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Abstract. Let f(x) = x5+ax3+bx2+cx+d 2 Z[x] have Galois group Z=5Z. The set of

primes q for which f(x) � (x+r)5 (mod q) for some r 2 Z is determined. The algorithm

of Kobayashi and Nakagawa for solving the quintic equation x5+ax3+bx2+cx+d = 0

is discussed in relation to this determination.

1. Introduction. Let f(x) = x5+a4x
4+a3x

3+a2x
2+a1x+a0 2 Z[x] be irreducible. Let

Gal(f) denote the Galois group of f(x) over Q: The quintic equation f(x) = 0 is solvable by

means of radicals if and only if Gal(f) is a solvable group. Dummit [1], and independently,

Kobayashi and Nakagawa [2] have shown how to determine the roots of f(x) = 0 explicitly

when Gal(f) is solvable. It is known [1, p. 387] that Gal(f) is a solvable group if and only

if Gal(f) ' F20 (the Frobenius group of order 20), D10 (the dihedral group of order 10) or

Z5 (the cyclic group of order 5).

In this note we will only be concerned with those quintic polynomials f for which

Gal(f) ' Z5: For such a quintic f; Kobayashi and Nakagawa [2, Theorem 1] used the

existence of a special prime q � 1 (mod 5) such that f(x) � (x + r)5 (mod q) for some

r 2 Z to obtain the explicit solution of f(x) = 0: It is the purpose of this note to describe

explicitly the set S(f) of primes q for which f(x) � (x+ r)5 (mod q) for some r 2 Z; that
is, we determine the set

(1) S(f) =
�
q (prime)

�� f(x) � (x+ r)5 (mod q) for some r 2 Z
	
:

Before giving our determination of the set S(f); it is convenient to introduce some notation.

We let � = �1; �2; �3; �4; �5 2 C be the roots of f(x): We set K = Q(�) so that K is a

cyclic quintic �eld. If there exists a prime p such that

p j a4; p2 j a3; p3 j a2; p4 j a1; p5 j a0

then �=p is a root of

x5 + (a4=p)x
4 + (a3=p

2)x3 + (a2=p
3)x2 + (a1=p

4)x+ (a0=p
5) 2 Z[x]

and Q(�=p) = K. Thus we may make the following simplifying assumption:

m j a4; m2
j a3; m3

j a2; m4
j a1; m5

j a0 =) jmj = 1:

We let f(K) denote the conductor of K so that f(K) is the smallest positive integer m such

thatK � Q(e2�i=m ). SinceGal(f) is abelian the existence of such an integerm is guaranteed

by the Kronecker-Weber theorem [5, p. 421]. It is well-known that the discriminant of K,

denoted by d(K), is related to the conductor of K by d(K) = f(K)4 as Gal(f) ' Z5, see

for example [3, p. 831]. We denote the set of rational primes which ramify in K by C(K),

that is,

(2) C(K) = fq (prime) : q j f(K)g :
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We prove

Theorem. Let

(3) f(x) = x5 + ax3 + bx2 + cx+ d

be an irreducible polynomial in Z[x] satisfying

(4) m2
j a; m3

j b; m4
j c; m5

j d =) jmj = 1

and

(5) Gal(f) ' Z5:

Let � 2 C be a root of f(x). Set K = Q (�). Then

(6) S(f) =

8>>>><
>>>>:

C(K)[f5g ; if 520 j disc(f);
5 j a; 5 j b; 5 j c; 5 j d;
and 53 j a; 54 j b; 54 j c; 54 k d

does not hold.

C(K); otherwise.

Our Theorem shows that the statement in [2, p. 884]: \Further by virtue of normal basis

theory, we can �nd a prime number q = 5t+ 1 such that f(x) � (x + r)(x + r) � � � (x + r)
(mod q); where r is some natural number." is not quite correct as it stands. Example 1

illustrates this.

Example 1. Let

f(x) = x5 � 25x3 + 50x2 � 25:

Then

Gal(f) ' Z5; [MAPLE]

disc(f) = 51272; [MAPLE]

d(K) = 390625 = 58; [PARI]

f(K) = 52;

C(K) = f5g ;

and, by the Theorem, we have

S(f) = f5g

so there does not exist a prime q � 1 (mod 5) in S(f).

The assertion Q(�) � Q(!q ) in [2 , p. 884] holds for q = f(K) but q may not be a

prime. We illustrate this in Example 2.

