ON FUZZY BCC-IDEALS

ZHANG XIAOHONG AND YUE ZHENCAI, HU WANBAO

Received May 12, 2000

ABSTRACT. The aim of this paper is to give some characterizations of fuzzy BCC-ideals. Also we solve the problem of classifying fuzzy BCC-ideals by their family of level BCC-ideals in BCC-algebras.

The concept of fuzzy sets was introduced by Zadeh. O.G.Xi [6] applied the concept of fuzzy sets to BCK-algebras. A fuzzy ideal of a BCK-algebra was extensively investigated by Y.B.Jun, J.Meng et al. ([1],[2],[5]). In this paper we develop some results in [1], [2] to BCC-algebras.

By a BCC-algebra we mean an algebra $(X;^*,0)$ of type (2,0) satisfying the axioms:

- (1) $((x^*y)^*(z^*y))^*(x^*z) = 0,$
- (2) $x^*x = 0$,
- (3) $0^*x = 0$,
- (4) $x^*0 = x$,
- (5) $x^*y = y^*x = 0$ implies x = y,
- for all $x, y, z \in X$. We can define a partial ordering \leq by $x \leq y$ if and only if $x^*y = 0$.

The avobe definition is a dual form of the ordinary definition (See [3]).

In any BCC-algebra X, the following hold:

- (6) $x^*y \le x$,
- (7) $x \leq y$ implies $x^*z \leq y^*z$ and $z^*y \leq z^*x$.

Any BCK-algebra is a BCC-algebra, but not conversely. A BCC-algebra is a BCK-algebra iff it satisfies $(x^*y)^*z = (x^*z)^*y$ or $(x^*(x^*y))^*y = 0$.

¹⁹⁹¹ Mathematics Subject Classification. 06F35, 03G25, 94D05.

Key words and phrases. Fussy BCC-ideal, Level BCC-ideal, BCC-algebra.

A non-empty subset A of a BCC-algebra X is called a BCC-ideal (See [7] and [8]) iff (i) $0 \in A$ and (ii) $y, (x^*y)^*z \in A$ imply $x^*z \in A$. A non-empty subset S of a BCC-algebra X is called a subalgebra of X if, for any $x, y \in S$, we have $x^*y \in S$.

Definition 1 ([9]). Let X be a BCC-algebra, a function $\mu : X \to [0, 1]$ is called a fuzzy subalgebra of X, if, for any $x, y \in X$, we have:

$$\mu(x^*y) \ge \min(\mu(x), \mu(y)).$$

Definition 2 ([9]) Let μ be a fuzzy set in a set X. For $t \in [0, 1]$, the set $\mu_t = \{x \in X : \mu(x) \ge t\}$ is called a level subset of μ .

Theorem 3 ([9]). Let X be a BCC-algebra and let μ be an arbitrary fuzzy subalgebra of X. Then $\mu(0) \ge \mu(X)$ for any $x \in X$.

Theorem 4 ([9]).Let X be a BCC-algebra. Then a fuzzy set μ in X is a fuzzy subalgebra of X if and only if, for every $t \in [0, 1]$, μ_t is a subalgebra of X when $\mu_t \neq \emptyset$.

Definition 5 ([9]). Let X be a BCC-algebra. A fuzzy set μ (μ : $X \rightarrow$ [0,1]) in X is said to be a fuzzy BCC-ideal of X if it satisfies

(i) $\mu(0) \ge \mu(x)$ for any $x \in X$,

(ii) $\mu(x^*z) \ge \min\{\mu((x^*y)^*z), \mu(y)\}$ for any $x, y, z \in X$.

Theorem 6 ([9]). A fuzzy set μ in a BCC-algebra X is a fuzzy BCC-ideal of X if and only if, for each $t \in [0,1]$, $\mu_t = \{x \in X : \mu(x) \ge t\}$ is a BCC-ideal of X, when $\mu_t \ne \emptyset$.

Theorem 7 For any fuzzy BCC-ideal μ of BCC-algebra X, if $x \leq y$ then $\mu(x) \geq (y)$.

