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Abstract. Some constant-sum n-stage sequential game version of best-choice problems

under Winning Probability (WP) maximization are investigated and the explicit solu-

tions are obtained. The essential feature contained in these sequential games is the fact

that the players have their own weights by which at each stage, player's desired decision

may be taken away by an opponent as an outcome of drawing a lottery. The game is, es-

sentially, a generalization of the \horse game" �rst investigated by Enns and Ferenstein

[2]in 1985.

1. Introduction

In this paper some constant-sum n-stage sequential-game versions of best-choice problems

under Winning Probability (WP) maximization are investigated.

A zero-sum game version of the discrete-time, full-information best-choice problem under

WP-maximization is studied in Section 2, and the extensions of this simplest game to the

three-player case and no information versions are studied in Sections 3 and 4.

We �rst state the two-person game version as follows:

(10) There are two players I and II, a sequence of n iid r.v.s fXigni=1; each r.v. obeying

uniform distribution on 0 � x � 1: Both players observe Xis sequentially one by one.

(20) Observing each Xt; both players select simultaneously and independently, either to

accept (A) or to reject (R) the Xt: If I-II choice is A-A, then player I(II) accepts to receive

Xt with probability w (w = 1 � w); 1
2
� w � 1; and drops out from the game thereafter.

The player remained continues his one-person game. If I-II choice is A-R (R-A), then I (II)

accepts Xt and drops out and his opponent continues the remaining one-person game. If

I-II choice is R-R, then Xt is rejected and the players face the next Xt+1:

(30) A player wins if he accepts a r.v. that is greater than the opponent's one, or if his

opponent fails to accept any r.v. The aim of player I (II) in the game is to �nd his strategy

by following which he maximizes (minimizes) probability of player I's winning.

If w = 1; the problem reduces essentially to the \horse game" �rst investigated by Enns

and Ferentein [2], in 1985.

The explicit solution to this problem is given in Section 2. The game is extended to the

three-person case in Section 3, and under a vital and reasonable assumption the equilibrium

play is explicitly derived for the equal-weight (i.e. w1 = w2 = w3 = 1

3
) game. The

problems we consider in this paper belong to a class of best-choice problems combined

with sequential games. Two and three-person optimal stopping games where players have

weighted privilege, under full-information and expected net value (ENV) maximization
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are investigated in Sakaguchi [10]. And those problems under no-information and WP-

maximization, but with the player's aim being selecting-best of r.v..s are treated in Ramsey

and Szajowski [11]. Recent works related to these area of problems are [1]�[6], [8], and
[9]. Also a recent look for the optimal stopping games in various phases can be found in

Sakaguchi [7].

2. Selecting Better-than-opponents|Two-person Full-information case.

Consider the zero-sum two-person game described in the previous section. De�ne state

(x j n) to mean that (1) both player remain in the game, and (2) there remain n r.v.s to be

observed and the players currently face the �rst observation X1 = x: Let Vn be the value

of the game for player I, for the n-problem. Since the players shoud choose A-A in state

(x j 1); and so draw of the game cannot occur.

The Optimality Equation is evidently

(2:1) Vn = E valMn(X) (n = 1; 2; : : : ; V0 � 0)

where E'(X) � R 1
0
'(x)dx and

(2:2) Mn(x) = R

A

R A�
E valMn�1(X) 1� x

n�1

x
n�1 (w � w)xn�1 + w

�
:

Lemma 1.1 Let 1

2
� a; w � 1 and Y is a r.v. with cdf G(y); on 0 � y � 1:

Then

EGval

�
a 1� Y

Y (w � w)Y + w

�

(2:3) = w +

"Z 1
2

a

�(w � w)

Z
1

1
2

#
G(y)dy:

Proof. The matrix M(y) � R

A

R A�
a 1� y

y (w � w)y + w

�
has the saddle point at R-R, R-A

and A-A, if 0 < y < a; a < y <
1

2
; and 1

2
< y < 1 respectively. Hence it follows that

valM(y) =

8<
:

a; if 0 < y < a

1� y; if a < y <
1

2

(w � w)y + w; if 1

2
< y < 1

and

(2:4) E[valM(Y )] = aG(a) +

Z 1
2

a

(1� y)dG(y) +

Z
1

1
2

f(w � w)y + wgdG(y):

