NOTE ON A PAPER OF KOBAYASHI AND NAKAGAWA

Blair K. Spearman* and Kenneth S. Williams**

Received June 29, 2000

Abstract

Let $f(x)=x^{5}+a x^{3}+b x^{2}+c x+d \in \mathbb{Z}[x]$ have Galois group $\mathbb{Z} / 5 \mathbb{Z}$. The set of primes q for which $f(x) \equiv(x+r)^{5}(\bmod q)$ for some $r \in \mathbb{Z}$ is determined. The algorithm of Kobayashi and Nakagawa for solving the quintic equation $x^{5}+a x^{3}+b x^{2}+c x+d=0$ is discussed in relation to this determination.

1. Introduction. Let $f(x)=x^{5}+a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0} \in \mathbb{Z}[x]$ be irreducible. Let $G a l(f)$ denote the Galois group of $f(x)$ over \mathbb{Q}. The quintic equation $f(x)=0$ is solvable by means of radicals if and only if $G a l(f)$ is a solvable group. Dummit [1], and independently, Kobayashi and Nakagawa [2] have shown how to determine the roots of $f(x)=0$ explicitly when $\operatorname{Gal}(f)$ is solvable. It is known [1, p. 387] that $\operatorname{Gal}(f)$ is a solvable group if and only if $\operatorname{Gal}(f) \simeq F_{20}$ (the Frobenius group of order 20), D_{10} (the dihedral group of order 10) or \mathbb{Z}_{5} (the cyclic group of order 5).

In this note we will only be concerned with those quintic polynomials f for which $\operatorname{Gal}(f) \simeq \mathbb{Z}_{5}$. For such a quintic f, Kobayashi and Nakagawa [2, Theorem 1] used the existence of a special prime $q \equiv 1(\bmod 5)$ such that $f(x) \equiv(x+r)^{5}(\bmod q)$ for some $r \in \mathbb{Z}$ to obtain the explicit solution of $f(x)=0$. It is the purpose of this note to describe explicitly the set $S(f)$ of primes q for which $f(x) \equiv(x+r)^{5}(\bmod q)$ for some $r \in \mathbb{Z}$, that is, we determine the set

$$
\begin{equation*}
S(f)=\left\{q(\text { prime }) \mid f(x) \equiv(x+r)^{5}(\bmod q) \text { for some } r \in \mathbb{Z}\right\} \tag{1}
\end{equation*}
$$

Before giving our determination of the set $S(f)$, it is convenient to introduce some notation. We let $\theta=\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{5} \in \mathbb{C}$ be the roots of $f(x)$. We set $K=\mathbb{Q}(\theta)$ so that K is a cyclic quintic field. If there exists a prime p such that

$$
p\left|a_{4}, \quad p^{2}\right| a_{3}, p^{3}\left|a_{2}, \quad p^{4}\right| a_{1}, \quad p^{5} \mid a_{0}
$$

then θ / p is a root of

$$
x^{5}+\left(a_{4} / p\right) x^{4}+\left(a_{3} / p^{2}\right) x^{3}+\left(a_{2} / p^{3}\right) x^{2}+\left(a_{1} / p^{4}\right) x+\left(a_{0} / p^{5}\right) \in \mathbb{Z}[x]
$$

and $\mathbb{Q}(\theta / p)=K$. Thus we may make the following simplifying assumption:

$$
m\left|a_{4}, \quad m^{2}\right| a_{3}, \quad m^{3}\left|a_{2}, \quad m^{4}\right| a_{1}, \quad m^{5}\left|a_{0} \Longrightarrow\right| m \mid=1
$$

We let $f(K)$ denote the conductor of K so that $f(K)$ is the smallest positive integer m such that $K \subseteq \mathbb{Q}\left(e^{2 \pi i / m}\right)$. Since $G a l(f)$ is abelian the existence of such an integer m is guaranteed by the Kronecker-Weber theorem [5, p. 421]. It is well-known that the discriminant of K, denoted by $d(K)$, is related to the conductor of K by $d(K)=f(K)^{4}$ as $G a l(f) \simeq \mathbb{Z}_{5}$, see for example [3, p. 831]. We denote the set of rational primes which ramify in K by $C(K)$, that is,

$$
\begin{equation*}
C(K)=\{q(\text { prime }): q \mid f(K)\} \tag{2}
\end{equation*}
$$

