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Abstract. In this paper we study the notions of weakly continuity, weakly #�continuity

and super-continuity. We also de�ne topologies on the sets of all forms of continuous

functions mentioned above. These results generalize some basic results of R. Arens,

D. Dugundji and A. Di Concilio (see [1], [5], [2], [3] and [8]).

1 Introduction

Let Y , Z be topological spaces and let f be a map of Y into Z. Then f is #�continuous

(respectively, super-continuous) at y 2 Y if for every open neighbourhood V of f(y)

there exists an open neighbourhood U of y such that f(Cl(U)) � Cl(V ) (respectively,

f(Int(Cl(U))) � V ). (Let Y be a space, then by Cl(A) (respectively, Int(A)) we denote

the closure (respectively, the interior) of A in Y ). The map f is #�continuous (respec-

tively, super-continuous) on Y if it is #�continuous (respectively, super-continuous) at each

point of Y . (See for example [6], [9] and [16]). In what follows by �(Y; Z) (respectively, by

SUC(Y; Z)) we denote the set of all #�continuous (respectively, super-continuous) maps

of Y into Z. If � is a topology on the set �(Y; Z) (respectively, SUC(Y; Z)), then the

corresponding topological space is denoted by �� (Y; Z) (respectively, by SUC� (Y; Z)).

A map f of a space Y into a space Z is called weakly continuous (respectively, weakly

#�continuous) at y 2 Y if for every open neighbourhood V of f(y) there exists an open

neighbourhood U of y such that f(U) � Cl(V ) (respectively, f(Int(Cl(U))) � Cl(V )).

The map f is weakly continuous (respectively, weakly #�continuous) on Y if it is weakly

continuous (respectively, weakly #�continuous) at each point of Y . (See for example [15],

[4] and [17]). In what follows by WC(Y; Z) (respectively, by W�(Y; Z)) we denote the set

of all weakly continuous (respectively, of all weakly #�continuous) maps of Y into Z. If � is

a topology on the setWC(Y; Z) (respectively, on the setW�(Y; Z)) then the corresponding

topological space is denoted by WC� (Y; Z) (respectively, by W�� (Y; Z)).

Obviously, by the above de�nitions the following implications hold:

super-continuity ) continuity ) #�continuity ) weakly #�continuity ) weakly con-

tinuity.

Let Y be a topological space. A point y 2 Y is in the #�closure of a subset A of the

space Y , y 2 Cl#(A), if each open subset V about y satis�es A\Cl(V ) 6= ;. A is #�closed

if Cl#(A) = A. If f : Y ! Z is weakly continuous and A � Z a #�closed subsset of Z,

then f�1(A) is closed in Y . (See [17] and [13]).

Let X be a space and F : X � Y ! Z be a #�continuous map. Then by Fx, where

x 2 X , we denote the #�continuous map of Y into Z, for which Fx(y) = F (x; y), for every

�
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y 2 Y . By bF we denote the map of X into the set �(Y; Z), for which bF (x) = Fx, for every

x 2 X .

Let X be a space and F : X � Y ! Z be a continuous map. then by Fx, where x 2 X ,

we denote the continuous map of Y into Z, for which Fx(y) = F (x; y), for every y 2 Y .

By bF we denote the map of X into the set C(Y; Z) (by C(Y; Z) we denote the set of all

continuous maps of Y into Z) for which bF (x) = Fx, for every x 2 X .

Let G be a map of the space X into the set �(Y; Z) or into the set C(Y; Z). By eG we

denote the map of the space X�Y into the space Z, for which eG(x; y) = G(x)(y), for every

(x; y) 2 X � Y .

A topology � on C(Y; Z) (respectively, on �(Y; Z)) is called splitting (respectively,

#�splitting) if for every space X , the continuity (respectively, the #�continuity) of a

map F : X � Y ! Z implies the continuity (respectively, the #�continuity) of the map
bF : X ! C� (Y; Z) (respectively, of the map bF : X ! �� (Y; Z)): (See [5], [1], [14] and [2]).

A topology � on C(Y; Z) (respectively, on �(Y; Z)) is called jointly continuous (re-

spectively, #�jointly continuous) if for every space X , the continuity (respectively, the

#�continuity) of a map G : X ! C� (Y; Z) (respectively, of a map G : X ! �� (Y; Z))

implies the continuity (respectively, the #�continuity) of the map eG : X � Y ! Z. (See

[5], [1] and [2]).

Let X be a set. A net in X is a map S : �! X of a directed set � into X . The net S

is also denoted by fs�; � 2 �g, where s� = S(�).

Let P(Y ) be the set of all subsets of a space Y . If � is a directed set, then by lim
�
(A�),

where A� � Y , we denote the upper limit of the net fA�; � 2 �g in P(Y ), that is, the set

of all points y of Y such that for every �0 2 � and for every open neighbourhood U of y

in Y there exists an element � 2 � for which � � �0 and A� \ U 6= ;. (For the notion of

upper limit and its applications see for example [1] and [10]).

A net fy� : � 2 �g in a space Y converges (respectively, #�converges) to y and write

y� ! y (respectively, y� !
#

y) if for each neighbourhood U of y there is some �0 2 � such

that � � �0 implies y� 2 U (respectively, y� 2 Cl(U)). Evidently any net which converges

to y #�converges to y. (See [11] and [2]).