The r.h.s. of (2.4) becomes (2.3) after intergration by parts and simpli�cation.
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Theorem 1. The solution to our OSG described by (2:1) � (2:2); for 1

2
< w < 1; is as

follows: The optimal strategy-pair in state (x j n) is R-R, R-A and A-A, if 0 � x <�
V n�1

� 1
n�1

;
�
V n�1

� 1
n�1

< x < 2�1=(n�1); and 2�1=(n�1) < x � 1; respectively. The se-

quence fVng is determined by recursion

(2:5) Vn =
1

n
(w � w) + w +

�
n� 1

n

�"
w

�
1

2

� 1
n�1

� �V n�1

� n

n�1

#
(n � 2;V1 = w)

Table 1: Optimal strategies for the games where w = 3=4 and w = 1

n
�
V n�1

� 1
n�1

�
1

2

� 1
n�1

Vn

w = 3=4 w = 1 w = 3=4 w = 1

1 0.0000 0.7500 1.0000

2 0.2500 0.0000 0.5000 0.6563 0.7500

3 0.5863 0.5000 0.7071 0.6359 0.7214

4 0.7141 0.6532 0.7937 0.6264 0.7088

5 0.7818 0.7346 0.8409 0.6209 0.7016

6 0.8237 0.7852 0.8706 0.6172 0.6969

7 0.8521 0.8196 0.8909 0.6146 0.6935

8 0.8727 0.8445 0.9057 0.6126 0.6910

9 0.8882 0.8635 0.9170 0.6110 0.6891

10 0.9004 0.8783 0.9259 0.6097 0.6875

11 0.9102 0.8902 0.9330 0.6087 0.6863

12 0.9182 0.9000 0.9389 0.6078 0.6852

Proof. In Lemma 1.1, we have G(y) = Pr(Y � y) = Pr(X
n�1 � y) = y

1=(n�1)
: Substi-

tuting this into (2:3) and using
R
y
1=(n�1)

dy =
�
n�1
n

�
y
n=(n�1)

; we obtain (2:5) after some

computation.

From (2.5), we have, when w = 1=2;

Vn =
1

2
+

�
n� 1

n

�"�
1

2

� n

n�1

� �V n�1

� n

n�1

#

which gives Vn = 1=2; (n � 1); and the optimal play in state (x j n) is R-R (A-A), if

x < (>)2�1=(n�1): When w = 1;

(2:6) Vn =
1

n
+

�
n� 1

n

�"�
1

2

� 1
n�1

� �V n�1

� n

n�1

#
(n � 2;V1 = 1)

which gives V2 = 3=4; V3 = (4
p
2 + 3)=12 _=0:7214; and so on. Table 1 shows the charac-

teristics of the optimal strategies in the game where w = 3=4 and w = 1; respectively, for

n = 1(1)12:

From the table we �nd that, when w = 3=4; for example, the opimal play in state

(x j 12) is R-R, R-A and A-A if 0 � x < 0:9182; 0:9182 < x < 0:9389 and 0:9389 < x � 1;

respectively, and the value of the game is V12 = 0:6078: We also observe that Vn is strictly

decreasing, because the resistance by the opponent player II becomes more eÆcient as n

increases.
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Corollary 1.1. If the sequence fV ng converges to a value � 2 (0; 1); then � is a unique

root of the equation

(2:7) �� log� = ��+ (log 2)w + w:

Proof. Denoting V n; simply by �n; (2.4) becomes

�n = w � 1

n
(w � w)� (1� n

�1)

(
w

�
1

2

� 1
n�1

� �

n

n�1

n�1

)
:

Subtracting �n�1 from the both sides and multiplying by n; we obtain

n(�n � �n�1) = w � �n�1 +

w

n
1� � 1

2

� 1
n�1

o
� �n�1

�
1� �

1
n�1

n�1

�
1=(n� 1)

:

Since limx!0+(1� �
x)=x = � log�; for any � 2 (0; 1); it follows that, if �n ! �; then, by

letting n!1; we have

0 = w � �+ w log 2 + � log�:

This is (2.7).

Equation (2.7) gives the value of �; for w = 0:5(0:1)1:0; as follows:

w = 0.5 0.6 0.7 0.8 0.9 1.0

� = 0.5000 0.4594 0.4186 0.3860 0.3561 0.3276

� = 0.5000 0.5406 0.5814 0.6140 0.6439 0.6724

When w = 1 our result coinsides with that in Enns and Ferenstein [2].