2000 Mathematics Subject Classification. Primary 11R20, 11S05.
Key words and phrases. Solvable quintics.

We prove
Theorem. Let

$$
\begin{equation*}
f(x)=x^{5}+a x^{3}+b x^{2}+c x+d \tag{3}
\end{equation*}
$$

be an irreducible polynomial in $\mathbb{Z}[x]$ satisfying

$$
\begin{equation*}
m^{2}\left|a, \quad m^{3}\right| b, \quad m^{4}\left|c, \quad m^{5}\right| d \Longrightarrow|m|=1 \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Gal}(f) \simeq \mathbb{Z}_{5} \tag{5}
\end{equation*}
$$

Let $\theta \in \mathbb{C}$ be a root of $f(x)$. Set $K=\mathbb{Q}(\theta)$. Then

$$
S(f)= \begin{cases}C(K) \cup\{5\}, & \text { if } 5^{20} \mid \operatorname{disc(f);} \tag{6}\\ & 5|a, 5| b, 5|c, 5| d \\ & \text { and } 5^{3}\left|a, 5^{4}\right| b, 5^{4} \mid c, 5^{4} \| d \\ C(K), \quad & \text { otherwise. }\end{cases}
$$

Our Theorem shows that the statement in [2, p. 884]: "Further by virtue of normal basis theory, we can find a prime number $q=5 t+1$ such that $f(x) \equiv(x+r)(x+r) \cdots(x+r)$ $(\bmod q)$, where r is some natural number." is not quite correct as it stands. Example 1 illustrates this.

Example 1. Let

$$
f(x)=x^{5}-25 x^{3}+50 x^{2}-25
$$

Then

$$
\begin{array}{rlrl}
\operatorname{Gal}(f) & \simeq \mathbb{Z}_{5}, & & {[\mathrm{MAPLE}]} \\
\operatorname{disc}(f) & =5^{12} 7^{2}, & & {[\mathrm{MAPLE}]} \\
d(K) & =390625=5^{8}, & {[\mathrm{PARI}]} \\
f(K) & =5^{2}, & & \\
C(K) & =\{5\}, & &
\end{array}
$$

and, by the Theorem, we have

$$
S(f)=\{5\}
$$

so there does not exist a prime $q \equiv 1(\bmod 5)$ in $S(f)$.
The assertion $\mathbb{Q}(\alpha) \subseteq \mathbb{Q}\left(\omega_{q}\right)$ in $[2$, p. 884] holds for $q=f(K)$ but q may not be a prime. We illustrate this in Example 2.

Example 2. Let

$$
f(x)=x^{5}-88660 x^{3}+16437905 x^{2}-1133736340 x+27615008971
$$

Then

$$
\begin{aligned}
\operatorname{Gal}(f) & \simeq \mathbb{Z}_{5}, & & {[\mathrm{MAPLE}] } \\
\operatorname{disc}(f) & =5^{20} 11^{4} 13^{2} 31^{4} 431^{2}, & & {[\mathrm{MAPLE}] } \\
d(K) & =13521270961=11^{4} 31^{4}, & & {[\mathrm{PARI}] } \\
f(K) & =11 \cdot 31, & &
\end{aligned}
$$

so

$$
\mathbb{Q}(\alpha) \subseteq \mathbb{Q}\left(\omega_{11 \cdot 31}\right)
$$

but

$$
\mathbb{Q}(\alpha) \nsubseteq \mathbb{Q}\left(\omega_{11}\right), \quad \mathbb{Q}(\alpha) \nsubseteq \mathbb{Q}\left(\omega_{31}\right)
$$

We note that the algorithm of Kobayashi and Nakagawa is valid if their use of the prime q is replaced by the conductor $f(K)$ [2, p. 884].

Our Theorem shows that if $f(x)$ contains no x^{4} term then the set $S(f)$ consists of the prime divisors of the conductor $f(K)$ together with the prime 5 in certain cases. However, if $f(x)$ has a nonzero coefficient of the x^{4} term then $S(f)$ may contain primes not dividing the conductor and in fact we can construct $f(x)$ so that $S(f)$ contains an arbitrary number of such primes. We illustrate this in Example 3.

Example 3. Let

$$
f(x)=x^{5}+x^{4}-12 x^{3}-21 x^{2}+x+5
$$

Here

$$
\begin{aligned}
G a l(f) & \simeq \mathbb{Z}_{5}, & & {[\mathrm{MAPLE}] } \\
\operatorname{disc}(f) & =5^{2} 31^{4}, & & {[\mathrm{MAPLE}] } \\
d(K) & =923521=31^{4}, & & {[\mathrm{PARI}] } \\
f(K) & =31, & & \\
C(K) & =\{31\} . & &
\end{aligned}
$$