Example 2. Let

f(x) = x5 � 88660x3 + 16437905x2� 1133736340x+ 27615008971:

Then

Gal(f) ' Z5; [MAPLE]

disc(f) = 5201141323144312; [MAPLE]

d(K) = 13521270961 = 114314; [PARI]

f(K) = 11 � 31;
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so

Q(�) � Q(!11�31 )

but

Q(�) * Q(!11 ); Q(�) * Q(!31 ):

We note that the algorithm of Kobayashi and Nakagawa is valid if their use of the prime

q is replaced by the conductor f(K) [2 , p. 884].

Our Theorem shows that if f(x) contains no x4 term then the set S(f) consists of the
prime divisors of the conductor f(K) together with the prime 5 in certain cases. However,

if f(x) has a nonzero coeÆcient of the x4 term then S(f) may contain primes not dividing

the conductor and in fact we can construct f(x) so that S(f) contains an arbitrary number

of such primes. We illustrate this in Example 3.

Example 3. Let

f(x) = x5 + x4 � 12x3 � 21x2 + x+ 5:

Here

Gal(f) ' Z5; [MAPLE]

disc(f) = 52314; [MAPLE]

d(K) = 923521 = 314; [PARI]

f(K) = 31;

C(K) = f31g :

By factoring f(x) modulo each prime dividing disc(f), we �nd that

S(K) = f31g :

Let p1; p2; : : : ; pN denote N distinct primes di�erent from 5 and 31. Let r 2 Z. Set

p = p1 � � � pN

and

fp(x) = p5f((x+ r)=p) = x5 + a4x
4 + a3x

3 + a2x
2 + a1x+ a0;

where

a4 = 5r + p;

a3 = 10r2 + 4pr � 12p2;

a2 = 10r3 + 6pr2 � 36p2r � 21p3;

a1 = 5r4 + 4pr3 � 36p2r2 � 42p3r + p4;

a0 = r5 + pr4 � 12p2r3 � 21p3r2 + p4r + 5p5:

Since a0 is a quintic polynomial in r, which is primitive, has no �xed divisors, and has

nonzero discriminant, by a theorem of Nagel [4] we can choose in�nitely many r 2 Z so

that a0 is �fth power free. Hence fp(x) satis�es the simplifying assumption (4). Also

Gal(fp) = Gal(f) ' Z5:
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Moreover, for i = 1; 2; : : : ; N we have

fp(x) � x5 + 5rx4 + 10r2x3 + 10r3x2 + 5r4x+ r5 � (x+ r)5 (mod pi);

so that

pi 2 S(fp); i = 1; 2; : : : ; N:

Example 3 shows that the algorithm of Kobayashi and Nakagawa should only be applied

to quintic polynomials with no x4 term.

Our Theorem is proved in Section 5 after some preliminary results are proved in Sections

2, 3 and 4. From this point on we assume the notation of the Theorem.

2. A necesssary and suÆcient condition for a prime q 6= 5 to belong to S(f).

With the notation of the theorem we prove the following result.

Proposition 2.1. Let q be a prime with q 6= 5: Then

q 2 S(f) , q 2 C(K):

Proof. Let q 6= 5 be a prime in S(f). Suppose that q 62 C(K). Then q does not ramify

in K. Thus q = Q1 � � �Qt (t = 1; 5) for distinct prime ideals Q1; : : : ; Qt. As q 2 S(f) there
exists an integer r such that f(x) � (x + r)5 (mod q). Comparing coeÆcients of x4, we
obtain 5r4 � 0 (mod q), so that, as q 6= 5, we have q j r. Hence f(x) � x5 (mod q) and so

0 = f(�) � �5 (mod q). Thus Qi j �
5 for i = 1; : : : ; t and so, as Qi is a prime ideal, Qi j �

for i = 1; : : : ; t. Since the Qi are distinct prime ideals, we deduce that Q1Q2 � � �Qt j �, that
is, q j �. This proves that �=q 2 OK . The minimal polynomial of �=q over Q is

x5 + (a=q2)x3 + (b=q3)x2 + (c=q4)x+ (d=q5);

which must belong in Z[x]. Hence we have

q2 j a; q3 j b; q4 j c; q5 j d;

which contradicts (4). Hence q 2 C(K).

Conversely suppose that q (6= 5) is a prime in C(K). Thus q rami�es in K. As K
is a cyclic quintic �eld, we have q = Q5 for some prime ideal Q with N(Q) = q. Thus

N(OK=Q) = q and so as � 2 OK there exists an integer r such that � � r (mod Q). Taking
conjugates we obtain

�i � r (mod Q) (i = 1; 2; 3; 4; 5):

Hence

f(x) =

5Y
i=1

(x� �i) � (x� r)5 (mod Q):

Since f(x) 2 Z[x]; (x� r)5 2 Z[x] and q = Q5; we must have

f(x) � (x� r)5 (mod q);

proving that q 2 S(f).