3. Selecting Better-than-opponent|Three-person Full-information Case

3.1. A three-person optimal stopping game

The analysis made in the previous section can be extended to three-person games. We state

the problem in correspondence to (10) � (30) in Section 1, as follows:

(1+) There are three persons I, II,and III. These players have their weights w1; w2; and w3;

respectively. Let 1 � w1 � w2 � w3 � 0; w1+w2+w3 = 1; and w(i;j) � wi=(wi+wj); i 6= j:

(2+) If three-players choice is A-A-A, then player I (II, III) accepts Xt with probability

w1(w2; w3) and drops out from the play thereafter. The two players remained continue

their two-person game with their \ revised" new weights. If three players' choice is R-

A-A, then II (III) accepts Xt with probability w(2;3)(w(3;2)) dropping out from the game,

and the remaining players III (II) and I continue their two-person game with their revised

new weights. If three-players choice is R-R-A, then III acceps Xt and drops out and his

opponents I and II continue the remaining two-person game. If players' choice-triple is R-R-

R, then Xt is rejected and the players face the next Xt+1: In case of other four choice-triples

A-R-A, A-A-R, R-A-R, and A-R-R, the game is played similarly as mentioned above.

(3+) A player wins if he accepts a r.v. that is larger than those accepted by his opponents.

The purpose of each player is to �nd the strategy that maximizes the probability of his

winning.
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De�nition of state is (x j n) is the same as in Section 2, with a single di�erence that

there are three players. Let W i
n; i = 1; 2; 3; be the value of the game for player i; for the

n-problem.

The statement of the problem in dynamic programming framework is as follows. Denote,

by Vn(w(i;j); x); the value for player i in the two-person game against j; with weights w(i;j)
for i; and w(j;i) for j; under the condition that player k(6= i; j); has already dropped out

from the game by accepting a past observation x: In state (x j n); players face a trimatrix

game with the payo� matrix Mn(x); which is

(3:1) Mn(x) =

�
Mn;R(x); if R is chosen by III

Mn;A(x); if A is chosen by III

where

Mn;R(x) = (I)

8<
:

R

A

(II)z }| {
R A

W
1
;W

2
;W

3
V (w13); x

n�1
; V (w31)

w12x
n�1 + w21V (w13);

x
n�1

; V (w23); V (w32) w12V (w23) + w21x
n�1

;

w12V (w32) + w21V (w31)

and

Mn;A(x) =

R

A

R A

w23V (w13) + w32V (w12);

V (w12); V (w21); x
n�1

w23x
n�1 + w32V (w21)

w23V (w31) + w32x
n�1

w13x
n�1 + w31V (w21) w1x

n�1 + w2V (w13) + w3V (w12)

w13V (w23) + w31V (w21); w1V (w23) + w2x
n�1 + w3V (w21)

w13V (w32) + w31x
n�1

w1V (w32) + w2V (w31) + w3x
n�1

In these two matrices the subscript n� 1 of W i and V; and x inside V (�) are omitted. Also

w(i;j) are rewritten as wij : The Optimality Equation is

(3:2) (W 1
;W

2
;W

3) = E[eq:val:Mn(X)] (n � 1;W i
0
= V0(wij) = 0;8i; j)

provided the eq. value of Mn(x) exists uniquely.

In the next section we present the explicit solution to the problem (3.1)-(3.2) in a special

case of < w1; w2; w3 >=<
1

3
;
1

3
;
1

3
> :

3.2. Three-person equal-weight game.

Denote by �
(3)

n the three-person equal-weight n-stage game. Also denote by �
(2)

m;x(1 � m <

n); the two-person equal-weight m-stage game under the condition that the r.v.s smaller

that x should be rejected. Also, denote by Wn and Vm;x; the common equilibrium values

(c.e.v.) in the games �
(3)

n and �
(2)

m;x; respectively. We �rst consider the game �
(2)

m;x: We shall

make an important assumption.