By factoring $f(x)$ modulo each prime dividing disc (f), we find that

$$
S(K)=\{31\}
$$

Let $p_{1}, p_{2}, \ldots, p_{N}$ denote N distinct primes different from 5 and 31 . Let $r \in \mathbb{Z}$. Set

$$
p=p_{1} \cdots p_{N}
$$

and

$$
f_{p}(x)=p^{5} f((x+r) / p)=x^{5}+a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}
$$

where

$$
\begin{aligned}
& a_{4}=5 r+p \\
& a_{3}=10 r^{2}+4 p r-12 p^{2} \\
& a_{2}=10 r^{3}+6 p r^{2}-36 p^{2} r-21 p^{3} \\
& a_{1}=5 r^{4}+4 p r^{3}-36 p^{2} r^{2}-42 p^{3} r+p^{4} \\
& a_{0}=r^{5}+p r^{4}-12 p^{2} r^{3}-21 p^{3} r^{2}+p^{4} r+5 p^{5}
\end{aligned}
$$

Since a_{0} is a quintic polynomial in r, which is primitive, has no fixed divisors, and has nonzero discriminant, by a theorem of Nagel [4] we can choose infinitely many $r \in \mathbb{Z}$ so that a_{0} is fifth power free. Hence $f_{p}(x)$ satisfies the simplifying assumption (4). Also

$$
G a l\left(f_{p}\right)=G a l(f) \simeq \mathbb{Z}_{5}
$$

Moreover, for $i=1,2, \ldots, N$ we have

$$
f_{p}(x) \equiv x^{5}+5 r x^{4}+10 r^{2} x^{3}+10 r^{3} x^{2}+5 r^{4} x+r^{5} \equiv(x+r)^{5}\left(\bmod p_{i}\right)
$$

so that

$$
p_{i} \in S\left(f_{p}\right), \quad i=1,2, \ldots, N
$$

Example 3 shows that the algorithm of Kobayashi and Nakagawa should only be applied to quintic polynomials with no x^{4} term.

Our Theorem is proved in Section 5 after some preliminary results are proved in Sections 2,3 and 4 . From this point on we assume the notation of the Theorem.
2. A necesssary and sufficient condition for a prime $q \neq 5$ to belong to $S(f)$. With the notation of the theorem we prove the following result.

Proposition 2.1. Let q be a prime with $q \neq 5$. Then

$$
q \in S(f) \Leftrightarrow q \in C(K)
$$

Proof. Let $q \neq 5$ be a prime in $S(f)$. Suppose that $q \notin C(K)$. Then q does not ramify in K. Thus $q=Q_{1} \cdots Q_{t}(t=1,5)$ for distinct prime ideals Q_{1}, \ldots, Q_{t}. As $q \in S(f)$ there exists an integer r such that $f(x) \equiv(x+r)^{5}(\bmod q)$. Comparing coefficients of x^{4}, we obtain $5 r^{4} \equiv 0(\bmod q)$, so that, as $q \neq 5$, we have $q \mid r$. Hence $f(x) \equiv x^{5}(\bmod q)$ and so $0=f(\theta) \equiv \theta^{5}(\bmod q)$. Thus $Q_{i} \mid \theta^{5}$ for $i=1, \ldots, t$ and so, as Q_{i} is a prime ideal, $Q_{i} \mid \theta$ for $i=1, \ldots, t$. Since the Q_{i} are distinct prime ideals, we deduce that $Q_{1} Q_{2} \cdots Q_{t} \mid \theta$, that is, $q \mid \theta$. This proves that $\theta / q \in O_{K}$. The minimal polynomial of θ / q over \mathbb{Q} is

$$
x^{5}+\left(a / q^{2}\right) x^{3}+\left(b / q^{3}\right) x^{2}+\left(c / q^{4}\right) x+\left(d / q^{5}\right)
$$

which must belong in $\mathbb{Z}[x]$. Hence we have

$$
q^{2}\left|a, q^{3}\right| b, q^{4}\left|c, q^{5}\right| d
$$

which contradicts (4). Hence $q \in C(K)$.
Conversely suppose that $q(\neq 5)$ is a prime in $C(K)$. Thus q ramifies in K. As K is a cyclic quintic field, we have $q=Q^{5}$ for some prime ideal Q with $N(Q)=q$. Thus $N\left(O_{K} / Q\right)=q$ and so as $\theta \in O_{K}$ there exists an integer r such that $\theta \equiv r(\bmod Q)$. Taking conjugates we obtain

$$
\theta_{i} \equiv r(\bmod Q) \quad(i=1,2,3,4,5)
$$

Hence

$$
f(x)=\prod_{i=1}^{5}\left(x-\theta_{i}\right) \equiv(x-r)^{5}(\bmod Q)
$$

Since $f(x) \in \mathbb{Z}[x],(x-r)^{5} \in \mathbb{Z}[x]$ and $q=Q^{5}$, we must have

$$
f(x) \equiv(x-r)^{5}(\bmod q)
$$

proving that $q \in S(f)$.
3. A necessary and sufficient condition for 5 to belong to $S(f)$.