3. A necessary and suÆcient condition for 5 to belong to S(f):

Proposition 3.1. 5 2 S(f) , 5 j a; 5 j b; 5 j c.
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Proof. If 5 2 S(f) then there exists r 2 Z such that

f(x) � (x+ r)5 (mod 5);

that is

x5 + ax3 + bx2 + cx+ d � x5 + 5rx4 + 10r2x3 + 10r3x2 + 5r4x+ r5

� x5 + r (mod 5);

so that 5 j a; 5 j b; 5 j c.
Conversely suppose that 5 j a; 5 j b; 5 j c. Then

x5 + ax3 + bx2 + cx+ d � x5 + d � (x+ d)5 (mod 5);

so that 5 2 S(f).

4. A necessary and suÆcient condition for 5 to belong to C(K): In this section

we relate the conditions,

(7) 5 j a; 5 j b; 5 j c;

(8) 53 j a; 54 j b; 54 j c; 54 k d;

and

(9) 520 j disc(f);

to one another, as well as to the condition

(10) 5 2 C(K):

Clearly

(11) (8)) (7):

Lemma 4.1. (8) ) (9).

Proof. By the symmetric function theorem, we have

(12) disc(f) =
X

2e+3f+4g+5h=20

c(e; f; g; h)aebf cgdh;

where the sum is over nonnegative integers e, f , g, h satisfying the stated equality and

c(e; f; g; h) 2 Z. Appealing to (8) we see that

(13) aebf cgdh � 0 (mod 53e+4f+4g+4h);

for each term in the sum in (12). The summation condition in (12) implies that h = 0; 1; 2; 3
or 4. Hence we can rewrite (12) as

(14) disc(f) =

4X
h=0

Sh(f);
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where

(15) Sh(f) =
X

2e+3f+4g=20�5h

c(e; f; g; h)aebfcgdh:

First we consider S0(f). The summation condition is 2e+ 3f + 4g = 20 so

3e+ 4f + 4g � 2e+ 3f + 4g = 20

and thus

aebfcg � 0 (mod 520)

giving

S0(f) � 0 (mod 520):

Secondly we consider S1(f). Here 2e+ 3f + 4g = 15 so

3e+ 4f + 4g + 4 � 2e+ 3f + 4g + 4 = 19

and thus

aebf cgd � 0 (mod 519)

giving

S1(f) � 0 (mod 519):

Thirdly we consider S2(f). Here 2e+ 3f + 4g = 10 so that e+ f � 1 and thus

3e+ 4f + 4g + 8 � 2e+ 3f + 4g + 9 = 19:

Hence

aebfcgd2 � 0 (mod 519)

giving

S2(f) � 0 (mod 519):

Fourthly we consider S3(f). Here 2e+ 3f + 4g = 5 so that e = f = 1, g = 0 and thus

3e+ 4f + 4g + 12 = 19:

Hence

aebfcgd3 � 0 (mod 519)

giving

S3(f) � 0 (mod 519):

Finally we consider S4(f). Here 2e+ 3f + 4g = 0 so that e = f = g = 0. Thus

S4(x
5 + ax3 + bx2 + cx+ d) = S4(f) = c(0; 0; 0; 4)d4:

Since

disc(x5 + d) = 55d4;

we have

S4(x
5 + d) = 55d4;

so that c(0; 0; 0; 4) = 55, and thus

S4(f) = 55d4 � 0 (mod 521):
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Hence disc(f) � 0 (mod 519). Since Gal(f) ' Z5, disc(f) is a perfect square, and so

disc(f) � 0 (mod 520) as asserted.

Lemma 4.2. (8)) 5 2 C(K):

Proof. We de�ne a0, b0, c0, d0 2 Z by

a0 = a=53; b0 = b=54; c0 = c=54; d0 = d=54:

Clearly 5 - d0. We set

h(x) = x5 + 5c0x4 + 52b0d0x3 + 52a0d02x2 + 5d04 2 Z[x]:

Then

h(5d0x) = 55d05x5 + 55c0d04x4 + 55b0d04x3 + 54a0d04x2 + 5d04

= 5d04x5(54d0 + 54c0=x+ 54b0=x2 + 53a0=x3 + 1=x5)

= 5d04x5(d+ c=x+ b=x2 + a=x3 + 1=x5)

= 5d04x5f(1=x):

Hence h(x) can be taken as the de�ning polynomial for the �eld K. Since h(x) is 5 - Eisen-
stein we have 5 = }5 for some prime ideal } in K, see for example [5 , Prop. 4.18, p. 181].