Assumption A. In the game �
(2)

m;x(1 � m < n); players should choose A-A at the earliest

r.v. that is larger that x:
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Under Assumption A, the event that both players lose the game �
(2)

m;x cannot happen,

since even if no candidate appear until the (m � 1)-th, each player will get 1=2; by the

choice-pair A-A at the m-th. Therefore by considering symmetry we can deduce that

Vm;x =
1

2
(1� x

m): Or more precisely

Vm;x = xVm�1;x +

Z
1

x

1

2
fym�1 + (1� y

m�1)gdy

= xVm�1;x +
1

2
(1� x) = x

2
Vm�2;x +

1

2
(1� x

2)

= : : : = x
m�1

V1;x +
1

2
(1� x

m�1) =
1

2
(1� x

m);

since V1;x =
R
1

x
1

2
dy = 1

2
(1�x): For the game �

(3)

n ; the fact that the event in which all three

palyers lose the game cannot happen, and symmetry in the game lead to Wn = 1=3; n � 1:

Now we are interested in �nding the equilibrium play in the game �
(3)

n ; and this is the

purpose of our study in this subsection. Under Assumption A the payo� matrix Mn(x) in

state (x j n) of the game �
(3)

n become (3.1) with

(3:3) Mn;R(x) = (I)

�
R

A

(II)z }| {
R A�

1=3; 1=3; 1=3 u=2; u; u=2

u; u=2; u=2 (1 + u)=4; (1 + u)=4; u=2

�

and

(3:4) Mn;A(x) = (I)

�
R

A

(II)z }| {
R A�

u=2; u=2; u u=2; (1 + u)=4; (1 + u)=4

(1 + u)=4; u=2; (1 + u)=4 1=3; 1=3; 1=3

�

where we have set u = x
n�1 for simplicity. Note that, in (3.3)-(3.4), the element A-A-R is

�
1

2
(xn�1 + Vn�1;x);

1

2
(xn�1 + Vn�1;x); Vn�1;x

�
=

�
1

4
(1 + u);

1

4
(1 + u);

u

2

�

and the element A-A-A is the triple of

1

3
(xn�1 + 2Vn�1;x) =

1

3

�
x
n�1 + 2 �

1

2
(1� x

n�1)

�
=

1

3
:

Now we prove

Theorem 2. Under Assumption A the equilibriun play in the game �
(3)

n is as follows:

Common equilibrium strategy, in state (x j n); is

Choose R(A); if x < (>)

�
1

3

� 1
n�1

:

If the process goes on like
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(3:5) Xt �
�
1

3

� 1
n�t

; t = 1; 2; : : : ; n�m� 1; and Xn�m = x >

�
1

3

� 1
m

for some m; 2 � m < n; adopt the following strategy in the game �
(2)

m;x; thereafter. That is ;

Accept the earliest candidate (if any), and if the lottery comes out lose at that time, accept

the 2nd earliest candidate (if any).

Proof. First note that in Mn;R(x) and Mn;A(x); given by (3:3)� (3:4);

1

2
(1� x

n�1) >
1

4
(1 + x

n�1)() 1

2
(1� x

n�1) >
1

3
, x <

�
1

3

� 1
n�1

:

Then if x

�
<

>

�
( 1
3
)

1
n�1 ;

�
R�R
A�A

�
is in equilibrium for I-II in both of Mn;R(x) and

Mn:A(x); and besides for III

�
R

A

�
is better that

�
A

R

�
: Thus the equilibrium in state

(x j n); is: Choose R-R-R (A-A-A), if x < (>)( 1
3
)

1
n�1 : So , c.e.v. ofMn(x) = 1=3;8x 2 [0; 1];

and hence Wn is equal to E[c.e.v. of Mn(X)] = 1=3; as we expected. If the r.v.s go on like

(3:5), then one player drops out from the game �
(3)

n and there is left game �
(2)

m;x for the

other two players.

Corollary 2.1 For 0 � x � 1 and m � 3;

x >

�
1

3

� 1
m

=)
�
1

2
(1� x

m�1)

� 1
m�1

< x:

That is, under Assumption A, the player who drops out �rst stands more advantageous than

the two opponents.