A function f is continuous (respectively, #�continuous) at y 2 Y if and only if whenever

y� ! y (respectively, y� !
#

y) in Y , then f(y�) ! f(y) (respectively, f(y�) !
#

f(y)) in Z.

(See [11] and [2]).

A net ff�; � 2Mg in C(Y; Z) (respectively, in �(Y; Z)) continuously converges (respec-

tively, #�continuously converges) to f 2 �(Y; Z) if for any net fy� : � 2 �g in Y such

that y� ! y (respectively, y� !
#

y) the net ff�(�); (�; �) 2M � �g converges (respectively,

#�converges) to f(y) in Z, that is f�(y�)! f(y) (respectively, f�(y�)!
#

f(y)) in Z. (See

[7], [12], [1] and [2]).

A net ff�; � 2Mg in C(Y; Z) (respectively, in �(Y; Z)) continuously converges (respec-

tively, #�continuously converges) to f 2 C(Y; Z) (respectively, to f 2 �(Y; Z)) if for any

y 2 Y and any neighbourhood V of f(y) there is a �0 and an open neighbourhood U of y

such that f�(U) � V (respectively, f�(Cl(U)) � Cl(V )), for every � 2M , � � �0. (See [1]

and [2]).

By C� (respectively, C�
#
) we denote the class of all pairs (ff�; � 2 �g; f), where ff�; � 2

�g is a net in C(Y; Z) (respectively, in �(Y; Z)) which continuously converges (respectively,

#�continuously converges) to f 2 C(Y; Z) (respectively, to f 2 �(Y; Z)). If � is a topology

on C(Y; Z) (respectively, on �(Y; Z)) then by C(�) (respectively, by (C(�))#) we denote

the class of all pairs (ff�; � 2 �g; f), where ff�; � 2 �g is a net in C(Y; Z) (respectively,

in �(Y; Z)) which converges (respectively, #�converges) to f 2 C(Y; Z) (respectively, to
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f 2 �(Y; Z)) in the topology � .

The following criteria are given in [1] and [2]:

(1) A topology � on C(Y; Z) (respectively, on �(Y; Z)) is splitting (respectively, #�splitting)

if and only if C� � C(�) (respectively, C�
#
� (C(�))#).

(2) A topology � on C(Y; Z) (respectively, on �(Y; Z)) is jointly continuous (respectively,

#�jointly continuous) if and only if C(�) � C�. (respectively, (C(�))# � C
�

#
).

Throughout this paper the word space means "topological space".

2 Weakly #�continuous functions

1. DEFINITION. A net fy�; � 2 �g in a topological space Y weakly #�converges to y 2 Y

and write y� !
w�#

y if for every neighbourhood U of y there is some �0 2 � such that

y� 2 Int(Cl(U)), for every � 2 �, � � �0. Evidently any net in Y which converges to

y 2 Y weakly #�converges to y. Also any net which weakly #�converges to y #�converges

to y.

2. THEOREM. A map f of a space Y into a space Z is weakly #�continuous at y 2 Y

if and only if for every net fy�; � 2 �g in Y which weakly #�converges to y, that is y� !

w�#

y

we have that the net ff(y�); � 2 �g in Z #�converges to f(y), that is f(y�)!
#

f(y).

PROOF. Let us suppose that f is weakly #�continuous at y 2 Y and let fy�; � 2 �g

be a net in Y such that y� !
w�#

y. Then for every open neighbourhood V of f(y) in Z

there exists an open neighbourhood U of y in Y such that f(Int(Cl(U))) � Cl(V ). Since

y� !
w�#

y. There exists an element �0 2 � such that y� 2 Int(Cl(U)), for every � 2 �,

� � �0. Thus, f(y�) 2 Cl(V ), for every � � �0, � 2 � and therefore the net ff(y�); � 2 �g

in Z #�converges to f(y), that is f(y�)!
#

f(y).

Conversely, if the map f is not weakly #�continuous at y 2 Y , then for some open

neighbourhood V of f(y) we have:

f(Int(Cl(U))) 6� Cl(V );

for every open neighbourhood U of y in Y . Thus, for every open neighbourhood U of y

we can �nd yU 2 Int(Cl(U)) such that f(yU ) 62 Cl(V ). Let N (y) be the set of all open

neighbourhoods U of y in Y . The set N (y) with the relation of inverse inclusion (that is,

U1 � U2 if and only if U2 � U1) form a directed set. Clearly, the net fyU ; U 2 N (y)g

weakly #�converges to y in Y but the ff(yU); U 2 N (y)g does not #�converge to f(y) in

Z. Hence the map f is weakly #�continuous at y 2 Y .

3. DEFINITION. A net ff�; � 2Mg in W�(Y; Z) weakly #�continuously converges to

f 2 W�(Y; Z) if for every net fy�; � 2 �g in Y which weakly #�converges to y 2 Y we

have that the net ff�(y�); (�; �) 2 ��Mg #�converges to f(y) in Z.

4. THEOREM. A net ff�; � 2 Mg in W�(Y; Z) weakly #�continuously converges to

f 2 W�(Y; Z) if and only if for every y 2 Y and for every open neighbourhood V of f(y)

in Z there exist an element �0 2M and an open neighbourhood U of y in Y such that

f�(Int(Cl(U)))) � Cl(V );

for every � � �0, � 2M .