Proposition 3.1. $\quad 5 \in S(f) \Leftrightarrow 5|a, 5| b, 5 \mid c$.

Proof. If $5 \in S(f)$ then there exists $r \in \mathbb{Z}$ such that

$$
f(x) \equiv(x+r)^{5}(\bmod 5)
$$

that is

$$
\begin{aligned}
x^{5}+a x^{3}+b x^{2}+c x+d & \equiv x^{5}+5 r x^{4}+10 r^{2} x^{3}+10 r^{3} x^{2}+5 r^{4} x+r^{5} \\
& \equiv x^{5}+r(\bmod 5)
\end{aligned}
$$

so that $5|a, 5| b, 5 \mid c$.
Conversely suppose that $5|a, 5| b, 5 \mid c$. Then

$$
x^{5}+a x^{3}+b x^{2}+c x+d \equiv x^{5}+d \equiv(x+d)^{5}(\bmod 5),
$$

so that $5 \in S(f)$.
4. A necessary and sufficient condition for 5 to belong to $C(K)$. In this section we relate the conditions,

$$
\begin{gather*}
5|a, 5| b, 5 \mid c \tag{7}\\
5^{3}\left|a, 5^{4}\right| b, 5^{4} \mid c, 5^{4} \| d
\end{gather*}
$$

and

$$
\begin{equation*}
5^{20} \mid \operatorname{disc}(f) \tag{9}
\end{equation*}
$$

to one another, as well as to the condition

$$
\begin{equation*}
5 \in C(K) \tag{10}
\end{equation*}
$$

Clearly

$$
\begin{equation*}
(8) \Rightarrow(7) \tag{11}
\end{equation*}
$$

Lemma 4.1. (8) $\Rightarrow(9)$.
Proof. By the symmetric function theorem, we have

$$
\begin{equation*}
\operatorname{disc}(f)=\sum_{2 e+3 f+4 g+5 h=20} c(e, f, g, h) a^{e} b^{f} c^{g} d^{h} \tag{12}
\end{equation*}
$$

where the sum is over nonnegative integers e, f, g, h satisfying the stated equality and $c(e, f, g, h) \in \mathbb{Z}$. Appealing to (8) we see that

$$
\begin{equation*}
a^{e} b^{f} c^{g} d^{h} \equiv 0\left(\bmod 5^{3 e+4 f+4 g+4 h}\right) \tag{13}
\end{equation*}
$$

for each term in the sum in (12). The summation condition in (12) implies that $h=0,1,2,3$ or 4 . Hence we can rewrite (12) as

$$
\begin{equation*}
\operatorname{disc}(f)=\sum_{h=0}^{4} S_{h}(f) \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{h}(f)=\sum_{2 e+3 f+4 g=20-5 h} c(e, f, g, h) a^{e} b^{f} c^{g} d^{h} . \tag{15}
\end{equation*}
$$

First we consider $S_{0}(f)$. The summation condition is $2 e+3 f+4 g=20$ so

$$
3 e+4 f+4 g \geq 2 e+3 f+4 g=20
$$

and thus

$$
a^{e} b^{f} c^{g} \equiv 0\left(\bmod 5^{20}\right)
$$

giving

$$
S_{0}(f) \equiv 0\left(\bmod 5^{20}\right) .
$$

Secondly we consider $S_{1}(f)$. Here $2 e+3 f+4 g=15$ so

$$
3 e+4 f+4 g+4 \geq 2 e+3 f+4 g+4=19
$$

and thus

$$
a^{e} b^{f} c^{g} d \equiv 0\left(\bmod 5^{19}\right)
$$

giving

$$
S_{1}(f) \equiv 0\left(\bmod 5^{19}\right) .
$$

Thirdly we consider $S_{2}(f)$. Here $2 e+3 f+4 g=10$ so that $e+f \geq 1$ and thus

$$
3 e+4 f+4 g+8 \geq 2 e+3 f+4 g+9=19
$$

Hence

$$
a^{e} b^{f} c^{g} d^{2} \equiv 0\left(\bmod 5^{19}\right)
$$

giving

$$
S_{2}(f) \equiv 0\left(\bmod 5^{19}\right) .
$$

Fourthly we consider $S_{3}(f)$. Here $2 e+3 f+4 g=5$ so that $e=f=1, g=0$ and thus