Proof. We prove the contraposition

�
1

2
(1� x

m�1)

� 1
m�1

� x =) x
m�1 � 1

3
=) x

m � 1

3
=) x �

�
1

3

� 1
m

:

Remark 1. By Theorem 1 with w = 1=2; or by following the same line of proof of

Theorem 2, where the payo� matrix is

R

A

R A�
1=2; 1=2 1� x

n�1
; x

n�1

x
n�1

; 1� x
n�1 1=2; 1=2

�

we �nd that the equilibrium play in state (x j n)of game �
(2)

n is to choose R-R (A-A), if

x < (>)( 1
2
)

1
n�1 : After the moment at which x > ( 1

2
)
1
m ; for some 2 � m < n; the remaining

player accepts the earliest r.v. larger that x; which appears thereafter. Assumption A

determines the equilibrium play in �
(2)

m;x: Table 2 gives the decision points 3�1=(n�1) of �
(3)

n ;

for some small n; in contrast with those of �
(2)

n :
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Remark 2. At some time n�m; 2 � m < n; and some value x 2 (0; 1); the game �
(3)

n

is transferred to the game �
(2)

m;x: Let �n; and �n be the expected value of such m and x;

respectively. Then we have

(3:6) �n =

n�1X
m=1

m3�(
1

n�1
+

1
n�2

+:::+ 1
m+1

)(1� 3�
1
m )

which satis�es the recursion

(3:7) �n+1 = 3�
1
n�n + n(1� 3�

1
n ); (n � 1;�1 = 0);

and

(3:8) �n =
1

2

n�1X
m=1

3�(
1

n�1
+

1
n�2

+:::+ 1
m+1

)

�
1� 3�

2
m

�
;

which satis�es the recursion

(3:9) �n+1 = 3�
1

n�1 �n +
1

2

�
1� 3�

2
n

�
; (n � 1; �1 = 0):

In (3.6) and (3.8), the negative exponents of 3 are
Pn�1

j=m+1
j
�1
; which is interpreted as zero

if the sum is vacuous. Numerical values of �n and �n are shown for some small n in Table

3.

Remark 3. The Assumption A brings our game problem into the easier from too much

extent. In the \subgame" �
(2)

m;x here, each player �xes his strategy. We �nd from(3.7)

and (3.9) (by using the similar argument as used in Corollary 1.1.) that limn!1 n
�1
�n =

log 3

1+log 3
_=0:5235 and limn!1 �n = 1; unwelcoming result for our three-person game �

(3)

n :

Theorem 2 states only that, under Assumption A, each player can expect the winning

probability 1/3 by employing the stated strategy. The equilibrium strategy in �
(3)

n without

assuming Assumption A is as yet unknown. We have to think about the fact that the

optimal play in the two-person equal-weight game �
(2)

m;x is di�erent from one in �
(2)

m (See

Theorem 1 with w = 1=2):

Remark 4. The three-person unequal-weight games seem to be more diÆcult than the

equal-weight game to derive the explicit solution, even in the cases with weight

< 1=2; 1=2; 0 > or < 1; 0; 0 > :

We showed by Theorem 1, that for the two-person < 1; 0 >-weight game, the equilibrium

strategy in state (x j n) is to choose

R-R, R-A and A-A, if 0 � x < (V n�1)
1

n�1 ; (V n�1)
1

n�1 < x < 2�
1

n�1 and 2�
1

n�1 < x � 1;

respectively,

and the equilibrium values are (Vn; V n); where fVng is determined by the recursion (2.6).

To derive the solutions to three-person < 1=2; 1=2; 0 >-weight and < 1; 0; 0 >-weight games

are open problems.
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Table 2: Decision points in the equal-weight games �
(3)

n and �
(2)

n

�
(3)

n �
(2)

n

( 1
3
)

1
n�1 ( 1

2
)

1
n�1

n = 2 0.3333(= 1/3) 0.5000

3 0.5774(= 1=
p
3) 0.7071

4 0.6934 0.7937

5 0.7598 0.8409

6 0.8027 0.8706

7 0.8327 0.8909

8 0.8548 0.9057

9 0.8717 0.9170

10 0.8851 0.9259

11 0.8960 0.9330

12 0.9050 0.9389
...

...
...

Table 3: Expected values of m and x in �
(3)

n

Based on Eq. (3.6) Eq. (3.8)

n �n �n

1 0.0000 0.0000

2 0.6667(=2/3) 0.4444(= 4/9)

3 1.2302 0.5899

4 1.7729 0.6687

5 2.3078 0.7194

6 2.8388 0.7553

7 3.3678 0.7823

8 3.8956 0.8033

9 4.4220 0.8203

10 4.9481 0.8344

11 5.4737 0.8462

12 5.9989 0.8563
...

...
...

4. Selecting Better-than-opponent|No-information Case

A zero-sum no-information version of OSG is presented in this section. The problem is

stated, similarly as in the begining of the previous Section 1, and hence only the di�erence

is to be noted.