PROOF. Let y 2 Y and let V be an open neighbourhood of f(y) in Z such that for

every � 2 M and for every open neighbourhood U of y 2 Y there exists �0 � �, �0 2 M

such that

f�0(Int(Cl(U)))) 6� Cl(V ):
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Then for every open neighbourhood U of y in Y we can choose a point yU 2 Int(Cl(U))

such that f�0(yU ) 62 Cl(V ). Clearly, the net fyU ; U 2 N (y)g weakly #�converges to y but

the net ff�(yU ); (U; �) 2 N (y)�Mg does not #�converge to f(y) in Z.

Conversely, let fy�; � 2 �g be a net in W�(Y; Z) which weakly #�converges to y in Y

and let V be an arbitrary open neighbourhood of f(y) in Z. By assumption there exist an

open neighbourhood U of y in Y and an element �0 2M such that f�(Int(Cl(U))) � Cl(V ),

for every � � �0, � 2 M . Since the net fy�; � 2 �g weakly #�converges to y in Y . There

exists �0 2 � such that y� 2 Int(Cl(U)), for every � 2 �, � � �0. Let (�0; �0) 2 ��M .

Then for every (�; �) 2 ��M , (�; �) � (�0; �0) we have f�(y�) 2 f�(Int(Cl(U))) � Cl(V ).

Thus the net ff�(y�); (�; �) 2 ��Mg #�converges to f(y) in Z.

5. DEFINITION. Let P(Y ) be the set of all subsets of a space Y . If � is a directed set,

then by w � # � lim
�
(A�), where A� � Y , we denote the weakly #�upper limit of the net

fA�; � 2 �g in P(Y ), that is, the set of all points y of Y such that for every �0 2 � and for

every open neighbourhood U of y in Y there exists an element � 2 � for which � � �0 and

A� \ Int(Cl(U)) 6= ;.

6. THEOREM. If a net ff�; � 2 �g in W�(Y; Z) weakly #�continuously converges to

f 2W�(Y; Z), then

w � #� lim
�
(f�1
�

(K)) � f�1(K);

for every #�closed subset K of Z.

PROOF. Let ff�; � 2 �g be a net inW�(Y; Z), which weakly #�continuously converges

to f and let K be an arbitrary #�closed subset of Z. Let y 2 w � # � lim
�
(f�1
�

(K)) and

let W be an arbitrary open neighbourhood of f(y) in Z. Since the net ff�; � 2 �g

weakly #�continuously converges to f , there exist an open neighbourhood V of y in Y

and an element �0 2 � such that f�(Int(Cl(V ))) � Cl(W ), for every � 2 �, � � �0.

(See Theorem 4). On the other hand, there exists an element � 2 �, � � �0 such that

Int(Cl(V ))\ f�1
�

(K) 6= ;. Hence, f�(Int(Cl(V )))\K � Cl(W )\K 6= ;. This means that

f(y) 2 Cl#(K) = K. Thus, y 2 f�1(K).

7. THEOREM. Let ff�; � 2 �g be a net in W�(Y; Z) such that

(1) w � #� lim
�
(f�1
�

(K)) � f�1(K);

for every closed subset K of Z. Then the net ff�; � 2 �g weakly #�continuously converges

to f 2W�(Y; Z).

PROOF. Let ff�; � 2 �g be a net in W�(Y; Z) and f 2 W�(Y; Z) such that relation

(1) holds for every closed subset K of Z. We prove that the net ff�; � 2 �g weakly

#�continuously converges to f . Let y 2 Y and W be an open neighbourhood of f(y) in

Z. Since y 62 f�1(K) , where K = Z nW we have y 62 w � # � lim
�
(f�1
�

(K)). This means

that there exists an element �0 2 � and an open neighbourhood V of y in Y such that

f�1
�

(K) \ Int(Cl(V )) = ;, for every � 2 �, � � �0. Then we have Int(Cl(V )) � Y n

f�1
�

(K) = f�1
�

(Z nK) � f�1
�

(W ) � f�1
�

(Cl(W )) and therefore f�(Int(Cl(V ))) � Cl(W ),

for every � 2 �, � � �0, that is the net ff�; � 2 �g weakly #�continuously converges to

f .

8. THEOREM. The following propositions are true:

(1) If ff�; � 2 �g is a net in W�(Y; Z) such that f� = f , for every � 2 �, then the net

ff�; � 2 �g weakly #�continuously converges to f 2W�(Y; Z).
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(2) If ff�; � 2 �g is a net in W�(Y; Z) which weakly #�continuously converges to

f 2 W�(Y; Z) and fg�; � 2 Mg is a subnet of ff�; � 2 �g, then the net fg�; � 2 Mg

weakly #�continuously converges to f .

PROOF. We shall verify only (2). Let y 2 Y and V be an open neighbourhood of f(y)

in Z. Then, there is �0 2 � and an open neighbourhood U of y such that f�(Int(Cl(U))) �

Cl(V ), for every � 2 �, � � �0.

Since fg�; � 2Mg is a subnet of ff�; � 2 �g, there is a map N :M ! � such that:

(i) g� = fN(�) and

(ii) for the element �0 2 � there is �0 2M such that if � � �0, � 2M , then N(�) � �0.

By the above we have:

g�(Int(Cl(U))) = fN(�)(Int(Cl(U))) � Cl(V );

for every � � �0, � 2M .

Thus, the net fg�; � 2Mg weakly #�continuously converges to f .

3 Weakly continuous functions

1. THEOREM. A map f of a space Y into a space Z is weakly continuous at y 2 Y if and

only if for every net fy�; � 2 �g in Y which converges to y, that is y� ! y we have that

the net ff(y�); � 2 �g in Z #�converges to f(y), that is f(y�)!
#

f(y).