Thus 5 rami�es in K and so 5 2 C(K).

Lemma 4.3. If (8) does not hold and (9) holds then 5 =2 C(K).

Proof. Suppose that 5 2 C(K). Then 5 rami�es in K. Hence 5 = }5 for some prime

ideal in K. As N(}) = 5 there exists r 2 Z (r = 0; 1; 2; 3; 4) such that

� � r (mod }):

We consider two cases.

Case (i): r = 0. In this case } j � so that }k k � for some positive integer k. Suppose
that k � 5. Then 5 j � and thus �=5 2 OK . The minimal polynomial of �=5 over Q is

x5 + (a=52)x3 + (b=53)x2 + (c=54)x + (d=55);

which must belong in Z[x]. Hence we have

52 j a; 53 j b; 54 j c; 55 j d;

contradicting (4). Thus k = 1; 2; 3 or 4.
Next we de�ne the nonnegative integer l by }l k f 0(�). By conjugation we have }l k

f 0(�i) (i = 1; 2; 3; 4; 5). Hence

}5l k

5Y
i=1

f 0(�i) = �disc(f):

But }100 = 520 j disc(f), so we must have 5l � 100, that is, l � 20. Hence

(16) }20 j f 0(�):
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Now

(17) f 0(�) = 5�4 + 3a�2 + 2b� + c;

where

(18) v}(5�
4) = 5 + 4k � 4k (mod 5);

(19) v}(3a�
2) = v}(a) + 2k � 2k (mod 5);

(20) v}(2b�) = v}(b) + k � k (mod 5);

(21) v}(c) � 0 (mod 5):

As k = 1; 2; 3 or 4, we see that v}(5�
4); v}(3a�

2); v}(2b�); v}(c) are all distinct modulo 5,

and thus they must all be di�erent. Hence, by (16) and (17), we have

(22) v}(5�
4) � 20; v}(3a�

2) � 20; v}(2b�) � 20; v}(c) � 20:

From (18) and (22), we deduce that 5 + 4k � 20, so that k � 4. But k = 1; 2; 3 or 4 so we

must have k = 4. Hence

(23) }4 k �:

Next, appealing to (19), (22) and (23), we deduce that v}(a) + 8 = v}(3a�
2) � 20, so that

v}(a) � 12. Thus v5(a) � 12=5 so that

(24) v5(a) � 3:

Further, from (20), (22) and (23), we obtain v}(b) + 4 = v}(2b�) � 20, so that v}(b) � 16.

Thus v5(b) � 16=5 so that

(25) v5(b) � 4:

Also, from (22), we have v}(c) � 20 so that v5(c) � 20=5, that is

(26) v5(c) � 4:

Further we have

}20 k �5; }24 j a�3; }24 j b�2; }24 j c�;

so that

}20 k ��5 � a�3 � b�2 � c� = d;

and thus

(27) 54 k d:

Clearly (24) - (27) contradict that (8) does not hold.

Case (ii): r = 1; 2; 3; 4: We set

(28)

8<
:

g(x) = f(x+ r)
= (x+ r)5 + a(x+ r)3 + b(x+ r)2 + c(x + r) + d
= x5 + b4x

4 + b3x
3 + b2x

2 + b1x+ b0 2 Z[x];
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where

(29)

8>>>><
>>>>:

b4 = 5r;
b3 = 10r2 + a;
b2 = 10r3 + 3ar + b;
b1 = 5r4 + 3ar2 + 2br + c;
b0 = r5 + ar3 + br2 + cr + d:

Further we set � = � � r so that � � 0 (mod }). Moreover g(�) = f(� + r) = f(�) = 0

so that � 2 C is a root of g(x). De�ne the positive integer k by }k k �. If k � 5 then

�=5 2 OK and, as the minimal polynomial of �=5 is

h(x) = x5 +
b4

5
x4 +

b3

52
x3 +

b2

53
x2 +

b1

54
x+

b0

55
;

we must have b4=5; b3=5
2; b2=5

3; b1=5
4; b0=5

5 2 Z:As �=5 2 OK and jOK=}j = N(}) = 5,

there exists s 2 Z such that �=5 � s (mod }). Set �i = �i � r (i = 1; 2; 3; 4; 5) so that

�1 = �. The roots of h(x) are �i=5 (i = 1; 2; 3; 4; 5). By conjugation we have �i=5 � s

(mod }) (i = 1; 2; 3; 4; 5). Hence

h(x) =

5Y
i=1

(x� �i=5) �

5Y
i=1

(x� s) � (x� s)5 (mod }):

Thus

r = b4=5 = coeÆcient of x4 in h(x) � �5s � 0 (mod });

contradicting r = 1; 2; 3; 4. Hence k = 1; 2; 3; 4.