$$
3 e+4 f+4 g+12=19 .
$$

Hence

$$
a^{e} b^{f} c^{g} d^{3} \equiv 0\left(\bmod 5^{19}\right)
$$

giving

$$
S_{3}(f) \equiv 0\left(\bmod 5^{19}\right) .
$$

Finally we consider $S_{4}(f)$. Here $2 e+3 f+4 g=0$ so that $e=f=g=0$. Thus

$$
S_{4}\left(x^{5}+a x^{3}+b x^{2}+c x+d\right)=S_{4}(f)=c(0,0,0,4) d^{4} .
$$

Since

$$
\operatorname{disc}\left(x^{5}+d\right)=5^{5} d^{4},
$$

we have

$$
S_{4}\left(x^{5}+d\right)=5^{5} d^{4},
$$

so that $c(0,0,0,4)=5^{5}$, and thus

$$
S_{4}(f)=5^{5} d^{4} \equiv 0\left(\bmod 5^{21}\right)
$$

Hence $\operatorname{disc}(f) \equiv 0\left(\bmod 5^{19}\right)$. Since $\operatorname{Gal}(f) \simeq \mathbb{Z}_{5}, \operatorname{disc}(f)$ is a perfect square, and so $\operatorname{disc}(f) \equiv 0\left(\bmod 5^{20}\right)$ as asserted.

Lemma 4.2. (8) $\Rightarrow 5 \in C(K)$.
Proof. We define $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime} \in \mathbb{Z}$ by

$$
a^{\prime}=a / 5^{3}, b^{\prime}=b / 5^{4}, c^{\prime}=c / 5^{4}, d^{\prime}=d / 5^{4}
$$

Clearly $5 \nmid d^{\prime}$. We set

$$
h(x)=x^{5}+5 c^{\prime} x^{4}+5^{2} b^{\prime} d^{\prime} x^{3}+5^{2} a^{\prime} d^{2} x^{2}+5 d^{4} \in \mathbb{Z}[x] .
$$

Then

$$
\begin{aligned}
h\left(5 d^{\prime} x\right) & =5^{5} d^{\prime 5} x^{5}+5^{5} c^{\prime} d^{4} x^{4}+5^{5} b^{\prime} d^{4} x^{3}+5^{4} a^{\prime} d^{4} x^{2}+5 d^{\prime 4} \\
& =5 d^{\prime 4} x^{5}\left(5^{4} d^{\prime}+5^{4} c^{\prime} / x+5^{4} b^{\prime} / x^{2}+5^{3} a^{\prime} / x^{3}+1 / x^{5}\right) \\
& =5 d^{4} x^{5}\left(d+c / x+b / x^{2}+a / x^{3}+1 / x^{5}\right) \\
& =5 d^{4} x^{5} f(1 / x)
\end{aligned}
$$

Hence $h(x)$ can be taken as the defining polynomial for the field K. Since $h(x)$ is 5 - Eisenstein we have $5=\wp^{5}$ for some prime ideal \wp in K, see for example [5, Prop. 4.18, p. 181]. Thus 5 ramifies in K and so $5 \in C(K)$.

Lemma 4.3. If (8) does not hold and (9) holds then $5 \notin C(K)$.
Proof. Suppose that $5 \in C(K)$. Then 5 ramifies in K. Hence $5=\wp^{5}$ for some prime ideal in K. As $N(\wp)=5$ there exists $r \in \mathbb{Z}(r=0,1,2,3,4)$ such that

$$
\theta \equiv r(\bmod \wp)
$$

We consider two cases.
Case (i): $\boldsymbol{r}=\mathbf{0}$. In this case $\wp \mid \theta$ so that $\wp^{k} \| \theta$ for some positive integer k. Suppose that $k \geq 5$. Then $5 \mid \theta$ and thus $\theta / 5 \in O_{K}$. The minimal polynomial of $\theta / 5$ over \mathbb{Q} is

$$
x^{5}+\left(a / 5^{2}\right) x^{3}+\left(b / 5^{3}\right) x^{2}+\left(c / 5^{4}\right) x+\left(d / 5^{5}\right)
$$

which must belong in $\mathbb{Z}[x]$. Hence we have

$$
5^{2}\left|a, 5^{3}\right| b, 5^{4}\left|c, 5^{5}\right| d
$$

contradicting (4). Thus $k=1,2,3$ or 4 .
Next we define the nonnegative integer l by $\wp^{l} \| f^{\prime}(\theta)$. By conjugation we have $\wp^{l} \|$ $f^{\prime}\left(\theta_{i}\right)(i=1,2,3,4,5)$. Hence

$$
\wp^{5 l} \| \prod_{i=1}^{5} f^{\prime}\left(\theta_{i}\right)= \pm \operatorname{disc}(f)
$$