The proof of this theorem is similar to the proof of Theorem 2.I.

2. DEFINITION. A net ff�; � 2 Mg in WC(Y; Z) weakly continuously converges to

f 2 WC(Y; Z) if for every net fy�; � 2 �g in Y which converges to y 2 Y we have that

the net ff�(y�); (�; �) 2 ��Mg #�converges to f(y) in Z.

3. THEOREM. A net ff�; � 2 Mg in WC(Y; Z) weakly continuously converges to

f 2 WC(Y; Z) if and only if for every y 2 Y and for every open neighbourhood V of f(y)

in Z there exist an element �0 2M and an open neighbourhood U of y in Y such that

f�(U) � Cl(V );

for every � � �0, � 2M .

The proof of this theorem is similar to the proof of Theorem 4.I.

4. THEOREM. If a net ff�; � 2 �g in WC(Y; Z) weakly continuously converges to

f 2 WC(Y; Z), then

lim
�
(f�1
�

(K)) � f�1(K);

for every #�closed subset K of Z.

The proof of this theorem is similar to the proof of Theorem 6.I.

5. THEOREM. Let ff�; � 2 �g be a net in WC(Y; Z) such that

(1) lim
�
(f�1
�

(K)) � f�1(K);

for every closed subset K of Z. Then the net ff�; � 2 �g weakly continuously converges to

f 2 WC(Y; Z).

The proof of this theorem is similar to the proof of Theorem 7.I.

6. THEOREM. The following propositions are true:
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(1) If ff�; � 2 �g is a net in WC(Y; Z) such that f� = f , for every � 2 �, then the

ff�; � 2 �g weakly continuously converges to f 2 WC(Y; Z).

(2) If ff�; � 2 �g is a net in WC(Y; Z) which weakly continuously converges to f 2

WC(Y; Z) and fg�; � 2 Mg is a subnet of ff�; � 2 �g, then the net fg�; � 2 Mg weakly

continuously converges to f .

The proof of this theorem is similar to the proof of Theorem 8.I.

4 Super continuous functions

1. THEOREM. A map f of a space Y into a space Z is super-continuous at y 2 Y if and

only if for every net fy�; � 2 �g in Y which weakly #�converges to y, that is y� !

w�#

y we

have that the net ff(y�); � 2 �g in Z converges to f(y), that is f(y�)! f(y).

The proof of this theorem is similar to the proof of Theorem 2.I.

2. DEFINITION. A net ff�; � 2 Mg in SUC(Y; Z) super continuously converges to

f 2 SUC(Y; Z) if for every net fy�; � 2 �g in Y which weakly #�converges to y 2 Y we

have that the net ff�(y�); (�; �) 2 ��Mg converges to f(y) in Z.

3. THEOREM. A net ff�; � 2 Mg in SUC(Y; Z) super continuously converges to

f 2 SUC(Y; Z) if and only if for every y 2 Y and for every open neighbourhood V of f(y)

in Z there exist an element �0 2M and an open neighbourhood U of y in Y such that

f�(Int(Cl(U)))) � V;

for every � � �0, � 2M .

The proof of this theorem is similar to the proof of theorem 4.I.

4. THEOREM. A net ff�; � 2 �g in SUC(Y; Z) super continuously converges to f 2

SUC(Y; Z) if and only if

w � #� lim
�
(f�1
�

(K)) � f�1(K);

for every closed subset K of Z. The proof of this theorem is similar to the proof of theorems

6.I and 7.I.

5. THEOREM. The following propositions are true:

(1) If ff�; � 2 �g is a net in SUC(Y; Z) such that f� = f , for every � 2 �, then the

ff�; � 2 �g super continuously converges to f 2 SUC(Y; Z).

(2) If ff�; � 2 �g is a net in SUC(Y; Z) which almost strongly #�continuously converges

to f 2 AS�(Y; Z) and fg�; � 2 Mg is a subnet of ff�; � 2 �g, then the net fg�; � 2 Mg

super continuously converges to f .

The proof of this theorem is similar to the proof of Theorem 8.I.

5 Function spaces

1. NOTATIONS. Let X be a space and F : X � Y ! Z be a weakly continuous map

(respectively, a weakly #�continuous map). By Fx, where x 2 X , we denote the weakly

continuous map (respectively, the weakly #�continuous map) of Y into Z, for which Fx(y) =

F (x; y), for every y 2 Y . By bF we denote the map of X into the setWC(Y; Z) (respectively,

into the set W�(Y; Z)) for which bF (x) = Fx, for every x 2 X .
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Let X be a space and F : X�Y ! Z be a super-continuous map. By Fx, where x 2 X ,

we denote the super-continuous map of Y into Z, for which Fx(y) = F (x; y), for every

y 2 Y . By bF we denote the map of X into the set SUC(Y; Z) for which bF (x) = Fx, for

every x 2 X .

Let G be a map of the space X into the set WC(Y; Z) or into the set W�(Y; Z). By eG
we denote the map of the space X � Y into the space Z, for which eG(x; y) = G(x)(y), for

every (x; y) 2 X � Y .

Let G be a map of the space X into the set SUC(Y; Z). By eG we denote the map of

the space X � Y into the space Z, for which eG(x; y) = G(x)(y), for every (x; y) 2 X � Y .

