
(x 2 Rn) ;(2.20)

where �t(x) = t�n�(x=t), t > 0. If N is suÆciently large and then N is �xed, we use the notation

M to stand for MN .
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Then, in [G], the following characterization of HAp was proved.

Theorem 2.9 Let 1 < p <1 and f be a real function on Rn. Then, the following conditions are

equivalent:

(i) f 2 HAp;

(ii) Mf 2 Ap.

Besides,

kfkHAp � kMfkAp:(2.21)

3 The sharp function In this section, we will consider the property of the sharp function which

enables us to interpolate between B
p

0 and BMO.

De�nition 3.1 For any f 2 L1
loc
(Rn), let

fB =
1

jBj

Z
B

f(y)dy(3.1)

be the mean value of f in a open ball B � Rn. Then, the sharp function f ] is de�ned by

f ](x) = sup
x2B

1

jBj

Z
B

jf(y)� fB jdy (x 2 Rn) ;(3.2)

where the supremum is taken over all open balls B � Rn containing x.

Then, applying Theorem 2.7, we obviously get the following theorem (see [M4]).

Theorem 3.2 Suppose 1 < p <1. If f 2 Bp, then f ] 2 Bp and

kf ]kBp � CpkfkBp;(3.3)

where Cp is a constant depending only on n and p.

Combining the sharp function with the grand maximal function, the following duality inequality

is obtained (see [St, p. 147]).

Proposition 3.3 The duality inequality����
Z
Rn

f(x)g(x)dx

���� � c

Z
Rn

f ](x)(Mg)(x)dx(3.4)

holds whenever g 2 H1 and f is bounded.

As a consequence of Proposition 3.3, we can now prove the following inequality (cf. [M4]).
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Theorem 3.4 Suppose 1 < p < 1. If f 2 B
p0

0 , for some 1 < p0 < p, and f ] 2 Bp, then

f 2 CMOp and

kfkCMOp � Cpkf
]
kBp ;(3.5)

where Cp is a constant depending only on n and p.

proof. The proof of this theorem is similar to that of Theorem 2 of [St, p. 148].

Given f 2 B
p0

0 , there exists a sequence ffkg � C1
c
(Rn) such that fk ! f in Bp0 norm. Hence,

the maximal theorem 2.7 shows that fk
]
! f ] in Bp0 norm. Then, using Proposition 3.3 and

(2.14), for any g 2 HAp0
0

, where 1=p0 + 1=p0
0 = 1,����

Z
Rn

fk(x)g(x)dx

���� � c

Z
Rn

fk
](x)(Mg)(x)dx:

Further, by applying Theorem 2.2 and (2.21), a passage to the limit gives����
Z
Rn

f(x)g(x)dx

���� � c

Z
Rn

f ](x)(Mg)(x)dx;

whenever f 2 B
p0

0 and g 2 HAp0
0

. Therefore, it follows from (2.14), Theorem 2.2 and (2.21) that����
Z
Rn

f(x)g(x)dx

���� � cp0kf ]kBp � kgkHAp0 ;

where 1=p+ 1=p0 = 1. Thus, by the Hahn-Banach theorem and Theorem 2.5, we obtain

kfkCMOp = sup
kgk

HAp
0�1

����
Z
Rn

f(x)g(x)dx

���� � Cpkf
]
kBp :

This completes the proof.

4 Interpolation theorem We �rst state the real interpolation space between Bp and L1,

which was obtained in [M2].

Theorem 4.1 Suppose 1 < p0 <1 and 0 < � < 1. Then

(Bp0 ; L1)
�;p

= Bp (equivalent norms);(4.1)

where 1=p = (1� �)=p0.

Next, we note that this theorem implies the following interpolation theorem (Corollary 4.2).

Corollary 4.2 Suppose 1 < p0 <1, and let T be a sublinear operator such that

T : Bp0 ! Bp0
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and

T : L1 ! L1

boundedly. Then, for every p with p0 < p <1,

T : Bp
! Bp

boundedly.

We are now in a position to prove the following inerpolation theorem between B
p

0 and BMO.

This theorem is the analogous result of the interpolation theorem between Lp and BMO due to

C. Fe�erman and E. M. Stein, which is an extension of the Marcinkiewicz interpolation theorem

(see Theorem 3.7 of Chapter II of [GR]).

Theorem 4.3 Suppose 1 < p0 <1, and let T be a linear operator such that

T : Bp0 ! B
p0

0

and

T : L1 ! BMO

boundedly. Then, for every p with p0 < p <1,

T : Bp
! CMOp

boundedly.

proof. Considering the sublinear operator f ! (Tf)], it follows from Theorem 3.2 and the

de�nition of BMO that this is bounded in Bp0 and also in L1. Hence, by Corollary 4.2, we have

that for every p with p0 < p <1, it is bounded in Bp.

Now, for every p with p0 < p < 1, let f 2 Bp. Then, in view of the assumption and (2.4),

Tf 2 B
p0

0 . Moreover, by applying the above assertion just proved, (Tf)] 2 Bp. Thus, using

Theorems 3.4 and 3.2, Tf 2 CMOp and

kTfkCMOp � Cpk(Tf)
]
kBp � CpkfkBp :

This concludes the proof of Theorem 4.3.
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