Proof. Let μ be a fuzzy BCC-ideal of BCC-algebra X. If $x \leq y$, then $x^*y = 0$. It follows that

$$\begin{split} \mu(x) &= \mu(x^*0) \geq \min(\mu((x^*y)^*0), \mu(y)) & (by \text{ (ii)}) \\ &= \min(\mu(x^*y), \mu(y)) \\ &= \min(\mu(0), \mu(y)) \\ &= \mu(y) \end{split}$$

This completes the proof.

Proof. Since $x^*y \leq x$ (by (6)), it follows from Theorem 7 that

$$\mu(x) \le \mu(x^*y)$$

so by (ii)

$$\begin{split} \mu(x^*y) \geq \mu(x) &= \mu(x^*0) &\geq \min(\mu((x^*y)^*0), \mu(y)) \\ &= \min(\mu(x^*y), \mu(y)) \\ &\geq \min(\mu(x), \mu(y)) \end{split}$$

This shows that μ is a fuzzy subalgebra of X, proving the theorem.

Theorem 9 A fuzzy subalgebra of BCC-algebra X is a fuzzy BCC-ideal of X if and only if, for all $x, y, z, s \in X$, the inequality $(x^*y)^*z \leq s$ implies that $\mu(x^*z) \geq \min\{\mu(y), \mu(s)\}$.

Proof. (\Leftarrow) Suppose that μ is a fuzzy subalgebra of BCC-algebra X and satisfying that $(x^*y)^* \leq zs$ implies $\mu(x^*z) \geq min\{\mu(y), \mu(s)\}$. Since

$$(x^*y)^*z \le (x^*y)^*z$$
 (by (2))

it follows that $\mu(x^*z) \ge \min\{\mu(y), \mu((x^*y)^*z)\}$. Hence μ is a fuzzy BCC-ideal of X.

(⇒) Suppose that μ is a fuzzy BCC-ideal of X and $(x^*y)^*z \leq s$, it follows from Theorem 7 that $\mu(s) \leq \mu((x^*y)^*z)$, so by (ii)

$$\mu(x^*z) \ge \min\{\mu(y), \mu((x^*y)^*z)\} \ge \min\{\mu(y), \mu(s)\}.$$

The ploof is complete.

Definition 10 Let X be a BCC-algebra and let μ be a fuzzy BCC-ideal of X. The BCC-ideals μ_t , $t \in [0, 1]$, are called level BCC-ideals of μ .

Theorem 11 Any BCC-ideal of a BCC-algebra X can be realized as a level BCC-ideal of some fuzzy BCC-ideal of X.

Proof. Let A be a BCC-ideal of a BCC-algebra X and let μ be a fuzzy sets in X defined by

$$\mu(x) = \begin{cases} t, & \text{if } x \in A \\ 0, & \text{if } x \notin A \end{cases}$$

where t is a fixed number in (0, 1). Note that $0 \in A$, so that $\mu(0) = t \ge \mu(x)$ for all $x \in X$. Let $x, y, z \in X$. If $y \notin A$, then $\mu(y) = 0$ and so

$$\mu(x^*z) \ge 0 = \min\{\mu((x^*y)^*z), \mu(y)\}.$$

Assume that $y \in A$:

If $x^*z \in A$, then $(x^*y)^*z$ may or may not belong to A. In any cases,

$$\mu(x^*z) = t \ge \min\{\mu((x^*y) * z), \mu(y)\}.$$

If $x^*z \notin A$, then $(x^*y)^*z \notin A$ because A is a BCC-ideal. Hence

$$\mu(x^*z) = 0 = \min\{\mu((x^*y)^*z), \mu(y)\}.$$

This shows that μ is a fuzzy BCC-ideal of X. For the fuzzy BCC-ideal μ , obviously $\mu_t = A$.

Note that if X is a finite BCC-algebra, then the number of ideals of X is finite whereas the number of level BCC-ideals of a fuzzy BCC-ideal μ appears to be infinite. But, since every level BCC-ideal is indeed a BCC-ideal of X, not all these level BCC-ideals are distinct. The next theorem characterizes this aspect.

Theorem 12 Let μ be a fuzzy BCC-ideal of a BCC-algebra X. Two level BCC-ideals μ_{t_1} , μ_{t_2} (with $t_1 < t_2$) of μ are equal if and only if there is no $x \in X$ such that $t_1 1 < \mu(x) < t_2$.