2. DEFINITIONS. A topology � on WC(Y; Z) (respectively, on W�(Y; Z)) is called

weakly splitting (respectively, weakly #�splitting) if for every X , the weak continuity (re-

spectively, the weak #�continuity ) of a map F : X � Y ! Z implies the weak continuity

(respectively, the weak #�continuity) of the map bF : X ! WC� (Y; Z) (respectively, of the

map bF : X !W�� (Y; Z)).

A topology � on SUC(Y; Z) is called super splitting if for every X , the super-continuity

of a map F : X � Y ! Z implies the super-continuity of the map bF : X ! SUC� (Y; Z).

If in the above it is assumed that the space X belongs to a given family A of spaces, then

the topology � is called weakly A�splitting, weakly A�#�splitting and super A�splitting, re-

spectively. If A = fXg, then instead of 00super A�splitting00 we write 00super X�splitting00.

Obviously, if A is the family of all spaces, then the notions weakly A�splitting, weakly

A� #�splitting and super A�splitting coincide with the notions weakly splitting, weakly

#�splitting and super splitting, respectively.

A topology � on WC(Y; Z) (respectively, on W�(Y; Z)) is called weakly jointly con-

tinuous (respectively, weakly #�jointly continuous) if for every X , the weak continuity

(respectively, the weak #�continuity) of a map G : X !WC� (Y; Z) (respectively, of a map

G : X !W�� (Y; Z)) implies the weak continuity (respectively, the weak #�continuity) of

the map eG : X � Y ! Z.

A topology � on SUC(Y; Z)) is called super jointly continuous if for every space X , the

super-continuity of a map G : X ! SUC� (Y; Z) implies the super-continuity of the map
eG : X � Y ! Z.

If in the above it is assumed that the space X belongs to a given family A of spaces, then

the topology � is called weakly A�jointly continuous, weakly A�#�jointly continuous and

super A�jointly continuous, respectively. If A = fXg, then instead of 00super A�jointly

continuous00 we write 00super X�jointly continuous00.

Obviously, if A is the family of all spaces, then the notions weakly A�jointly continuous,

weakly A�#�jointly continuous and super A�jointly continuous coincide with the notions

weakly jointly continuous, weakly #�jointly continuous and super jointly continuous, re-

spectively.

2.1. REMARK. Clearly, the above notions of weakly splitting and weakly jointly con-

tinuous does not coincide with the notions of weakly splitting and weakly jointly continuous

which were de�ned in [18].

3. THEOREM. The following propositions are true:

(1) If a topology � on W�(Y; Z) is weakly #�jointly continuous, then the evaluation

map e :W�� (Y; Z)� Y ! Z de�ned by e(f; y) = f(y) is weakly #�continuous.

(2) If a topology � on WC(Y; Z) is weakly jointly continuous, then the evaluation map

e :WC� (Y; Z)� Y ! Z de�ned by e(f; y) = f(y) is weakly continuous.
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PROOF. (1) Clearly, the identity map G � 1 : W�� (Y; Z) ! W�� (Y; Z) is weakly

#�continuous. Since the topology � is weakly #�jointly continuous. The map eG � e :

W�� (Y; Z)� Y ! Z is weakly #�continuous.

Similarly, we can prove the Proposition (2).

4. THEOREM. The following propositions are true:

(1) If the evaluation map map e : W�� (Y; Z) � X ! Z is #�continuous, then the

topology � is weakly #�jointly continuous.

(2) If the evaluation map map e : WC� (Y; Z) � X ! Z is #�continuous, then the

topology � is weakly jointly continuous.

PROOF. (1) Let X be a space, G : X ! W�� (Y; Z) be a weakly #�continuous map

and 1 : Y ! Y be the identity map. Clearly, the map G � 1 : X � Y ! W�� (Y; Z) � Y

is weakly #�continuous. Also the map e : W�� (Y; Z) � Y ! Z is #�continuous. It is

not diÆcult prove that the map e Æ (G � 1) : X � Y ! Z is weakly #�continuous and
eG = e Æ (G� 1).

Similarly we can prove the Proposition (2).

5. THEOREM. On the set SUC(Y; Z) there exists the greatest super splitting topology.

PROOF. Let T be the set of all super splitting topologies on the set SUC(Y; Z). Let

� = _T . We prove that � is the greatest super splitting topology. It is suÆcient to prove

that � is an super splitting topology. Let F : X � Y ! Z be a super-continuous map. We

prove that the map bF : X ! SUC� (Y; Z) is super-continuous. Let x 2 X and let U be an

open neighbourhood of bF (x) in SUC� (Y; Z). Since � = _T we have that U 2 � 0, � 0 2 T .

Also, since bF : X ! SUC� 0(Y; Z) is super continuous there exists an open neighbourhood V

of X such that bF (Int(Cl(V ))) � U . Thus the map bF is super continuous and the topology

� is super splitting.

5.1. COROLLARY. Let A be an arbitrary family of spaces. Then on the set SUC(Y; Z)

there exists the greatest super A� #�splitting topology, which is denoted by �s(A).

6. THEOREM. The following propositions are true:

(1) Let Ai, i 2 I , be a family of spaces and let A =
S
fAi : i 2 Ig. Then, �s(A) =T

f�s(Ai) : i 2 Ig.

(2) Let Ai, i 2 I , be a family of spaces and let A =
T
fAi : i 2 Ig. If A 6= ;, then

_f�s(Ai) : i 2 Ig � �s(A).