But $\wp^{100}=5^{20} \mid \operatorname{disc}(f)$, so we must have $5 l \geq 100$, that is, $l \geq 20$. Hence

$$
\begin{equation*}
\wp^{20} \mid f^{\prime}(\theta) \tag{16}
\end{equation*}
$$

Now

$$
\begin{equation*}
f^{\prime}(\theta)=5 \theta^{4}+3 a \theta^{2}+2 b \theta+c \tag{17}
\end{equation*}
$$

where

$$
\begin{gather*}
v_{\wp}\left(5 \theta^{4}\right)=5+4 k \equiv 4 k(\bmod 5) \tag{18}\\
v_{\wp}\left(3 a \theta^{2}\right)=v_{\wp}(a)+2 k \equiv 2 k(\bmod 5), \tag{19}\\
v_{\wp}(2 b \theta)=v_{\wp}(b)+k \equiv k(\bmod 5), \tag{20}\\
v_{\wp}(c) \equiv 0(\bmod 5) \tag{21}
\end{gather*}
$$

As $k=1,2,3$ or 4 , we see that $v_{\wp}\left(5 \theta^{4}\right), v_{\wp}\left(3 a \theta^{2}\right), v_{\wp}(2 b \theta), v_{\wp}(c)$ are all distinct modulo 5 , and thus they must all be different. Hence, by (16) and (17), we have

$$
\begin{equation*}
v_{\wp}\left(5 \theta^{4}\right) \geq 20, v_{\wp}\left(3 a \theta^{2}\right) \geq 20, v_{\wp}(2 b \theta) \geq 20, v_{\wp}(c) \geq 20 \tag{22}
\end{equation*}
$$

From (18) and (22), we deduce that $5+4 k \geq 20$, so that $k \geq 4$. But $k=1,2,3$ or 4 so we must have $k=4$. Hence

$$
\begin{equation*}
\wp^{4} \| \theta \tag{23}
\end{equation*}
$$

Next, appealing to (19), (22) and (23), we deduce that $v_{\wp}(a)+8=v_{\wp}\left(3 a \theta^{2}\right) \geq 20$, so that $v_{\wp}(a) \geq 12$. Thus $v_{5}(a) \geq 12 / 5$ so that

$$
\begin{equation*}
v_{5}(a) \geq 3 \tag{24}
\end{equation*}
$$

Further, from (20), (22) and (23), we obtain $v_{\wp}(b)+4=v_{\wp}(2 b \theta) \geq 20$, so that $v_{\wp}(b) \geq 16$. Thus $v_{5}(b) \geq 16 / 5$ so that

$$
\begin{equation*}
v_{5}(b) \geq 4 \tag{25}
\end{equation*}
$$

Also, from (22), we have $v_{\wp}(c) \geq 20$ so that $v_{5}(c) \geq 20 / 5$, that is

$$
\begin{equation*}
v_{5}(c) \geq 4 \tag{26}
\end{equation*}
$$

Further we have

$$
\wp^{20} \| \theta^{5}, \wp^{24}\left|a \theta^{3}, \wp^{24}\right| b \theta^{2}, \wp^{24} \mid c \theta
$$

so that

$$
\wp^{20} \|-\theta^{5}-a \theta^{3}-b \theta^{2}-c \theta=d
$$

and thus

$$
\begin{equation*}
5^{4} \| d \tag{27}
\end{equation*}
$$

Clearly (24) - (27) contradict that (8) does not hold.
Case (ii): $\boldsymbol{r}=\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}$. We set

$$
\left\{\begin{align*}
g(x) & =f(x+r) \tag{28}\\
& =(x+r)^{5}+a(x+r)^{3}+b(x+r)^{2}+c(x+r)+d \\
& =x^{5}+b_{4} x^{4}+b_{3} x^{3}+b_{2} x^{2}+b_{1} x+b_{0} \in \mathbb{Z}[x]
\end{align*}\right.
$$

where

$$
\left\{\begin{array}{l}
b_{4}=5 r \tag{29}\\
b_{3}=10 r^{2}+a \\
b_{2}=10 r^{3}+3 a r+b \\
b_{1}=5 r^{4}+3 a r^{2}+2 b r+c \\
b_{0}=r^{5}+a r^{3}+b r^{2}+c r+d
\end{array}\right.
$$