(1+) Players I and II observe a sequence of n independent r.v.s frigmi=1 obeying the

discrete distribution

Pr(Yi = 1) = � � � = Pr(Yi = i) = i
�1
:

(2+) Observing each Yi; players choose either A or R. If either player choose A, he obtains

the reward

g(i; y) �
nY

j=i+1

(1� y=j); if Yi = y
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and drops out from the game. If both players choose A, the rule is the same as in (20); with

Xi replaced by g(i; Yi):

(3+) A player wins if he accepts a Yi that is absolutely better than the opponent's one,

or if his opponent fails to accept any r.v. (c.f.: g(i; y) = Prfi-th has the absolute rank

y j Yi = yg):
De�ne state (i; y) to mean that (1) both players remain in the game, and (2) players

currently face the r.v. Yi = y: Let V (i; y) be the value of the game in state (i; y); for the

n-problem. Note that n is �xed throughout, players should choose A-A in state (n; y) and

hence draw of the game cannot occur.

The Optimality Equation is

(4:1) V (i; y) = val

�
R

A

R A�
�i+1 1� g(i; y)

g(i; y) (w � w)g(i; y) + w

��

(i = 1; 2; : : : ; n� 1;V (n; y) = w;8y 2 [1; n])

where

g(i; y) �
�
1� y

i+ 1

��
1� y

i+ 2

�
: : :

�
1� y

n

�
=

�
n� y

i� y

�,�
n

i

�

=

�
i

y

�,�
n

y

�
;(4.2)

and

�i+1 � EV (i+ 1; Yi+1) � 1

i+ 1

i+1X
y0=1

V (i+ 1; y0):

We prove

Theorem 3. The solution to our OSG described by (4; 1) � (4; 2) for 1=2 < w < 1; is as

follows: The optimal strategy-pair in state (i; y) is R-R, R-A and A-A, if 0 < g(i; y) <

�i+1; �i+1 < g(i; y) < 1=2 and 1=2 < g(i; y) < 1; respectively. The sequence f�ng is

determined by the recursion

�i =
1

i

iX
y=1

�
�i+1Ifg(i; y) � �i+1g+ (1� g(i; y))I

�
�i+1 < g(i; y) � 1

2

�

+f(w � w)g(i; y) + wgI
�
g(i; y) >

1

2

��

(4:3)

 
i = 1; 2; : : : ; n� 1;�n � 1

n

nX
y=1

V (n; y) = w

!

Proof. Our common sense tells that �i >
1

2
;8i: Moreover g(i; y) is decreasing in 1 � y � i

and 1� g(i; y) > (w�w)g(i; y) +w , g(i; y) < 1=2: Hence applying Lemma 1.1 in Section

2 to (4:1) we obtain

(4:4) V (i; y) =

8<
:

�i+1; if 0 < g(i; y) < �i+1; (R-R is optimal)

1� g(i; y); if �i+1 < g(i; y) < 1=2; (R-A is optimal)

(w � w)g(i; y) + w; if 1

2
< g(i; y) < 1; (A-A is optimal)
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from which (4:3) follows.

Figure 1: Optimal strategy-pair when n = 10 and w = 3=4

R-R

R-A

R-A
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R-A
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y = 1

2

3
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We illustrate the solution for the case when n = 10 and w = 3=4: First the values of

g(i; y); 1 � y � i � 10; are computed by using

g(i; y) =
(i)y

(n)y
=

(n� y)n�i

(n)n�i
= g(n� y; n� i);

and

g(i� 1; y) =
�
1� y

i

�
g(i; y); (1 � y � i � n = 10):

The winning probabilities are computed from (4.3) from �10 = 3=4 downward in i until

reaching �1 = V (1; 1) = 0:578: Figure 1 shows the optimal strategy-pair.

It is interesting to note the following two remarks, in connection with our result.
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Figure 2: Optimal strategy-pair when n = 10 and w = 1
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Remark 5. Enns and Ferenstein [2] obtained the result Pr(I's win) = 0:619; and the

optimal strategy-pair as shown by Figure 2, when n = 10 and w = 1:

Remark 6. For the case where n = 10 and w = 3=4; we have Pr(I's win) = 0:6097 in

Full-information case (see Table 1 in section 2), and Pr(I'swin) = 0:587 in No-information

case (See the example in Section 4).
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