The proof of this theorem is clear.

7. NOTATIONS. By C�
w
(respectively, C�

w�#
) we denote the class of all pairs (ff�; � 2

�g; f), where ff�; � 2 �g is a net in WC(Y; Z) (respectively, in W�(Y; Z)) which weakly

continuously converges (respectively, weakly #�continuously converges) to f 2 WC(Y; Z)

(respectively, to f 2W�(Y; Z)). If � is a topology onWC(Y; Z) (respectively, onW�(Y; Z))

then by (C(�))w (respectively, by (C(�))w�#) we denote the class of all pairs (ff�; � 2 �g; f),

where ff�; � 2 �g is a net inWC(Y; Z) (respectively, inW�(Y; Z)) which #�converges (re-

spectively, #�converges) to f 2WC(Y; Z) (respectively, to f 2 W�(Y; Z)) in the topology

� .

By C�
s�c

we denote the class of all pairs (ff�; � 2 �g; f), where ff�; � 2 �g is a net

in SUC(Y; Z) which super continuously converges to f 2 SUC(Y; Z). If � is a topology

on SUC(Y; Z) then by (C(�))s�c we denote the class of all pairs (ff�; � 2 �g; f), where

ff�; � 2 �g is a net in SUC(Y; Z) which converges to f 2 SUC(Y; Z).
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8. THEOREM. A topology � on W�(Y; Z) is weakly #�splitting if and only if

C
�

w�#
� (C(�))w�#:

PROOF. Let � be an weakly #�splitting topology on W�(Y; Z) and let (ff�; � 2

�g; f) 2 C�
w�#

. We prove that the net ff�; � 2 �g #�converges to f in the topology � .

Indeed, we consider the set X � �[f1g, where 1 is a symbol such that 1 � �, for every

� 2 �. Then we topologize X = � [ f1g de�ning any singleton f�g, � 2 � to be open

and neighbourhoods of 1 the sets f� 2 X : � � �0 for some �0 2 �g (See [1] and [2]). Let

F : X�Y ! Z be a map, for which F (�; y) = f�(y), � 6=1 and F (1; y) = f(y), for every

y 2 Y . The map F is weakly #�continuous. Obviously bF (�) = f� and bF (1) = f . Since the

topology � is weakly #�splitting, the map bF : X !W�� (Y; Z) is weakly #�continuous.

By the weakly #�continuity of bF we have that for every open neighbourhood U of f in

W�� (Y; Z), there exists an open neighbourhood V of 1 in X such that

bF (Int(Cl(V ))) � Cl(U):

By the de�nition of the topology on X , there exists an element �0 2 � such that

� 2 V � Int(Cl(V )), for every � 2 �, � � �0. Hence bF (�) = f� 2 Cl(U), for every

� 2 �, � � �0, that is the net ff�; � 2 �g #�converges to f in the topology � . Thus

C
�

w�#
� (C(�))w�#:

Conversely, let � be a topology on W�(Y; Z) such that C�
w�#

� (C(�))w�#: We prove

that the topology � is weakly #�splitting.

Let X be an arbitrary space and let F : X � Y ! Z be a weakly #�continuous

map. Consider the map bF : X ! W�� (Y; Z). We must prove that the map bF is weakly

#�continuous. Let fx�; � 2 �g be a net in X which weakly #�converges to x. We prove

that the net f bF (x�); � 2 �g #�converges to bF (x), that is bF (x�)!# bF (x). Let fy�; � 2Mg

be a net in Y which weakly #�converges to y in Y . Since the map F is weakly #�continuous

and the net f(x�; y�); (�; �) 2 � �Mg of X � Y weakly #�converges to (x; y) in X � Y

we have F (x�; y�)!
#

F (x; y). This means that Fx�(y�)!
#

Fx(y). Thus the net f bF (x�); � 2
�g weakly #�continuously converges to bF (x). By assumption the net f bF (x�); � 2 �g

#�converges to bF (x). Thus the map bF is weakly #�continuous and the topology � weakly

#�splitting.

9. THEOREM. A topology � on WC(Y; Z) is weakly splitting if and only if

C
�

w
� (C(�))w :

The proof of this theorem is similar to the proof of Theorem 8.

10. THEOREM. A topology � on SUC(Y; Z) is super splitting if and only if

C
�

s�c
� (C(�))s�c:

The proof of this theorem is similar to the proof of Theorem 8.

11. THEOREM. A topology � on W�(Y; Z) is weakly #�jointly continuous if and only

if

(C(�))w�# � C
�

w�#
:
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PROOF. Let � be a weakly #�jointly continuous map, X be the space which was

de�ned in the proof of Theorem 8 and (ff�; � 2 �g; f) 2 (C(�))w�#. Clearly, the map

G : X ! W�� (Y; Z), where G(�) = f� and G(1) = f is weakly #�continuous. Thus, the

map eG : X � Y ! Z is weakly #�continuous.

Now, we prove that (ff�; � 2 �g; f) 2 C�
w�#

. It is suÆcient to prove that if fy�; � 2Mg

is a net in Y which weakly #�convergence to y 2 Y , then the net ff�(y�); (�; �) 2 ��Mg

#�converges to f(y). The net f�; � 2 �g in X weakly #�converges to 1. Hence, the

net f(�; y�); (�; �) 2 � �Mg weakly #�converges to (1; y). Since the map eG is weakly

#�continuous the met f eG(�; y�) = G(�)(y�) = f�(y�); (�; �) 2 � �Mg #�converges to
eG(1; y) = f(y).