Further we set $\alpha=\theta-r$ so that $\alpha \equiv 0(\bmod \wp)$. Moreover $g(\alpha)=f(\alpha+r)=f(\theta)=0$ so that $\alpha \in \mathbb{C}$ is a root of $g(x)$. Define the positive integer k by $\wp^{k} \| \alpha$. If $k \geq 5$ then $\alpha / 5 \in O_{K}$ and, as the minimal polynomial of $\alpha / 5$ is

$$
h(x)=x^{5}+\frac{b_{4}}{5} x^{4}+\frac{b_{3}}{5^{2}} x^{3}+\frac{b_{2}}{5^{3}} x^{2}+\frac{b_{1}}{5^{4}} x+\frac{b_{0}}{5^{5}}
$$

we must have $b_{4} / 5, b_{3} / 5^{2}, b_{2} / 5^{3}, b_{1} / 5^{4}, b_{0} / 5^{5} \in \mathbb{Z}$. As $\alpha / 5 \in O_{K}$ and $\left|O_{K} / \wp\right|=N(\wp)=5$, there exists $s \in \mathbb{Z}$ such that $\alpha / 5 \equiv s(\bmod \wp)$. Set $\alpha_{i}=\theta_{i}-r(i=1,2,3,4,5)$ so that $\alpha_{1}=\alpha$. The roots of $h(x)$ are $\alpha_{i} / 5(i=1,2,3,4,5)$. By conjugation we have $\alpha_{i} / 5 \equiv s$ $(\bmod \wp)(i=1,2,3,4,5)$. Hence

$$
h(x)=\prod_{i=1}^{5}\left(x-\alpha_{i} / 5\right) \equiv \prod_{i=1}^{5}(x-s) \equiv(x-s)^{5}(\bmod \wp)
$$

Thus

$$
r=b_{4} / 5=\text { coefficient of } x^{4} \text { in } h(x) \equiv-5 s \equiv 0(\bmod \wp)
$$

contradicting $r=1,2,3,4$. Hence $k=1,2,3,4$.
Since $\alpha=\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5} \in \mathbb{C}$ are the roots of $g(x)$, we have

$$
\wp^{100}=5^{20} \mid \operatorname{disc}(f)=\operatorname{disc}(g)= \pm \prod_{i=1}^{5} g^{\prime}\left(\alpha_{i}\right)
$$

Suppose that $\wp^{t} \| g^{\prime}(\alpha)$. By conjugation we have $\wp^{t} \| g^{\prime}\left(\alpha_{i}\right)(i=1,2,3,4,5)$. Hence

$$
\wp^{5 t} \| \prod_{i=1}^{5} g^{\prime}\left(\alpha_{i}\right)
$$

Thus $5 t \geq 100$ and so $t \geq 20$, that is,

$$
\begin{equation*}
\wp^{20} \mid g^{\prime}(\alpha) \tag{30}
\end{equation*}
$$

Further, from (28) and (29), we have

$$
\begin{equation*}
g^{\prime}(\alpha)=5 \alpha^{4}+20 r \alpha^{3}+3 b_{3} \alpha^{2}+2 b_{2} \alpha+b_{1} \tag{31}
\end{equation*}
$$

and

$$
\begin{array}{ll}
v_{\wp}\left(5 \alpha^{4}\right) & =5+4 k \equiv 4 k(\bmod 5), \\
v_{\wp}\left(20 r \alpha^{3}\right) & =5+3 k \equiv 3 k(\bmod 5), \\
v_{\wp}\left(3 b_{3} \alpha^{2}\right) & =v_{\wp}\left(b_{3}\right)+2 k \equiv 2 k(\bmod 5), \\
v_{\wp}\left(2 b_{2} \alpha\right) & =v_{\wp}\left(b_{2}\right)+k \equiv k(\bmod 5), \\
v_{\wp}\left(b_{1}\right) & \equiv 0(\bmod 5),
\end{array}
$$

showing that $v_{\wp}\left(5 \alpha^{4}\right), v_{\wp}\left(20 r \alpha^{3}\right), v_{\wp}\left(3 b_{3} \alpha^{2}\right), v_{\wp}\left(2 b_{2} \alpha\right), v_{\wp}\left(b_{1}\right)$ are all distinct modulo 5 . Hence they must all be different. From (30) and (31) we deduce that

$$
\wp^{20}\left|5 \alpha^{4}, \wp^{20}\right| 20 r \alpha^{3}, \wp^{20}\left|3 b_{3} \alpha^{2}, \wp^{20}\right| 2 b_{2} \alpha, \wp^{20} \mid b_{1}
$$

From the second of these we have $5+3 k \geq 20$ so that $k \geq 5$. This contradicts $k=1,2,3$ or 4.