Proof. Assume that $\mu_{t_1} = \mu_{t_2}$ for $t_1 < t_2$ and that there exists $x \in X$ such that $t_1 < \mu(x) < t_2$. Then μ_{t_2} is a proper subset of μ_{t_1} , with contradicts the hypothesis. Conversely suppose that there is no $x \in X$ such that $t_1 < \mu(x) < t_2$. Since $t_1 < t_2$, we have $\mu_{t_2} \subseteq \mu_{t_1}$. Let $x \in \mu_{t_1}$, then $\mu(x) \ge t_1$, and hence $\mu(x) \ge t_2$, because $\mu(x)$ dose not lie between t_1 and t_2 . Hence $x \in \mu t_2$, which implies that $\mu_{t_1} \subseteq \mu_{t_2}$. This completes the proof.

Theorem 13 Let μ and ν be two fuzzy BCC-ideals of a finite BCC-algebra X such that the families of level BCC-idals of μ and ν are identical. Then $\mu = \nu$ if and only if $Im(\mu) = Im(\nu)$, where $Im(\mu)$ denotes the image set of μ .

Proof. the proof is similar to that of [1; *Theorem* 2.11].

Let Γ denote the class of fuzzy BCC-ideals of a finite BCC-algebra X. Define a relation ~ on Γ as follows: for any $\mu, \nu \in \Gamma$, $\mu \sim \nu$ if and only if μ and ν have the identical family of level BCC-ideals.

Theorem 14 The relation \sim is an equivalence relation.

Proof. The proof is similar to that of [1; Lemma 2.12].

Theorem 15 Let Γ be the collection of all fuzzy BCC-ideals of a finite BCC-algebra X and let Π be the collection of all level BCC-ideals of member of Γ . Then there is a 1-1 cprrespondence between the BCC-ideals of X and the equivalence classes of level BCC-ideals under a suitable equivalence relation on Π .

Proof. The proof is similar to that of [1; *Theorem* 2.14].

References

- Y.B.Jun, Characterization of fuzzy ideals by their level ideals in BCK(BCI)-algebras, Math. Japon. 38(1993), 67-71.
- [2] J.Meng,Y.B.Jun and H.S.Kim, Fuzzy implicative ideals of BCK-algebras, Fuzzy Sets and Systems 89(1997), 243-248.
- [3] Y.Komori, The class of BCC-algebras is not a variety, Math. Japon. 29(1984), 391-394.
- [4] W.A.Dudek, On BCC-algebras, Logique et Analyse 20(1990), 129-136.
- [5] Y.B.Jun, A note on Fuzzy ideals in BCK-algebras, Math. Japonica 42(1995), 333-335.
- [6] O.G.Xi, Fuzzy BCK-algebras, Math. Japon. 36(1991), 935-942.
- [7] W.A.Dudek, On proper BCC-algebras, Bull. Inst. Math. Academia Sinica 20(1992), 137-150.
- [8] W.A.Dudek and X.H.Zhang, On atomos in BCC-algebras, Disscusiones Math., Algebra and Stoch. Methods 15(1995), 81-85.
- X.H.Zhang, Fuzzy BCC-algebras and Fuzzy BCC-ideal, Pure and Applied Mathematics (Xian, China), No.2(1999),77-78.
- [10] X.H.Zhang and Y.B.Jun, The Role of T(X) in the ideal Theory of BCI-algebras, Bull. Korean Math. Soc., 34(1997), 199-204.
- W.A.Dudek and X.H.Zhang, On ideals and Congruences in BCC-algebras, Czechoslovak Mathematical Journal, 48(123)(1998), Praha, 21-29.
- [12] X.H.Zhang, BCC-algebra and integral pomonoid, J. of Math. Research & Exposition, 19(1999), Supp., 196-198.

Zhang Xiaohong and Yue Zhencai:

Department of Mathematics and Computer Science, Hanzhong Teachers College, Hanzhong Shaanxi Province,

P.R.C

Hu Wanbao:

Department of Mathematics and Computer Science, Angin Normal Institute, Angin Anhui Province, P.R.C