Conversely, let � be a topology on W�(Y; Z) such that

(C(�))w�# � C
�

w�#
:

We prove that the topology � is weakly #�jointly continuous. Let X be an arbitrary space

and let G : X ! W�� (Y; Z) be a weakly #�continuous map. We prove that the map
eG : X � Y ! Z is weakly #�continuous. Let f(x�; y�); (�; �) 2 ��Mg be a net in X � Y

which weakly #�converges to (x; y). We prove that the net f eG(x�; y�); (�; �) 2 ��Mg in

Z #�converges to eG(x; y).
Since the net fx�; � 2 �g weakly #�converges to x in X and the map G is weakly

#�continuous. The net fG(x�); � 2 �g #�converges to G(x). Thus by assumption the net

fG(x�); � 2 �g weakly #�continuously converges to G(x). Now, since the net fy�; � 2Mg

weakly #�converges to y the net fG(x�)(y�) = eG(x�; y�); (�; �) 2 ��Mg #�converges to

G(x)(y) = eG(x; y). Hence the topology � is weakly #�jointly continuous.

12. THEOREM. A topology � on WC(Y; Z) is weakly jointly continuous if and only if

(C(�))w � C
�

w
:

The proof of this theorem is similar to the proof of Theorem 11.

13. THEOREM. A topology � on SUC(Y; Z) is super jointly continuous if and only if

(C(�))s�c � C
�

s�c
:

The proof of this theorem is similar to the proof of Theorem 11.

14. COROLLARY. A topology � on W�(Y; Z) is simultaneously, weakly #�splitting

and weakly #�jointly continuous if and only if

(C(�))w�# = C
�

w�#
:

15. COROLLARY. A topology � on WC(Y; Z) is simultaneously, weakly splitting and

weakly jointly continuous if and only if

(C(�))w = C
�

w
:

16. COROLLARY. A topology � on SUC(Y; Z) is simultaneously, super splitting and

super jointly continuous if and only if

(C(�))s�c = C
�

s�c
:
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17. THE WEAKLY A�EXPONENTIAL FUNCTION. Let A be an arbitrary family

of spaces, let X 2 A and let Y . Z be topological spaces. then the weakly A�exponential

function

ew�A
XY Z

:WC(X � Y; Z)!WC(X;WC� (Y; Z))

is de�ned by ew�A
XY Z

(F ) = bF , for every F 2WC(X � Y; Z).

Clearly we have the following propositions:

(1) If � is a weakly A�splitting topology on WC(Y; Z) then the weakly A�exponential

function ew�A
XY Z

is well de�ned.

(2) If WC(X;WC� (Y; Z)) � ew�A
XY Z

(WC(X � Y; Z)), then the topology � on WC(Y; Z)

is weakly A�jointly continuous.

(3) If ew�A
XY Z

(WC(X � Y; Z)) � WC(X;WC� (Y; Z)), then the topology � is weakly

A�splitting.

18. THEWEAKLY A�#�EXPONENTIAL FUNCTION. Let A be an arbitrary family

of spaces, let X 2 A and let Y . Z be topological spaces. Then the weakly A�#�exponential

function

ew�A�#
XY Z

:W�(X � Y; Z)!W�(X;W��(Y; Z))

is de�ned by ew�A�#
XY Z

(F ) = bF , for every F 2 W�(X � Y; Z).

Clearly we have the following propositions:

(1) If � is a weakly A � #�splitting topology on W�(Y; Z) then the weakly A �

#�exponential function ew�A�#
XYZ

is well de�ned.

(2) IfW�(X;W��(Y; Z)) � ew�A�#
XY Z

(W�(X�Y; Z)), then the topology � onW�(Y; Z)

is weakly A� #�jointly continuous.

(3) If ew�A�#
XY Z

(W�(X � Y; Z)) � W�(X;W��(Y; Z)), then the topology � is weakly

A� #�splitting.

19. THE SUPER A�EXPONENTIAL FUNCTION. Let A be an arbitrary family of

spaces, let X 2 A and let Y . Z be topological spaces. Then the super A�exponential

function

es�A
XY Z

: SUC(X � Y; Z)! SUC(X;SUC� (Y; Z))

is de�ned by es�A
XY Z

(F ) = bF , for every F 2 SUC(X � Y; Z).

Clearly we have the following propositions:

(1) If � is a super A�splitting topology on SUC(Y; Z) then the super A�exponential

function es�A
XY Z

is well de�ned.

(2) If SUC(X;SUC� (Y; Z)) � es�A
XY Z

(SUC(X�Y; Z)), then the topology � on SUC(Y; Z)

is super A�jointly continuous.

(3) If es�A
XY Z

(SUC(X � Y; Z)) � SUC(X;SUC� (Y; Z)), then the topology � is super

A�splitting.