In both Case (i) and Case (ii) we have arrived at a contradiction. Thus $5 \notin C(K)$.
Lemma 4.4. If (7) does not hold then $5 \notin C(K)$.
Proof. Suppose that (7) does not hold, but $5 \in C(K)$. Then 5 ramifies in K. Thus $5=\wp^{5}$ for some prime ideal \wp of K. Hence

$$
\left|O_{K} / \wp\right|=N(\wp)=5
$$

and so, as $\theta \in O_{K}$, there exists $r \in \mathbb{Z}$ such that

$$
\theta \equiv r(\bmod \wp)
$$

Taking conjugates we obtain

$$
\theta_{i} \equiv r(\bmod \wp)(i=1,2,3,4,5)
$$

Hence

$$
f(x)=\prod_{i=1}^{5}\left(x-\theta_{i}\right) \equiv \prod_{i=1}^{5}(x-r) \equiv(x-r)^{5}(\bmod \wp)
$$

Since $f(x) \in \mathbb{Z}[x],(x-r)^{5} \in \mathbb{Z}[x]$ and $5=\wp^{5}$, we deduce that

$$
f(x) \equiv(x-r)^{5}(\bmod 5)
$$

Thus

$$
x^{5}+a x^{3}+b x^{2}+c x+d \equiv x^{5}-r(\bmod 5)
$$

so

$$
5|a, 5| b, 5 \mid c
$$

which is a contradiction as (7) does not hold. Hence $5 \notin C(K)$.
Lemma 4.5. If (7) holds and (9) does not hold then $5 \in C(K)$.
Proof. Suppose $5 \notin C(K)$. Then

$$
5=Q_{1} \cdots Q_{t}(t=1 \text { or } 5)
$$

for distinct prime ideals $Q_{i}(i=1, \ldots, t)$ of K. Now

$$
\begin{aligned}
0=f(\theta) & =\theta^{5}+a \theta^{3}+b \theta^{2}+c \theta+d \\
& \equiv \theta^{5}+d \equiv \theta^{5}+d^{5} \equiv(\theta+d)^{5}(\bmod 5)
\end{aligned}
$$

so that $Q_{i} \mid(\theta+d)^{5}$ and thus $Q_{i} \mid \theta+d$ for $i=1, \ldots, t$. Hence $Q_{1} \cdots Q_{t} \mid \theta+d$ and so $5 \mid \theta+d$. By conjugation we have

$$
5 \mid \theta_{i}+d \quad(i=1,2,3,4,5)
$$

Hence

$$
5 \mid \theta_{i}-\theta_{j} \quad(1 \leq i<j \leq 5)
$$

and so

$$
5^{20} \mid \prod_{1 \leq i<j \leq 5}\left(\theta_{i}-\theta_{j}\right)^{2}
$$

that is

$$
5^{20} \mid \operatorname{disc}(f)
$$

a contradiction as (9) does not hold. Hence $5 \in C(K)$.
Appealing to (11) and Lemmas 4.1-4.5 we obtain the following table, which we give for convenience as a proposition.

Proposition 4.1.

(7) holds	(8) holds	(9) holds	Conclusion	Reason
yes	yes	yes	$5 \in C(K)$	Lemma 4.2
no	yes	yes	cannot occur	(11)
yes	no	yes	$5 \notin C(K)$	Lemma 4.3
no	no	yes	$5 \notin C(K)$	Lemma 4.3 or 4.4
yes	yes	no	cannot occur	Lemma 4.1
no	yes	no	cannot occur	(11) or Lemma 4.1
yes	no	no	$5 \in C(K)$	Lemma 4.5
no	no	no	$5 \notin C(K)$	Lemma 4.4

5. Proof of Theorem. The Theorem follows immediately from Propositions 2.1, 3.1 and 4.1.

References

[1] David S. Dummit, Solving solvable quintics, Math. Comp. 57 (1991), 387-401.
[2] Sigeru Kobayashi and Hiroshi Nakagawa, Resolution of solvable quintic equation, Math. Japonica 37 (1992), 883-886.
[3] Daniel C. Mayer, Multiplicities of dihedral discriminants, Math Comp. 58 (1992), 831-847.
[4] T. Nagel, Zur Arithmetik der Polynome, Abh. Math. Sem. Hamburg 1 (1922), 179-194.
[5] Wladyslaw Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, Second edition, Springer-Verlag Berlin-Heidleberg-New York and PWN-Polish Scientific Publishers, Warsaw, 1990.
*Department of Mathematics and Statistics, Okanagan University College, Kelowna, B.C. Canada V1V 1V7

E-mail address: bkspearm@okuc02.okanagan.bc.ca
**School of Mathematics and Statistics, Carleton University, Ottawa, Ont ario, Canada K1S 5B6

E-mail address: williams@math.carleton.ca