Since � = �1, �2, �3, �4, �5 2 C are the roots of g(x), we have

}100 = 520 j disc(f) = disc(g) = �

5Y
i=1

g0(�i):

Suppose that }t k g0(�). By conjugation we have }t k g0(�i) (i = 1; 2; 3; 4; 5). Hence

}5t k

5Y
i=1

g0(�i):

Thus 5t � 100 and so t � 20, that is,

(30) }20 j g0(�):

Further, from (28) and (29), we have

(31) g0(�) = 5�4 + 20r�3 + 3b3�
2 + 2b2�+ b1;

and

v}(5�
4) = 5 + 4k � 4k (mod 5);

v}(20r�
3) = 5 + 3k � 3k (mod 5);

v}(3b3�
2) = v}(b3) + 2k � 2k (mod 5);

v}(2b2�) = v}(b2) + k � k (mod 5);
v}(b1) � 0 (mod 5);
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showing that v}(5�
4); v}(20r�

3); v}(3b3�
2); v}(2b2�); v}(b1) are all distinct modulo 5.

Hence they must all be di�erent. From (30) and (31) we deduce that

}20 j 5�4; }20 j 20r�3; }20 j 3b3�
2; }20 j 2b2�; }

20
j b1:

From the second of these we have 5+ 3k � 20 so that k � 5. This contradicts k = 1; 2; 3 or
4.

In both Case (i) and Case (ii) we have arrived at a contradiction. Thus 5 =2 C(K).

Lemma 4.4. If (7) does not hold then 5 =2 C(K).

Proof. Suppose that (7) does not hold, but 5 2 C(K). Then 5 rami�es in K. Thus

5 = }5 for some prime ideal } of K. Hence

jOK=}j = N(}) = 5;

and so, as � 2 OK , there exists r 2 Z such that

� � r (mod }):

Taking conjugates we obtain

�i � r (mod }) (i = 1; 2; 3; 4; 5):

Hence

f(x) =

5Y
i=1

(x � �i) �

5Y
i=1

(x� r) � (x� r)5 (mod }):

Since f(x) 2 Z[x], (x � r)5 2 Z[x] and 5 = }5, we deduce that

f(x) � (x� r)5 (mod 5):

Thus

x5 + ax3 + bx2 + cx+ d � x5 � r (mod 5);

so

5 j a; 5 j b; 5 j c;

which is a contradiction as (7) does not hold. Hence 5 =2 C(K):

Lemma 4.5. If (7) holds and (9) does not hold then 5 2 C(K).

Proof. Suppose 5 =2 C(K). Then

5 = Q1 � � �Qt (t = 1 or 5)

for distinct prime ideals Qi (i = 1; : : : ; t) of K. Now

0 = f(�) = �5 + a�3 + b�2 + c� + d
� �5 + d � �5 + d5 � (� + d)5 (mod 5)

so that Qi j (� + d)5 and thus Qi j � + d for i = 1; : : : ; t. Hence Q1 � � �Qt j � + d and so

5 j � + d. By conjugation we have

5 j �i + d (i = 1; 2; 3; 4; 5):
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Hence

5 j �i � �j (1 � i < j � 5)

and so

520 j
Y

1�i<j�5

(�i � �j)
2;

that is

520 j disc(f);

a contradiction as (9) does not hold. Hence 5 2 C(K).

Appealing to (11) and Lemmas 4.1 - 4.5 we obtain the following table, which we give

for convenience as a proposition.

Proposition 4.1.

(7) holds (8) holds (9) holds Conclusion Reason

yes yes yes 5 2 C(K) Lemma 4.2

no yes yes cannot occur (11)

yes no yes 5 =2 C(K) Lemma 4.3

no no yes 5 =2 C(K) Lemma 4.3 or 4.4

yes yes no cannot occur Lemma 4.1

no yes no cannot occur (11) or Lemma 4.1

yes no no 5 2 C(K) Lemma 4.5

no no no 5 =2 C(K) Lemma 4.4

5. Proof of Theorem. The Theorem follows immediately from Propositions 2.1, 3.1 and

4.1.
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