20. NOTATIONS AND DEFINITIONS. Let 
 be a family of directed sets. Then for

every � 2 
 we consider the set Sp(�) � � [ f1g, where 1 is a symbol such that 1 � �,

for every � 2 �. Then we topologize Sp(�) = � [ f1g de�ning any singleton f�g, � 2 �

to be open and neighbourhoods of 1 the sets f� 2 Sp(�) : � � �0 for some �0 2 �g

(See [1] and [2]). By Sp(
) we denote the family of all spaces Sp(�), where � 2 
. In-

stead of 00weakly Sp(
)�splitting00, 00weakly Sp(
)�#�splitting00, 00super Sp(
)�splitting00,
00weakly Sp(
)�jointly continuous00, 00weakly Sp(
) � #�jointly continuous00 and 00super

Sp(
)�jointly continuous00, we write 00weakly 
�splitting00, 00weakly 
 � #�splitting00,
00super 
�splitting00, 00weakly 
�jointly continuous00, 00weakly 
 � #�jointly continuous00

and 00super 
�jointly continuous00, respectively.
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By C�
w�
, C

�

w�#�
, C
�

s�c�
, (C(�))w�
, (C(�))w�#�
 and (C(�))s�c�
, we denote the

subclass of all elements (ff�; � 2 �g; f) of C�
w
, C�

w�#
, C�

s�c
, (C(�))w , (C(�))w�# and

(C(�))s�c, respectively for which � 2 
.

21. THEOREM. the following propositions are true:

(1) A topology � on W�(Y; Z) is weakly 
� #�splitting if and only if

C
�

w�#�
 � (C(�))w�#�
:

(2) A topology � on W�(Y; Z) is weakly 
� #�jointly continuous if and only if

(C(�))w�#�
 � C
�

w�#�
:

(3) A topology � on W�(Y; Z) is simultaneously, weakly 
 � #�splitting and weakly


� #�jointly continuous if and only if

(C(�))w�#�
 = C
�

w�#�
:

The proof of this theorem is similar of the proof of Theorems 8 and 11 and Corollary

14.

Similarly, we have the following two theorems:

22. THEOREM. the following propositions are true:

(1) A topology � on WC(Y; Z) is weakly 
�splitting if and only if

C
�

w�
 � (C(�))w�
:

(2) A topology � on WC(Y; Z) is weakly 
�jointly continuous if and only if

(C(�))w�
 � C
�

w�
:

(3) A topology � onWC(Y; Z) is simultaneously, weakly 
�splitting and weakly 
�jointly

continuous if and only if

(C(�))w�
 = C
�

w�
:

23. THEOREM. the following propositions are true:

(1) A topology � on SUC(Y; Z) is super 
�splitting if and only if

C
�

s�c�
 � (C(�))s�c�
:

(2) A topology � on SUC(Y; Z) is super 
�jointly continuous if and only if

(C(�))s�c�
 � C
�

s�c�
:

(3) A topology � on SUC(Y; Z) is simultaneously, super 
�splitting and super 
�jointly

continuous if and only if

(C(�))s�c�
 = C
�

s�c�
:

24. THEOREM. The following propositions are true:

(1) A topology � on W�(Y; Z) is weakly #�splitting if and only if is weakly A �

#�splitting, where A is the family of all spaces having exactly one non-isolated point.

(2) A topology � on W�(Y; Z) is weakly #�jointly continuous if and only if is weakly

A�#�jointly continuous, where A is the family of all spaces having exactly one non-isolated

point.
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PROOF. It is suÆcient to prove that if � is weakly A � #�splitting, where A is the

family of all spaces having exactly one non-isolated point, then the topology � is weakly

#�splitting.

Let (ff�; � 2 �g; f) 2 C�
w�#

. We must prove that the net ff�; � 2 �g #�converges to

the element f in the topology � .

Let X = � [ f1g, where 1 is a symbol such that 1 � �, for every � 2 �. Then we

topologize X = �[ f1g de�ning any singleton f�g, � 2 � to be open and neighbourhoods

of 1 the sets f� 2 X : � � �0 for some �0 2 �g (See [1] and [2]). Clearly the element 1

is the unique non-isolated point of the space X and X 2 A.

We consider the map F : X � Y ! Z setting F (�; y) = f�(y), � 6= 1 and F (1; y) =

f(y). Obviously the map F is weakly #�continuous. Now we prove that ff�; � 2 �g

#�converges to f in the topology � .

Indeed, let U 2 � be an open neighbourhood of f . By assumption the topology � is

weakly A � #�splitting. Hence, the map bF : X ! W�� (Y; Z) is weakly #�continuous.

Also, we have bF (1) = f and bF (�) = f�, � 6=1. Thus, there exists an open neighbourhood

V of 1 such that
bF (Int(Cl(V ))) � Cl(U):

Since the set V is an open neighbourhood of 1 in X , there exists an element �0 2 � such

that � 2 V � Int(Cl(V )), for every � � �0, � 2 �.

Hence, bF (�) = f� 2 Cl(U), for every � � �0, � 2 �. Thus, the net f bF (�) = f�; � 2 �g

#�converges to f in the topology � and the topology � is weakly #�splitting.

Similarly, we can prove the proposition (2).

Also, similarly, we can prove the following two theorems:

25. THEOREM. The following propositions are true:

(1) A topology � on WC(Y; Z) is weakly splitting if and only if is weakly A�splitting,

where A is the family of all spaces having exactly one non-isolated point.

(2) A topology � on WC(Y; Z) is weakly jointly continuous if and only if is weakly

A�jointly continuous, where A is the family of all spaces having exactly one non-isolated

point.

26. THEOREM. The following propositions are true:

(1) A topology � on SUC(Y; Z) is super splitting if and only if is super A�splitting,

where A is the family of all spaces having exactly one non-isolated point.

(2) A topology � on SUC(Y; Z) is super jointly continuous if and only if is super

A�jointly continuous, where A is the family of all spaces having exactly one non-isolated

point.
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